NETZSCH

Proven Excellence.

Analysieren & Prüfen

NETZSCH – weltweit DSC zur Polymeruntersuchung

Präsentation für TH Bingen Workshop: "Nachwachsende Rohstoffe" Jürgen Zöller, NETZSCH Gerätebau GmbH

Agenda

- 1. Die NETZSCH-Gruppe und ihre Geschäftsbereiche
- 2. NETZSCH A&P: die ganze Welt der Thermischen Analyse, Rheologie und Brandprüfung
- 3. Vielseitige Anwendungen
- 4. Einführung in die NETZSCH DSC- Welt

1

Die NETZSCH-Gruppe und ihre Geschäftsbereiche

Erich NETZSCH GmbH & Co. Holding KG

Analysieren & Prüfen

Geräte zur Thermoanalyse und zur Bestimmung thermophysikalischer Eigenschaften sowie Brandprüfgeräte

Mahlen & Dispergieren

Umfangreiches Maschinenprogramm für Nass- und Trockenmahlen, Mischen, Dispergieren, Homogenisieren und Sichten

Pumpen & Systeme

Immer die passende Verdrängerpumpe für Ihre Anwendung

Geschäftsbereich Analysieren & Prüfen

Produkte und Dienstleistungen für Applikationen im Tief- und Hochtemperaturbereich von -260°C bis 2800°C

Thermische Analyse

Bestimmung von
Dimensions- und
Massenänderungen,
Phasenübergängen
und Enthalpien
als Funktion der
Temperatur

Thermophysikalische Eigenschaften

Bestimmung von
Temperatur- und
Wärmeleitfähigkeit,
spezifischer
Wärmekapazität und
thermischen
Ausdehnungskoeffizienten

Adiabatische Kalorimetrie

Analyse von
Zersetzungsprozessen
und Reaktionsverläufen
bzgl. Temperaturen,
freigesetzten
Wärmemengen und
Druckverläufen

Brandprüfgeräte

Ermittlung des
Brandverhaltens von
Produkten in den Bereichen
Automotive, Bauindustrie,
Elektronik, Polymer;
Einteilung in "Europäische
Brandklassen"

Rheologie

Messung rheologischer Eigenschaften von nicht-Newtonschen Fluiden und weichen Feststoffen – von der Formulierung bis zum Gebrauch der Produkte

2

NETZSCH A&P: die ganze Welt der Thermischen Analyse, Rheologie und Brandprüfung

NETZSCH A&P: Die ganze Welt der Thermischen Analyse, Rheologie und Brandprüfung

Für jede Methode die passende Lösung

Dynamische Differenzkalorimetrie / Differenz-Thermoanalyse

Thermogravimetrie

Simultane Thermische Analyse DSC/TGA

Gasanalyse

Adiabatische Kalorimetrie

DSC Methode

TGA STA QMS FT-IR

ARC

SBA

TMA DIL

Thermomechanische Analyse

und Dilatometrie

Dynamisch-Mechanische Analyse

DEA

Dielektrische Analyse

Rheologie

Analyse des Verformungsund Fließverhaltens

Seebeck-Koeffizient und elektrische Leitfähigkeit

Für jede Methode die passende Lösung

Vethode

Brandprüfgeräte

HFM/GHP LFA/Thermoreflectance

RUL HMOR Methode

Bestimmung des Brandverhaltens

Wärmeleitfähigkeitsbestimmung / Temperaturleitfähigkeitsbestimmung

Feuerfestprüfung

3 Vielseitige Anwendungen

Polymere

DSC

Glasübergänge,
Schmelz-,
Kristallisationsund Reaktionsverhalten

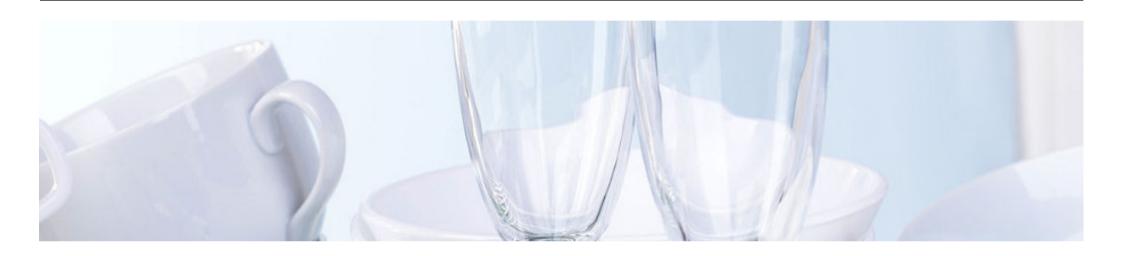
DMA

Steifigkeit und Dämpfungsverhalten

TG-FT-IR

Thermostabilität und Zersetzungs-verhalten

DEA


Aushärteverhalten

Rheologie

Verformungsverhalten, Fließverhalten

Glas & Keramik

DIL

Ausdehnungsund Sinterverhalten

STA

Ausbrennen von Bindemitteln, Reaktionsverhalten, Thermische Stabilität

DSC/DTA

Phasenumwandlungen

LFA

Temperatur- und Wärmeleitfähigkeit

Rheologie

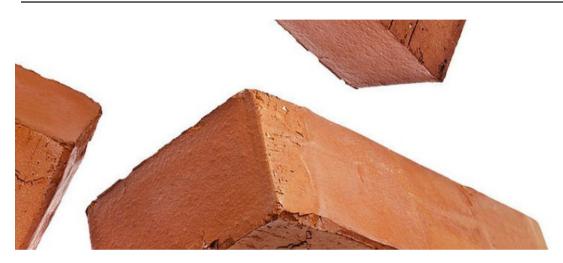
Fließverhalten

Metalle & Legierungen

DSC

Phasenumwandlungen

DIL


Ausdehnungsverhalten STA

Oxidationsverhalten, Korrosion **LFA**

Temperatur- und Wärmeleitfähigkeit

Baumaterialien

DSC

Phasenumwandlungen, Reaktionsverhalten

DIL

Ausdehnungsverhalten, Steifigkeit

STA

Phasenumwandlungen,
Zersetzungsverhalten

HFM/TCT/ GHP

Wärmeleitfähigkeit

Rheologie

Verformungsverhalten, Fließverhalten

Life Science

DSC

Gelierung, Schmelzen, Kristallisation, Polymorphismus

TG

Wasser- und Lösungsmittelgehalt, Thermostabilität

STA

Zusammensetzung, Reaktions- und Zersetzungsverhalten

DSC

Reinheit, Verträglichkeit, Denaturierung

Rheologie

Verformungsverhalten, Fließverhalten

4 Einführung in die DSC- Welt

Agenda

- 1. Einleitung Was ist eine DSC?
- 2. Probenpräparation
- 3. Beispiele von Messprogrammen
- 4. Applikationsbeispiele
- 5. Vergleich DSC Sirius und Polyma
- 6. Zusammenfassung

1 Einleitung – Was ist eine DSC?

Einleitung

Unterschiede zwischen DSC und FTIR

DSC

 Bestimmung von Thermophysikalischen Eigenschaften

Hauptaufgabe:

Wie verhält sich ein Material unter Temperatur?

FTIR

 Identifizierung von Substanzen anhand von Molekülschwingungen

Hauptaufgabe:

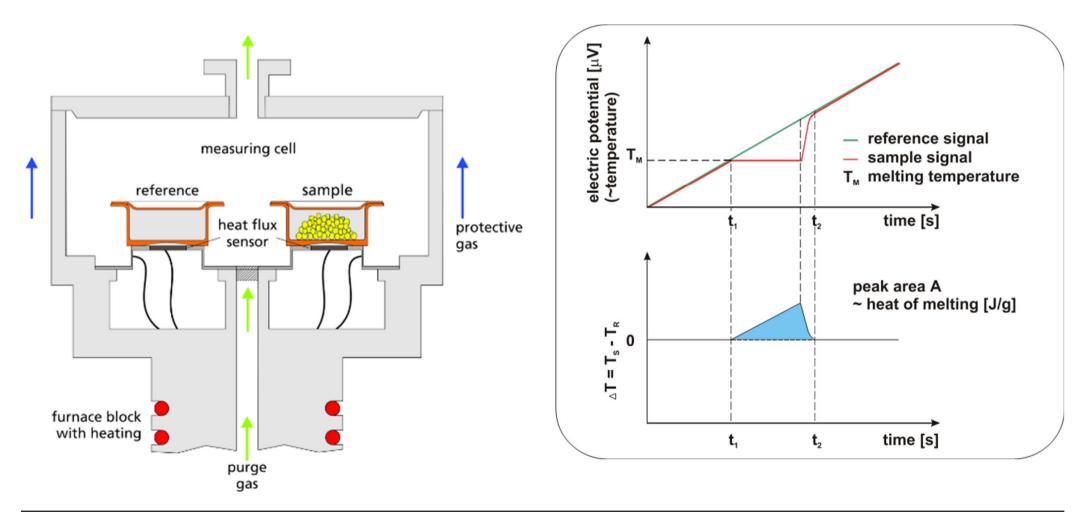
Was ist in einem Material drin?

DSC 214 Polyma

Bruker Invenio S mit NETZSCH TG 209 F1 Libra

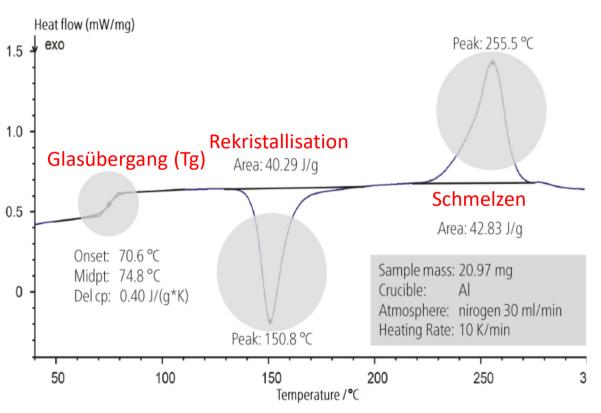
Einleitung Grundlagen der DSC

Die Differential Scanning Caloriemtrie ist eine Methode die in DIN ISO 50007 und für Kunststoffe in der DIN ISO 11357 beschrieben ist.


Differential Scanning Calorimetry (DSC)

ISO 11357, ASTM E 474

"..ein thermoanalytisches Verfahren, bei dem die Differenz zwischen dem Wärmestrom in den Tiegel mit dem Probekörper und dem in den Referenztiegel als eine Funktion der Temperatur und/oder der Zeit dargestellt wird, wobei der Probekörper und der Referenztiegel demselben kontrollierten Temperaturprogramm in einer festgelegten Atmosphäre unter Verwendung eines symmetrischen Messsystems ausgesetzt sind."


Einleitung Messprinzip der DSC

Einleitung Beispiel einer DSC Kurve

Physikalische und Chemische Reaktionen

- Spezifische Wärme
- Übergangsenthalpien (z. B. Polymorphismus)
- Schmelztemperaturen und Schmelzenthalpie
- Kristallinitätsgrad
- Kristallisationstemperaturen & -enthalpie
- Phasentransformationen, Phasendiagramme
- Reinheitsbestimmungen
- Solid Fat Index (SFI)
- Zersetzungseffekte (OIT)
- Glasübergangstemperaturen
- Wärmekapazitäten (cp)
- Reaktionsenthalpie
- Thermokinetik mit Aushärtungsgrad

2 Probenpräparation

Probenpräparation Allgemeine Grundlagen

Allgemeine Voraussetzungen (Labor)

Analysenwaage mit 0,01 mg Auflösung

Präparationsraum soll sauber und eine normale Luftfeuchte aufweisen um Proben nicht zu kontaminieren

Probenpräparationswerkzeuge wie Skalpell, Lochzange, NETZSCH Sample Cutter

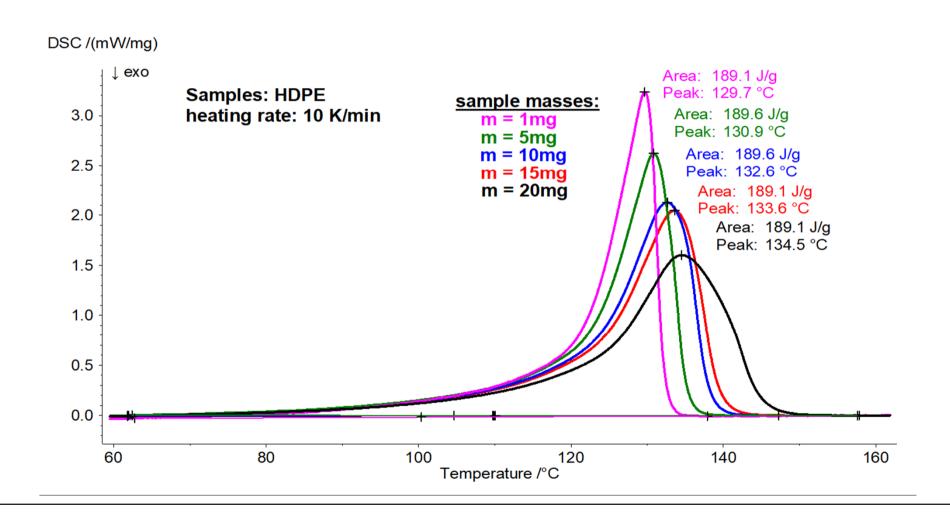
Spülgase, wie N2, Ar etc. müssen vorhanden sein, für OIT Sauerstoff oder Synthetische Luft

Allgemeine Handhabungen von Proben

Proben und Tiegel sollten nicht mit der Hand berührt werden um Verschmutzungen zu vermeiden!

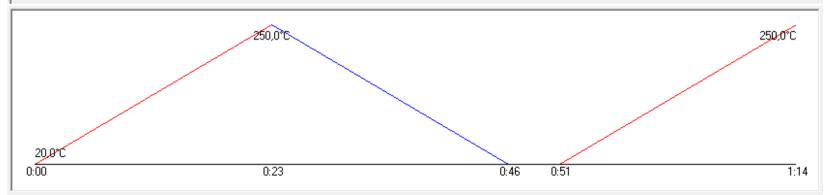
Probenmassen 2 bis 40 mg, für Vergleichsmessungen sollten Probenmassen nicht zu stark schwanken.

Probenpräparation Vorbereitung der Messung


Probenpräparation (z.B. Polymer Granulat)

- Probe schneiden z.B. mit Skalpell oder NETZSCH Sample Cutter
- Probe und Tiegel + Deckel jeweils wiegen und notieren
- Mit der geschnittenen Seite in den Tiegel legen, für einen guten Kontakt mit dem Tiegelboden
- Loch in den Deckel einstechen, um die Belüftung zu gewährleisten (Vorsicht, geschlossene Tiegel können aufplatzen)
- 5. Tiegel und Deckel verschweißen
- Probentiegel in den DSC Ofen mittig auf den Sensor platzieren
- 7. Messprogramm starten

Probenpräparation Probenpräparation

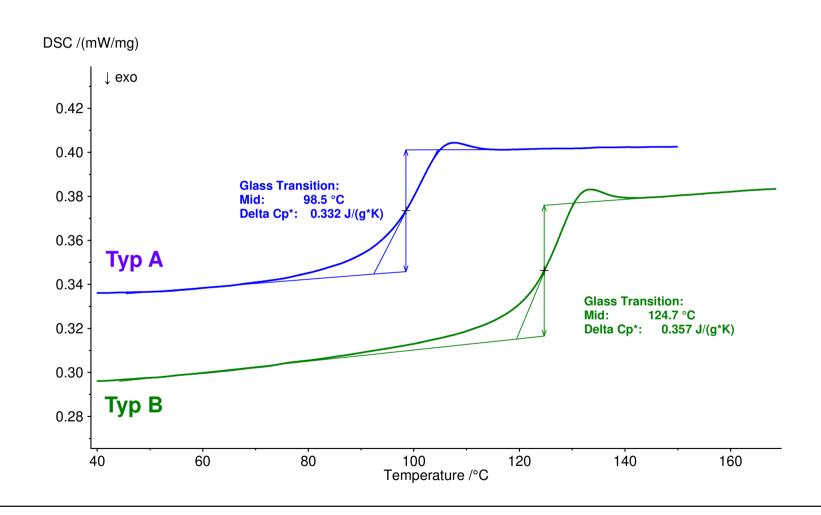

3 Beispiel Messprogramme

DSC Messungen Klassische DSC Messungen

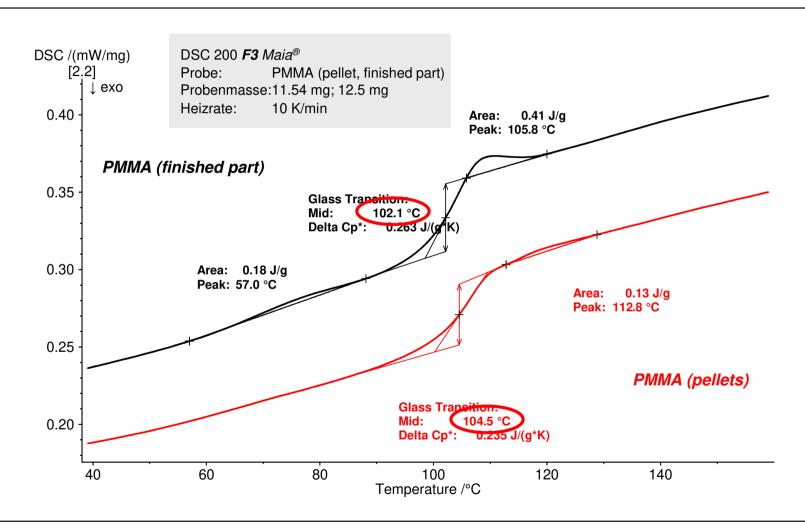
- Temperaturbereich
- Heizrate und Kühlrate
- Anzahl Heiz und Kühlläufe
- Atmosphäre

Nr	Auswahl	Тур	°C	K/min	Zeit	Pkt/min	Pkt/K	AC	02	N2	N2
1		•	20,0					1	0	40	60
2		→	250,0	10,000	0:23:00	300,00	30,00	1	0	40	60
3		\	20,0	10,000	0:23:00	300,00	30,00	1	0	40	60
4		-	20,0		0:05:00	50,00		1	0	40	60
5		→	250,0	10,000	0:23:00	300,00	30,00	1	0	40	60
6		0	260,0					0	0	40	60
7		5	25,0	20,000	0:11:15			1	0	40	60
8		5	25,0		0:05:00			1	0	40	60

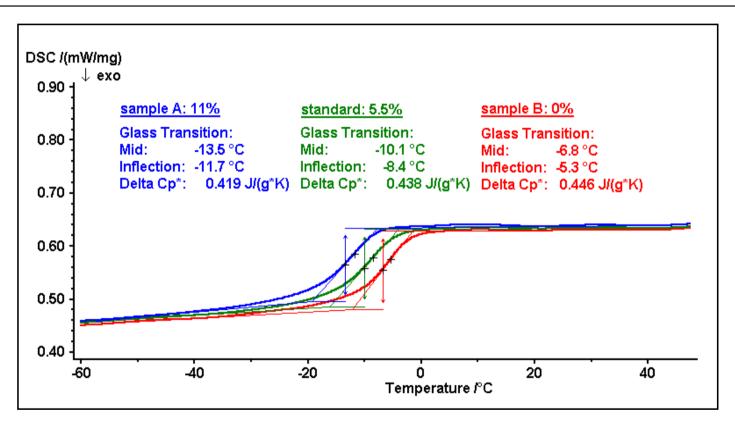
4 Applikationsbeispiele



Tg's als Qualitätsmerkmal


Applikationsbeispiele DSC - Glasübergangsbereich Glasübergang von verschiedenen PMMA Typen

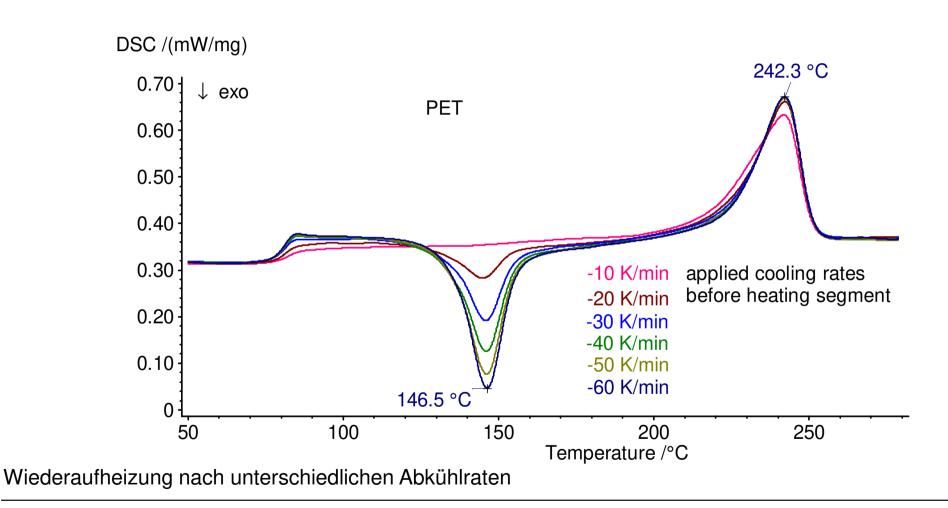
Applikationsbeispiele DSC - Glasübergangsbereich Glasübergang von PMMA (Vergleich Granulat mit Bauteil)



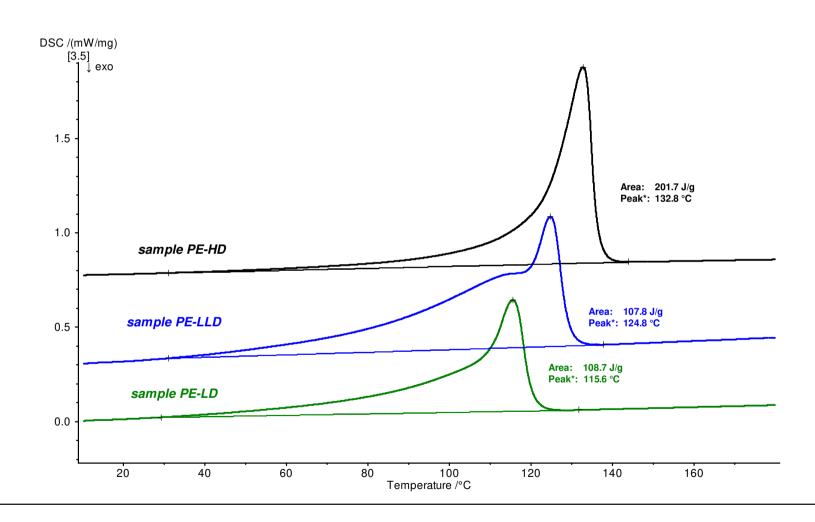
Applikationsbeispiele DSC - Stoffgemische

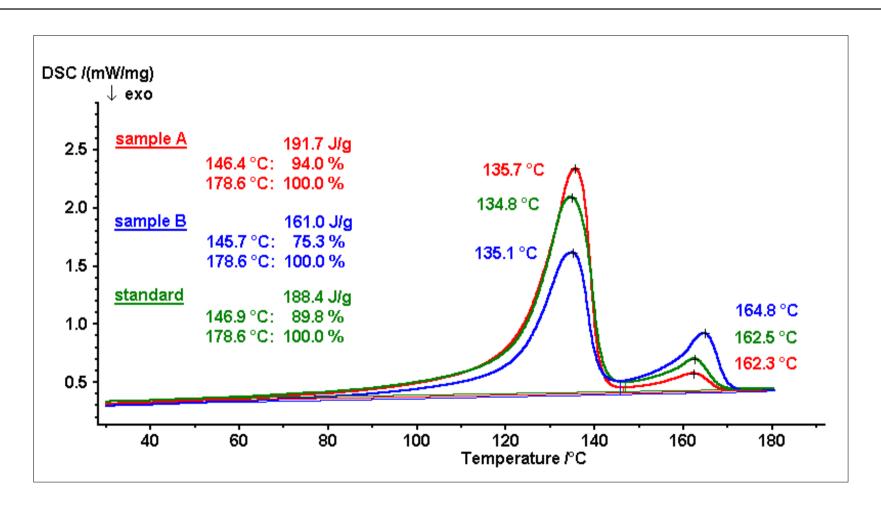
TG-Verschiebung durch Weichmacheranteile

Die Modifizierung des Weichmacheranteils führt zu unterschiedlichen Glasübergangstemperaturen.

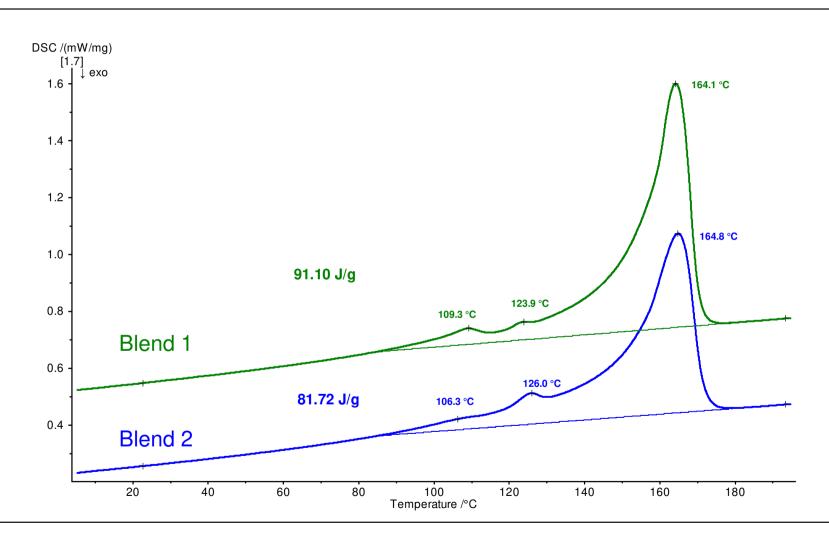


Schmelze und Kristallisation in der QS


Applikationsbeispiele DSC – Thermische Vorgeschichte Verhalten bei unterschiedlicher Abkühlung von Proben

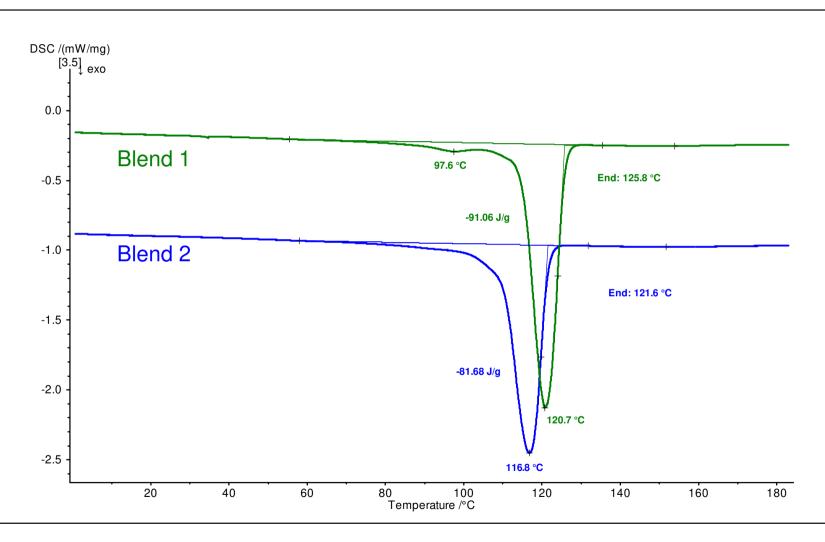

Applikationsbeispiele DSC – Identifikation von Polymeren Unterschiede von PE-Typen

Applikationsbeispiele DSC – Identifikation von Polymeren Mischungen aus PE-HD und PP

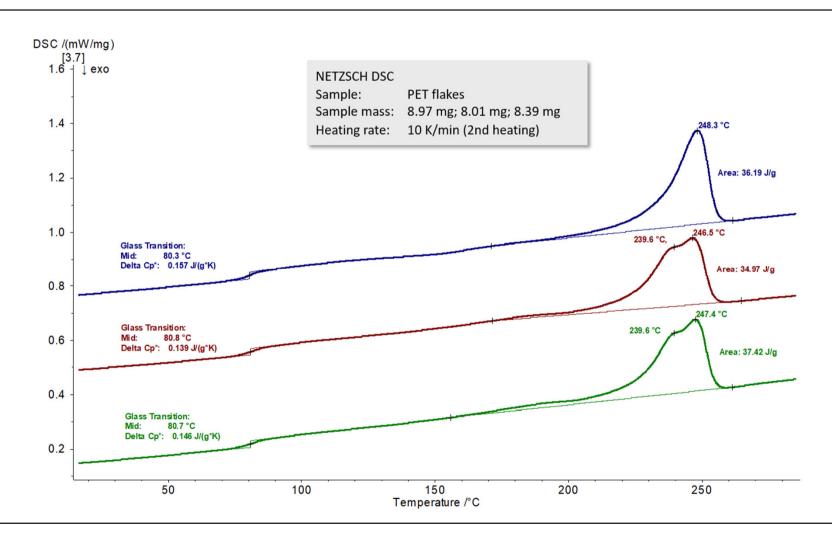


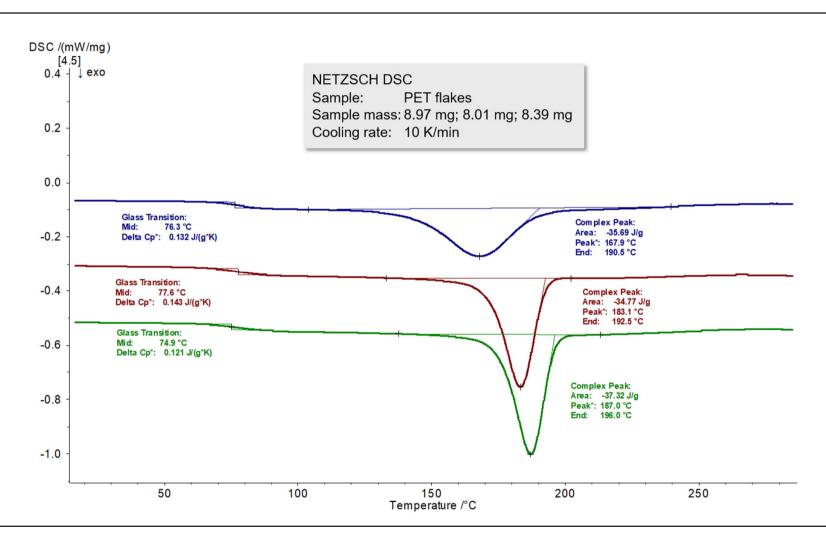
Applikationsbeispiele DSC

DSC Messung Recycling PP+PE Blends mit identischem MFI!

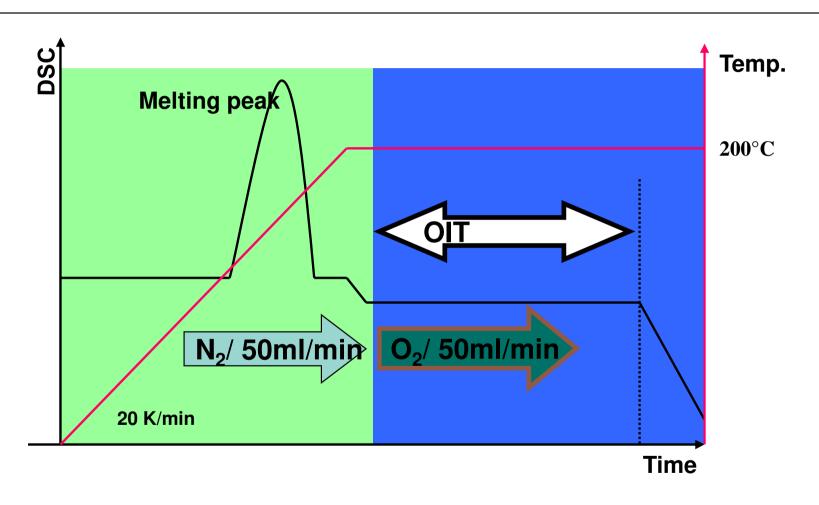


Applikationsbeispiele DSC

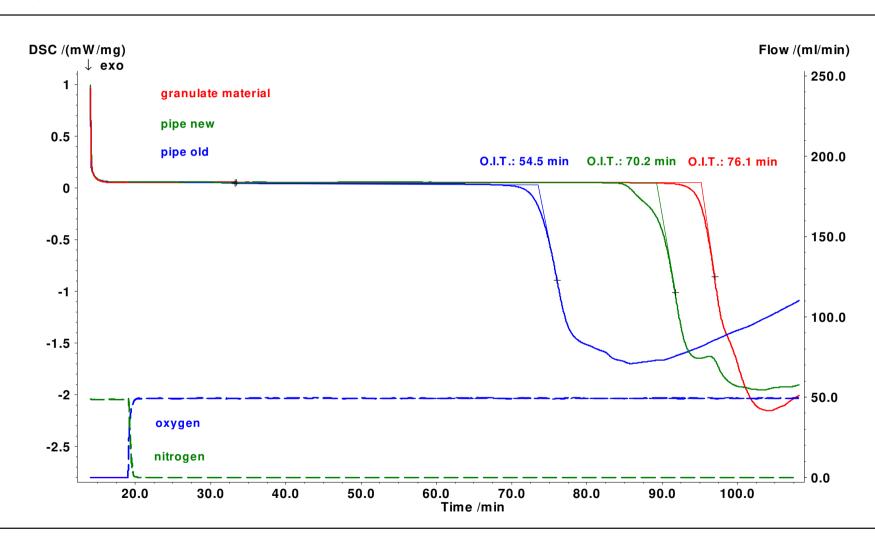

DSC Messung Recycling PP+PE Blends mit identischem MFI!

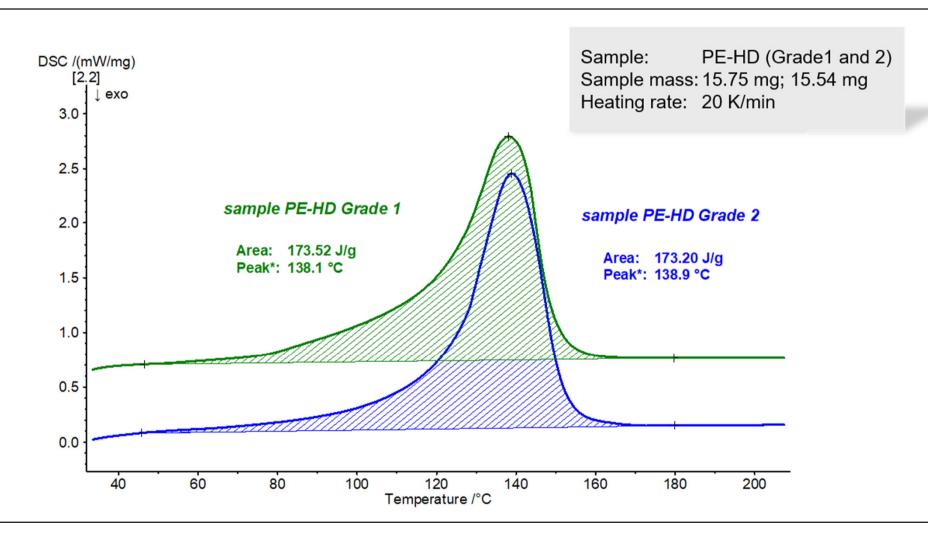

Applikationsbeispiele DSC PET Recyclate – Schmelzeffekte

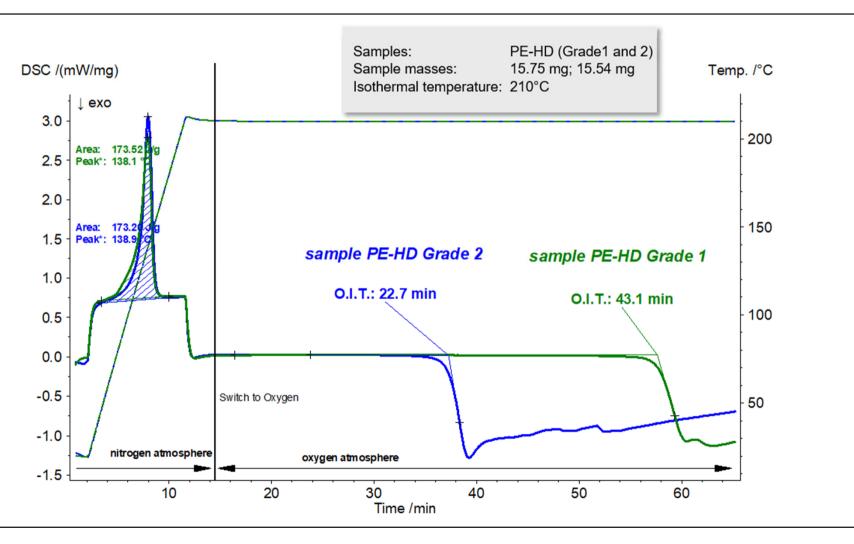
Applikationsbeispiele DSC PET Recyclate – Schmelzeffekte



OIT – Wie stabil ist mein Polymer?


DSC Messungen Oxygen Induction Time - OIT Messung


DSC Messungen OIT Messung


Applikationsbeispiele DSC OIT Messung

Applikationsbeispiele DSC OIT Messung

5

Vergleich DSC Sirius und Polyma

NETZSCH DSC

DSC 3500 Sirius – DSC 214 Polyma

DSC 3500 Sirius

- Standard f

 ür QS
- Geringer Platzbedarf
- Robustes Design

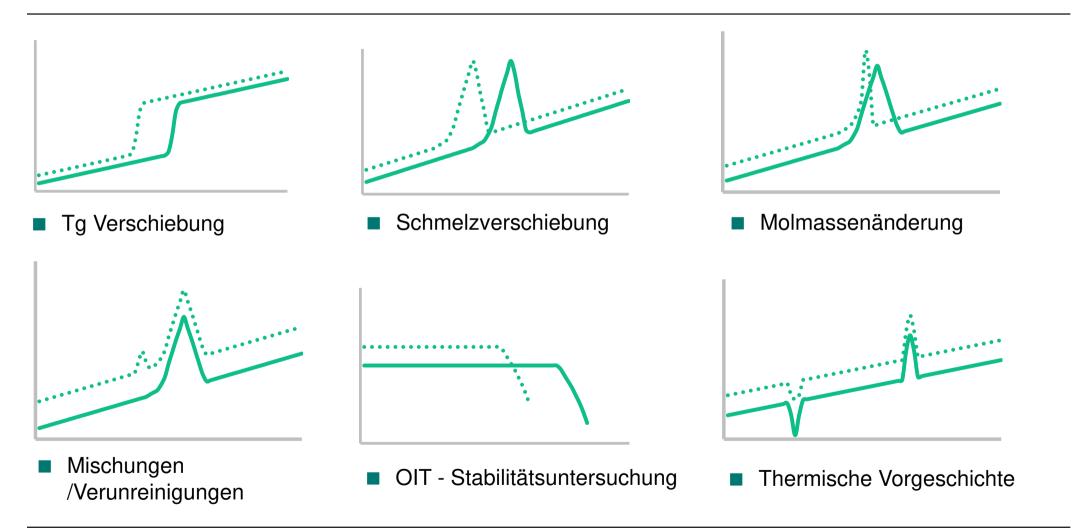
Optional

Autoevaluation & Identify

DSC 214 Polyma

- Polymerspezialist
- Schnell → Wahre Effekte
- Hohe Empfindlichkeit
- Robustes Design
- Großes Software Paket mit automatischer Auswertung und Datenbank inklusive

Übersicht DSC 3500 Sirius und DSC 214 Polyma


	DSC 3500 Sirius	DSC 214 Polyma
Temperaturbereich (Abkühlrate temperaturabhängig)	-170 °C bis 600 °C	-170 °C bis 600 °C
Heiz-/Kühlrate	0,001 K/min bis 100 K/min	0,001 K/min bis 500 K/min*
Messbereich	± 650 mW	± 750 mW
Sensitivität	3,8 μV/mW	3 μV/mw
Temperaturgenauigkeit (Reproduzierbarkeit)	0,05 K	0,01 K
Enthalpiegenauigkeit	< 1 % Metalle; < 2 % meisten Proben	± 0,1 % Indium; ± 0,05 % bis ± 0,2 % meisten Proben
Sensor Zeitkonstante	2,5 s	0,8 s
Kühloptionen	Luftkühlung (RT bis 600 °C)	Luftkühlung (RT bis 600 °C)
	IC40 (-40 °C bis 600 °C)	IC40 (-40 °C bis 600 °C)
	IC70 (-70 °C bis 600 °C)	IC70 (-70 °C bis 600 °C)
	LN2, automatisch geregelt (-170 °C bis 600 °C)	LN2, automatisch geregelt (-170 °C bis 600 °C)
Gasatmosphären	Inert, oxidierend, statisch und dynamisch	Inert, oxidierend, statisch und dynamisch
Gasregelung	inkl. Schalter für 3 Gase; MFC Option	inkl. Schalter für 3 Gase; MFC Option
Autosampler (ASC)	Für bis zu 20 Proben und Referenzen, Option	Für bis zu 20 Proben und Referenzen, Option
Software	Software Proteus®; einschließlich SmartMode	Software Proteus®, einschließlich SmartMode, ExpertMode, Autoevaluation, Identify etc.
Optionen/Besonderheiten	Temperaturmodulation Option	Temperaturmodulation optional
	Gasdicht, Photopolymerisation	Hohe Heiz u. Kühlratenraten (Arenaofen); Umfangreiches Softwarepaket

6 Zusammenfassung

Zusammenfassung Aussagen aus DSC Diagrammen

Zusammenfassung

- 1. Identifizierung von Additiven, Verunreinigungen und Zusatzstoffen
 - Einflüsse auf das Schmelz und Kristallisationsverhalten
 - Identifizierung von Verunreinigung
 - Bestimmung von zulässigen oder unzulässigen Beimischung bei der Chargenkontrolle
- 2. Untersuchung von Prozessabhängigen Veränderungen
 - Thermische Degradation
 - Thermische Vorgeschichte von Polymeren
- 3. Untersuchung von Alterungsprozessen
 - Thermische Alterung, z.B. bei Thermisch belasteten Bauteile im Motorraum
 - Chemische Alterung, z.B. durch Medienangriff
- 4. Stabilitätsuntersuchungen unter Sauerstoffzufuhr (OIT)
 - Normprüfungen z.B. zur Untersuchung von Stabilisatoren

Auf NETZSCH kann man sich verlassen.

Jürgen Zöller

Vertriebsingenieur

Technischer Vertrieb Büro Seligenstadt

Tel: +49 (6182) 820 844 Mobil: +49 (172) 8671419

NETZSCH Gerätebau GmbH

Wittelsbacherstrasse 42

95100 Selb

Germany

Tel: +49 9287 881-0 Fax: +49 9287 881-505