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Abstract

In the framework of rate-independent finite-strain elasto-plasticity a
model is derived that describes plasticity for certain composites undergoing
phase transformations under isothermal conditions. We show the thermo-
dynamic validity of the equations. Then the effect of phase transitions is
studied and it is demonstrated in two examples that phase transitions op-
pose to the generation of microstructure. In particular, we show that there
is no microstructure in the region of the slip band where the bulk phase has
just formed.

1. Introduction

This article deals with phase transitions and the formation of microstruc-
ture in solids that undergo plastic deformations, possibly accompanied by
diffusion, under isothermal conditions.

There exists already rich literature on the mechanics of such systems.
Beginning with the pioneering work of Ericksen, [14], where phase transi-
tions in a one-dimensional bar induced by shear were studied, the problem
was investigated further by many authors. Here we only mention [22], [1],
[18], [38] and [32]. Also, there has been intense studies on selected mate-
rial systems, in particular on steels, e.g. [16], [17], [12], [11] and [19], which
contributed significantly to the common understanding of the involved me-
chanical concepts.

In contrast to the existing work, in the approach presented here the
stored mechanical energy W depends additionally on a phase parameter
χ that accounts for macroscopic changes in the structure of the material.
As explicit application we have in mind the class of metallic-intermetallic
laminates (MIL), see for instance [36], [37]. MIL materials form a special
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class of composites where elements of macroscopic size (≈ 1mm) of two or
more different metals are combined to enhance the mechanical, electrical or
magnetic properties of the individual species.

The introduction of a macroscopic phase variable χ in our model allows
in a natural way to incorporate the surface energy between the blocks of
the composite. Furthermore, this allows for a clear separation of the spa-
tial variations on the macroscopic scale, i.e. the variation of χ, and of the
variations of the microstructure on a small length scale.

Different to the earlier work [5], where diffusional reconstitutive phase
transitions are investigated and the influence of the generation of vacancies
to the diffusion concentration and the shape of the interface is studied, the
plastic behaviour of the material is modelled here within the framework of
rate-independent finite-strain elasto-plasticity that goes back to Hill, [20],
and Rice, [34]. We use rate-independent finite-strain elastoplasticity in this
article, as it implies plastic response by the material only under certain
conditions and may otherwise lead to a purely elastic behaviour. Thus, in
contrast to rate-dependent formulations, the plastic slip systems are not
permanently active. This simplifies our analysis in the sections 4 and 5.
Nevertheless, as is well known, the rate-independent theory has the possible
drawback that for non-convex settings, the uniqueness of the mechanical
solution may get lost.

Further key to the mathematical formulation is the minimum formula-
tion (21) of the free energy. The idea of incorporating diffusion by imposing
a corresponding constraint on the minimisation of the free energy functional
was used before in [2].

The analysis is based on three key assumptions. The first is that the
minimum of the free energy is attained, i.e. that during the time-evolution
the system does not stop before a minimum is reached. The second as-
sumption is that the principle of maximal plastic dissipation holds, which
gives rise to the flow rule (7). Finally, we assume that the yield function Y
does not depend on the plastic deformation. For general materials, all these
assumptions can be violated.

In [9], a unifying theory for the relative motion of crystal grains is de-
veloped, including sliding, rotation, shrinking and mechanical twinning. We
want to point out that our ansatz for the yield function, (38) and (31), es-
pecially the spatial localisation expressed by introducing the set S, can be
subsumed below this theory.

This article is organised in the following way. In Section 2 we derive the
mathematical formulation. Section 3 discusses the Euler-Lagrange equations
valid for minimisers of the free energy and shows the correctness of the ap-
proach. Also, the second law of thermodynamics is validated. In Section 4
we discuss a single slip system and analyse the consequences of phase tran-
sitions to the model in this case. In Section 5 the case of von Mises plasticity
is analysed. Also, the effect of diffusion is studied numerically. As main re-
sult of these two sections, it is shown that in the ‘flip set’, that is the set
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where the phase parameter has recently changed, the free energy functional
is convex implying the absence of any microstructure.

2. Derivation of the model

We consider a two-phase segregation problem under isothermal condi-
tions with constant temperature θ. The crystal is described by a reference
domain Ω ⊂ R

3, where Ω is a bounded domain with Lipschitz boundary.
In order to keep track of the deformations, for fixed stop time T > 0 we
introduce the mapping

ϕ : Ω × [0, T ] → Ωt,

with Ωt := {ϕ(x, t) |x ∈ Ω} the deformed domain at time t ∈ [0, T ]. The
mapping ϕ is a diffeomorphism of Ω to Ωt for any 0 ≤ t ≤ T . Assuming that
Ω refers to the undeformed crystal at time t = 0, we have x 7→ ϕ(x, 0) = Id
and detDϕ(x, t) > 0.

We introduce a phase parameter χ within the functions of bounded
variation in Ω. For simplicity we will restrict in this paper to the situation
that phases of at most two different types coexist. For t ∈ [0, T ], let χ ∈
BV (Ω; {0, 1}) be the indicator function of one a-priori chosen phase. For
convenience we set χ1 := χ and χ2 := 1 − χ.

Let M := R
3×3. We define the two matrix groups

GL+(R3) :=
{

F ∈ M
∣
∣
∣ det F > 0

}

,

SO(R3) :=
{

R ∈ M
∣
∣
∣ det R > 0, RtR = 1

}

.

The transformation F := Dϕ is multiplicatively decomposed by

F = FeFp, (1)

splitting F into an elastic part Fe and a plastic part Fp, with Fe, Fp ∈
GL(R3)+. The decomposition (1) is unique only up to rigid displacements
as F = (Fe ◦ R)(RT ◦ Fp) holds for all R ∈ SO(R3). However, the theory
that will be developed depends only on FeF

t
e and FpF t

p which are invariant
under rigid rotations R.

In the sequel we will use the plastic variables (P, κ) where κ ∈ L2(Ω; R
l)

is an internal variable that describes hardening and P := F−1
p . The last

definition implies Fe = DϕP . For simplicity we set l = 1 and consider only
scalar hardening.

We assume that the mechanical energy depends only on the elastic part
of the deformation gradient. This is motivated by the understanding that
plastic deformations go along with configurational changes of the material
body which do not affect the elastic deformation. A plastic deformation only
changes the reference configuration of the body.
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Consequently we write the internal mechanical stored energy in the form

W (χ, κ, F, Fp) = W (χ, κ, FF−1
p ) (2)

for a suitable function W . By frame indifference, W must be independent
under rigid rotations,

W (χ, κ,RFF−1
p ) = W (χ, κ, FF−1

p ) for all R ∈ SO(R3).

This implies that W depends only on the symmetric part (F t
eFe)

1
2 of Fe or

equivalently only on the nonlinear elastic strain εe = 1
2 (F t

eFe − Id).
One example for W corresponds to the class of Neo-Hookean materials,

see [13], [29], and in the presence of phase transitions we make the ansatz

W (χ, κ, Fe) :=
ν(χ)

2
‖Fe‖2 +

λ

2
|κ|2 + U(det Fe), (3)

for given Lamé parameter ν > 0 that depends on the phase χ and hardening
parameter λ > 0. In (3) we set ‖Fe‖ :=

√

tr(F t
eFe), where tr(A) =

∑

i Aii

is the trace of a matrix A. The function U : R
+ → R is convex and satisfies

U(d) → ∞ for d → 0 and for d → ∞. The minimisation of W thus prevents
det Fe from becoming singular and prohibits the compression to zero volume
with finite energy.

Ansatz (3) represents a macroscopic theory and is convex in Fe. It is
for instance well-suited to model damage in composites, like the recently-
discovered intermetallic-metal laminate composites, [36]. Instead of (3) we
may choose

W (χ, κ, Fe) :=
ν

2

[

χ tr(F t
eFe−M1)+(1−χ)tr(F t

eFe−M2)
]

+
λ

2
|κ|2+U(detFe),

(4)
for given symmetric and positive definite deformations M1, M2 ∈ SO(R3).
This leads to a general model for plasticity in a two-phase material. Both (3)
and (4) give rise to a coercive, lower semi-continuous free-energy functional
which guarantees the existence of a minimiser, but due to the non-convexity
of Ansatz (4) in Fe, the uniqueness of a minimising Fe in the latter case is
in general not given.

For given W we now introduce the following thermodynamically con-
jugate variables. Let the phase modulus ξ, the hardening modulus π, the
first Piola-Kirchhoff stress T and the back-stress or Eshelby tensor X that
models kinetic hardening be given by

ξ = −∂W

∂χ
, π = −∂W

∂κ
, T =

∂W

∂F
, X = −∂W

∂P
.

The introduction of the minus signs in the definition of π and X has his-
torical reasons. In the considered physical framework it holds π ≥ 0. The
variation of W with respect to χ is to be understood in the sense

ξ = −W (χ = 1, κ, Fe) + W (χ = 0, κ, Fe).
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In the mathematical and physical literature, plastic deformations are
usually described by flow rules. Subsequently we will discuss the mathe-
matical framework and will show that these formulations are equivalent to
a pointwise free energy minimisation algorithm.

In the sequel we generalise a dual formalism that goes back to [27],
where the plastic behaviour of solids without phase changes and diffusion
is studied. We shall define the yield function in such a way that Y = 0 may
only occur close to the interfacial region.

In order to characterise the time evolution of the inner variables (χ, κ, P ),
a yield function Y is introduced. It is postulated that Y does not de-
pend on the plastic deformation Fp. Since the back stress X := P tX =
−F t

e∂Fe
W (χ, κ, Fe) is invariant with respect to all plastic deformations, we

thus consider yield functions of the form

Yx,Dχ = Yx,Dχ(ξ, π,X).

The additional parameters x and Dχ are needed as we want to restrict
plasticity to a small region around suppDχ, see the definition (10) below
and the corresponding explanations.

The set of admissible states is specified by

Γx,Dχ :=
{

(ξ, π,X) ∈ R × R ×M
∣
∣
∣ Yx,Dχ(ξ, π,X) ≤ 0

}

.

We assume that Γx,Dχ is convex and contains (0, 0, 0).
The plastic flow is determined under the assumption that the principle

of maximal plastic dissipation, see [35], holds. The Kuhn-Tucker optimality
conditions, first used in this context by Moreau, [27], state that the principle
can be written as the flow rule

(∂tχ, ∂tκ, P−1∂tP ) = ∂tΛ

(
∂Yx,Dχ

∂ξ
,
∂Yx,Dχ

∂π
,
∂Yx,Dχ

∂X

)

(5)

for Yx,Dχ(ξ, π,X) ≤ 0 and Yx,Dχ(ξ, π,X)∂tΛ = 0 with Lagrange multiplier
∂tΛ ≥ 0.

As χ only attains the two discrete values 0 and 1, Equality (5) must be
interpreted in the sense of measures: For the validity of the first component
of the flow rule, it has to hold for almost all x ∈ Ω

T∫

0

χ(x, ·)∂tg dt =

T∫

0

Λ
∂Yx,Dχ

∂ξ
∂tg dt for all g ∈ C∞

0 (0, T ).

By Riesz’ representation theorem, this relationship defines an identity be-
tween the two Borel measures ∂tχ and ∂tΛ.

For the further understanding of (5) it is important to observe that this
approach specifies a non-diffusive flow in χ. The change in χ goes along
with a change in plasticity. Equation (5) does not specify an equation of
phase-field type in χ.
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We define the plastic potential by

Qx,Dχ(ξ, π,X) :=

{
0 for Yx,Dχ(ξ, π,X) ≤ 0,
∞ else

and introduce for later use the Fenchel conjugate Q⋆
x,Dχ of Qx,Dχ by

Q⋆
x,Dχ(χ, κ, P ) := sup

(ξ,π,X)

{

ξχ + πκ + X : P − Qx,Dχ(ξ, π,X)
}

= sup
(ξ,π,X)∈Γx,Dχ

{

ξχ + πκ + X : P
}

. (6)

Using duality theory the rule (5) can be recast to the following condition:
The triple (ξ, π,X) is admissible and maximises the plastic dissipation

−∂χW (χ, κ, F, P )∂tχ − ∂κW (χ, κ, F, P )∂tκ − ∂P W (χ, κ, F, P ) : ∂tP

= ξ∂tχ + π∂tκ + X : ∂tP

= ξ∂tχ + π∂tκ + X : (P−1∂tP ).

In other words,

ξ∂tχ + π∂tκ + X : (P−1∂tP ) ≥ s1∂tχ + s2∂tκ

+S : (P−1∂tP ) ∀(s1, s2, S) ∈ Γx,Dχ.

By the definition of the subdifferential, this is equivalent to

(∂tχ, ∂tκ, P−1∂tP ) ∈ ∂subQx,Dχ(ξ, π,X). (7)

Here, ∂subQx,Dχ denotes the subdifferential of Qx,Dχ.
We want to derive a variational formulation. To this end it is necessary

to pass to the time-discrete setting. The following method goes back to [33].
For small fixed parameter h > 0 let ∂h

t κ(·, t) := (κ(·, t) − κ(·, t − h))h−1

approximate ∂tκ(·, t) with the analogous definition of ∂h
t χ(·, t). Finally, by

dh
t (P ) we denote an approximation of P−1∂tP .

With this definition, in the time-discrete setting, (7) becomes

h(∂h
t χ, ∂h

t κ, dh
t (P )) ∈ ∂subQx,Dχ(t−h)(ξ, π,X) (8)

which has to hold for all x ∈ Ω.
The following Lemma (with straightforward changes due to the addi-

tional dependence of W on χ) is taken from [10].

Lemma 1 The property (8) is a consequence of the energy minimisation

I(ϕ) = min
χ,κ,P

∫

Ω

(

W (χ, κ,DϕP ) + hQ⋆
x,Dχ(t−h)(∂

h
t χ, ∂h

t κ, dh
t (P ))

)

, (9)

where the Fenchel conjugate Q⋆
x,Dχ is given by (6).
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Proof. We rewrite the integrand Q∗(∂h
t χ, ∂h

t κ, dh
t (P )) in (9) and consider

Î(ϕ, χ, ξ, κ, π, P,X) :=

∫

Ω

W (χ, κ,DϕP ) + (χ − χ0)ξ + (κ − κ0)π

+hdh
t (P ) : X − hQ∗(ξ, π,X) dx.

The variation of Î with respect to ξ, π and X gives the flow rule (8). The
argument is carried out in detail in Section 3. ⊓⊔

For illustration, we introduce a first typical example, the von Mises yield
condition, which is discussed in Section 5. This condition reads

Yx,Dχ(ξ, π,X) := ‖dev symX‖ − σY − π + |ξ|XS(Dχ). (10)

Here, the positive scalar σY is the yield stress. For a measurable set E ⊂ Ω,

XE(x) :=

{
1 if x ∈ E,
0 otherwise

denotes the characteristic function of E. Plastic slip occurs localised in
designated regions of Ω, the slip bands S(Dχ). The explicit form of S(Dχ)
does not matter for our analysis and depends on the studied material. If
the plastic slip occurs within the grains, we may set

S(Dχ) := {x ∈ Ω | dist(x, suppDχ) ≥ η}

with a material-dependent parameter η > 0. For certain ceramic systems
however, the designated areas of plasticity are located in a neighbourhood
around the interfacial regions and the above definition must be set accord-
ingly.

By Ansatz (10), phase transitions weaken the material whereas harden-
ing, stated here as a linear law, opposes to it.

Beside the mechanical changes, also the mass diffusion can be cast into
the framework of free energy minimisation. Let the solid contain m ≥ 1
different chemical constituents. In order to measure the density of species
i, 1 ≤ i ≤ m, we introduce functions ̺i : Ω × [0, T ] → R≥0 and a vacancy
density ̺0 : Ω × [0, T ] → R≥0. Let ̺ := (̺0, . . . , ̺m). Conservation of mass
yields

∫

Ω

m∑

i=0

̺i(x, t) dx =

∫

Ω

1 dx,

so the density vector lies in the simplex

Σ :=

{

̺′ = (̺′0, . . . , ̺
′
m) ∈ R

m+1
≥0

∣
∣
∣
∣
∣

m∑

i=0

̺′i = 1

}

.
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The free energy Ψ of the system is introduced by

Ψ(µ, χ, κ, ϕ, P )(t) :=

∫

Ω

|Dχ| + W (χ, κ,DϕP ) + ψ⋆(µ, χ)

+ hQ⋆
x,Dχ(t−h)(∂

h
t χ, ∂h

t κ, dh
t (P )) dx. (11)

In (11), we introduced the Legendre-Fenchel transform of the free energy
density ψk(̺) of phase k by

ψ⋆(µ, χ) =

2∑

k=1

χkψ⋆
k(µ),

ψ⋆
k(µ) := sup

̺∈dom(ψk)

{̺ · µ − ψk(̺)}.

Furthermore,
∫

Ω
|Dχ| = ‖χ‖BV (Ω), and the interfacial surface energy is nor-

malised to 1, leading to an isotropic surface energy. For the well-definedness
of Ψ at t = 0, we assume that initial values χ0, κ0, P0 are given in Ω
together with ϕ(t = 0) = Id.

The term hQ⋆
x,Dχ(t−h)(∂

h
t χ, ∂h

t κ, dh
t (P )) can be interpreted as the energy

release larger than the invested elastic energy in the time interval (t − h, t]
due to configurational changes.

A possible ansatz for ψk is

ψk(̺) := kBθ

m∑

i=0

̺i

(

ln ̺i +
Ek

i

kBθ

)

. (12)

Here, kB is the Boltzmann constant, Ek
i are enthalpic terms. From (12) we

directly compute

ψ⋆
k(µ) = kBθe−1

m∑

i=0

exp
(µi − Ek

i

kBθ

)

. (13)

In particular, ψ⋆
k(µ) ≥ 0.

The entry µi of the vector of chemical potentials µ = (µ0, . . . , µm) is
related to ̺ by

µi =

2∑

k=1

χk

∂ψk

∂̺i

(̺), 0 ≤ i ≤ m. (14)

Plugging in the definition (12) we find

̺i = e−1 exp
(µi − Eχ

i

kBθ

)

, (15)

where Eχ
i = χE1

i + (1 − χ)E2
i .



A plasticity theory of solids with a macroscopic phase parameter 9

Onsager’s law, [30], [31], postulates that every thermodynamic flux is
linearly related to every thermodynamic force. Since in our case the ther-
modynamic forces are the negative chemical potential gradients, we obtain
the phenomenological equations, see [23], p.137,

Ji = −
m∑

j=0

Lij∇µj , 0 ≤ i ≤ m, (16)

with a mobility matrix L ∈ R
(m+1)×(m+1) which for simplicity we assume to

have constant coefficients. The Onsager reciprocity law, [30], [31], [23], states
that L has to be symmetric which we assume from now on. Additionally, L
is positive semi-definite with one-dimensional kernel.

Let ˜̺i : Ωt → [0, 1] be defined by ˜̺i := ̺i ◦ ϕ−1. The conservation of
mass yields

d

dt
mi(t) =

d

dt

∫

Ωt

˜̺i(x, t) dx =

∫

Ω

d

dt

[

˜̺i(ϕ(x, t), t) det Dϕ(x, t)
]

dx

=

∫

Ω

(

∂t̺i(x, t) det Dϕ(x, t) + ̺i(x, t)∂t(det Dϕ(x, t))
)

dx.(17)

We compute for X, H ∈ GL(R3) the Fréchet derivative D(det(X))H =
det(X)(X−1H). Consequently,

∂t(det Dϕ(x, t)) = detDϕ(x, t)tr[∂tDϕ(x, t)Dϕ−1(ϕ(x, t), t)]. (18)

Using this result we obtain
∫

Ω

̺i(x, t)∂t(detDϕ(x, t)) dx

=

∫

Ωt

̺i(ϕ
−1(x, t), t)tr

[

∂tDϕ(ϕ−1(x, t), t)Dϕ−1(x, t)
]

dx

=

∫

Ωt

̺i(ϕ
−1(x, t), t)tr[D(∂tϕ(ϕ−1(x, t), t))] dx (19)

=

∫

Ω

̺i(x, t)div(∂tϕ(x, t)) det Dϕ(x, t) dx. (20)

From (17) and (19) we obtain the natural formulation for the conservation
of mass in Ωt

∂t ˜̺(x, t) = −div[J(x, t)+M(x, t)] := div[L∇µ(x, t)−˜̺(x, t)∂tϕ(ϕ−1(x, t), t)],

where the mechanical mass flux is given by M(x, t) := ˜̺(x, t)∂tϕ(ϕ−1(x, t), t).
Similarly, with (20), the conservation of mass in the variable ̺ reads

∂t̺i(x, t) + ̺i(x, t)div(∂tϕ(x, t)) = div(L∇µ(x, t))i in Ω.
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Let the time step h > 0 be chosen such that T = Lh for L ∈ N and set
tj := jh for 0 ≤ j ≤ L.

In continuation of (9), the evolution of the problem is determined by
iteratively solving for 1 ≤ j ≤ L the time-discrete minimisation problem

Ψ(µj , χj , κj , ϕj , F j
p ) → min, (21)

where the minimum is sought in the spaces

µj ∈ W 1,2(Ω; R
m+1), χj ∈ BV (Ω; {0, 1}),

κj ∈ L2(Ω; R), F j
p ∈ L2(Ω; M), (22)

ϕj ∈
{

Φ ∈ W 1,3+δ(Ω; R3)
∣
∣
∣ Φ(Ω) = Ωtj

,∃Φ−1 ∈ W 1,3+δ(Ωtj
; R3),

det(DΦ) > 0 almost everywhere in Ω
}

(with δ > 0 an arbitrary constant and M the space of real 3 × 3-matrices)
subject to the constraint

∫

Ω

̺j =

∫

Ω

̺j−1 + hdiv(L∇µj) − ̺jdiv(ϕj − ϕj−1),

which we rewrite with (15) in a condition for µj (where F j = Dϕj)

∫

Ω

exp
(µj − Eχ

kBθ

)(

1 + tr(F j − F j−1)
)

− hediv(L∇µj) dx

=

∫

Ω

exp
(µj−1 − Eχ

kBθ

)

dx (23)

subject to the boundary conditions

µj = µ, ∂nχj = 0, ϕ = ϕ, on ∂Ω (24)

and with the initial conditions (for j = 0)

µ0 = µ0, χ0 = χ0, κ0 = κ0, Fp(·, 0) = 0, ϕ(·, 0) = Id. (25)

In (24), n is the outer normal to ∂Ω and µ, ϕ are prescribed values at
the domain boundary. Instead of prescribing the deformations ϕ, one could
prescribe the tractions.

Equation (23) supplies us with a constraint on µj since with the com-
putation of µj , χj at time step j, the density ̺j ∈ Σ is obtained implicitly
from (14) as ψ1, ψ2 are convex functions.

In this article we are not going to address the deep question of the time-
continuous limit h ց 0 in (21). In particular it must be clarified whether the
spaces (22) are sufficient for the existence theory. We refer the interested
reader to [26] and [15] and references therein for the case without phase
transitions and without diffusion.
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3. Validation of the model

In this section we discuss consequences of (21), (23) and (11) and demon-
strate that the chosen ansatz is meaningful. The discussion can be simplified
when resolving the Fenchel duals in the Definition (11) and replacing Ψ in
(21) by

Ψ̃(̺, µ, λ1, ξ, χ, π, κ, ϕ,X, P )(tj)

:=

∫

Ω

{

|Dχ| + µ · ̺ −
2∑

k=1

χkψk(̺) + W (χ, κ,DϕP )

+λ1

[

exp
(µ − Eχ

kBθ

)(

1 + tr
(
Dϕ − Dϕj−1

))

−hediv(L∇µ) − exp
(µj−1 − Eχ

kBθ

)]

+h∂h
t χξ + h∂h

t κπ + hdh
t (P ) : X − Qx,Dχ(tj−1)(ξ, π,X)

}

dx.

The functional Ψ̃ is maximised with respect to ̺, ξ, π and X and minimised
with respect to the variables P , χ, κ, ϕ and µ. The constrained minimisation
of Ψ subject to (23) has been replaced by the unconstrained minimisation
of Ψ̃ adding a Lagrange multiplier λ1 ∈ R.

From the stationarity of Ψ̃ with respect to ̺i, 0 ≤ i ≤ m, we get back
(14). The variation with respect to the dual variables (ξ, π,X) yields the
flow rule (8).

From the stationarity of Ψ̃ when restricting to smooth transformations
of {x ∈ Ω |χ(x, t) = 1} we get back the definition of ξ as well as the Gibbs-
Thomson law

H = ψ1(̺) − ψ2(̺) (26)

that relates the jump of the free energy density ψ1(̺) − ψ2(̺) across the
phase boundary to the mean curvature H of the interface. In summary, we
see that the shape of the interface is determined by the Gibbs-Thomson law
(26), whereas the flow of χ at the interface is determined by (5).

The derivative of Ψ̃ with respect to λ1 gives back the constraint (23).
Computing the variation of Ψ̃ with respect to µ yields

∫

Ω
̺ = 0 implying

that during the repeated minimisation rule (21) no stationary points of Ψ
with regard to µ are reached.

The stationarity of Ψ̃ with respect to ϕ yields in the absense of volumetric
forces after partial integration the standard equilibrium condition

div(T ) = 0 in Ω. (27)

From the stationarity of Ψ̃ with respect to κ the definition π = −∂W
∂κ

in Ω
is recovered.

If we choose for example dh
t (P (t)) := P (t− h)−1P (t)− Id, the variation

of Ψ̃ with respect to P gives us

−F t∂Fe
W (χ, κ, Fe) = (P (tj−1)

−1)tX, (28)
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which is an approximation of the constitutive law for X.
In the rest of this section we sketch the validation of the second law of

thermodynamics for the equations (21), (23). In the isothermal setting this
is equivalent to showing that ∂tΨ ≤ 0 for a closed system. So we replace for
this analysis the boundary condition µj = µ in (24) by

∂nµj = 0 on ∂Ω. (29)

This ensures that there is no mass flux along ∂Ω.
Looking at the Euler-Lagrange equations derived above, from the sta-

tionarity of Ψ with respect to χ, κ and P we immediately get that it is
enough to show that

∂Ψ

∂µ
· ∂h

t µ =

∫

Ω

̺ · ∂h
t µ ≤ 0, (30)

where all other arguments of Ψ are kept fixed. As a consequence to (14),
(12), it holds ̺i∂

h
t µi = ∂h

t ̺i and therefore

∂Ψ

∂µ
· ∂h

t µ =
m∑

i=0

∫

Ω

div(L∇µi) − ̺idiv(∂h
t ϕ) dx.

Using the divergence theorem and because of ϕj = ϕj−1 = ϕ on ∂Ω and
(29) the validity of the second law follows.

4. Single slip system and extensions

For a single slip system, the plastic deformation is characterised by vec-
tors m, n ∈ R

3, |m| = |n| = 1 with the slip direction m and the plane
normal n. The slip does not change the specific volume of the material,
thus m · n = 0.

For Yx,Dχ we make the ansatz

Yx,Dχ(ξ, π,X) := |m · Xn| − π + |ξ|XS(Dχ)(x) − σY , (31)

where as before π > 0. A simpler formula related to (31) was first used in
[34]. Equation (31) states a linear hardening law where phase transitions
soften the material. We repeat once more that this ansatz is in accordance
to the physical picture, see [9] and references therein.

The flow rule (5) becomes for the Lagrange multiplier ∂tΛ ≥ 0

(∂tχ, ∂tκ, P−1∂tP ) = ∂tΛ
(
sgn(ξ)XS(Dχ)(x),−1, sgn(m · Xn)m ⊗ n

)
.
(32)

Here, ⊗ denotes the dyadic product of two vectors, (m⊗n)ij = (minj)ij . We
set ∂tγ := sgn(m · Xn) ∂tΛ with γ(t = 0) = 0; γ ∈ R is the slip rate of the
slip system. Because ∂tκ = −∂tΛ 6 0 with (32) it follows that ∂tκ = −|∂tγ|.
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Also, from (32), ∂tP = ∂tγ(Pm) ⊗ n, and, using m · n = 0, ∂tPm = 0.
With the initial condition P (t = 0) = Id we infer Pm = m and thus
∂tP = ∂tγ m ⊗ n. Together with P (t = 0) = Id, this implies that

P = Id + γm ⊗ n. (33)

It is immediate that det P = 1 and hence detFe = detF .

Direct computations yield the Fenchel conjugate of Qx,Dχ to be

Q⋆
x,Dχ(χ′, κ′, γ′m ⊗ n)

= sup
{
χ′ξ + κ′π + γ′m ⊗ n : X

∣
∣ Yx,Dχ(ξ, π,X) 6 0, π > 0

}

= sup
{
χ′ξ + κ′π + γ′m ⊗ n : X

∣
∣

|m ⊗ n : X| − π + |ξ|XS(Dχ)(x) 6 σY , π > 0
}

= sup{(|m ⊗ n : X| − π + |ξ|XS(Dχ)(x))|γ′| + (|γ′| + κ′)π

+ (|χ′| − |γ′|XS(Dχ)(x))|ξ|
∣
∣

|m ⊗ n : X| − π + |ξ|XS(Dχ)(x) 6 σY , π > 0}

=

{

σY |γ′| if |γ′| + κ′ 6 0 and |χ′| − |γ′|XS(Dχ)(x) 6 0,

∞ otherwise.
(34)

With the components Cmm := m · Cm, Cmn := m · Cn of the (right)
Cauchy-Green tensor C := FT F , the free energy minimisation (21) becomes
for the first time step

Ψ(µ, χ, κ, ϕ, γ)(t) =

∫

Ω

ψ⋆(µ, χ) + |Dχ| + U(
√

det C)

+
ν(χ)

2

(
trC+2Cmnγ+Cmmγ2

)
+

λ

2
κ2+σY |γ−γ0|dx

→ min

subject to the constraints: (23) on µ and

|γ − γ0| + κ − κ0 6 0,

|χ − χ0| 6 |γ − γ0| in S(Dχ0),

χ = χ0 in Ω \ S(Dχ0).
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Since ∂tκ 6 0, minimising Ψ with respect to κ yields κ = κ0 − |γ − γ0|,
leading to the minimisation problem

Ψ(µ, χ, ϕ, γ)(t)

=

∫

Ω

ψ⋆(µ, χ) + |Dχ| + U(
√

det C)

+
1

2
(ν(χ)Cmm+λ)(γ−γ0)

2 +ν(χ)(Cmn+γ0Cmm)(γ−γ0)

+ (σY − λκ0)|γ − γ0| +
ν(χ)

2
(Cmmγ2

0 + 2Cmnγ0 + trC) +
λ

2
κ2

0 dx

→min

subject to the constraints: (23) on µ and

|γ − γ0| > 1 in K(χ) :=
{

x ∈ S(Dχ0)
∣
∣
∣ |χ(x) − χ0(x)| = 1

}

, (35)

χ = χ0 in Ω \ S(Dχ0).

Let

f(χ,ϕ, γ−γ0) :=
1

2
(ν(χ)Cmm + λ)

︸ ︷︷ ︸

=:c1(χ,ϕ)>0

(γ−γ0)
2+ν(χ)(Cmn + γ0Cmm)

︸ ︷︷ ︸

=:c2(χ,ϕ)

(γ−γ0)

+ (σY − λκ0)
︸ ︷︷ ︸

=:c3>0

|γ − γ0| +
ν(χ)

2
(Cmmγ2

0 + 2Cmnγ0 + trC) +
λ

2
κ2

0
︸ ︷︷ ︸

=:c4(χ,ϕ)

.

(Note that c3 > 0 as σY > 0, λ > 0 and κ 6 0.) When minimising Ψ with
respect to γ we seek to minimise f(χ,ϕ, ·) subject to (35).

The Cauchy-Green tensor is positive semi-definite. Here we make the
stronger assumption that Cmm > 0. Thus c1 > 0. Consequently f(χ,ϕ, ·) is
bounded from below. We leave it to the reader to verify that the minimum
is given by

fmin(χ,ϕ) =







− (|c2(χ,ϕ)|−c3)
2
+

4c1(χ,ϕ) + c4(χ,ϕ) in S(Dχ0) \ K(χ),

− (|c2(χ0,ϕ)|−c3)
2
+

4c1(χ0,ϕ) + c4(χ0, ϕ) in Ω \ S(Dχ0),

c1(χ,ϕ) − |c2(χ,ϕ)| + c3 + c4(χ,ϕ) in K(χ),

where (·)+ := max(·, 0).
Thus we obtain the new minimisation problem

Ψ(µ, χ, ϕ)(t) :=

∫

Ω

ψ⋆(µ, χ) + |Dχ| + U(
√

detC) + fmin(χ,ϕ) dx

→ min,

where µ satisfies (23).
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4.1. An example

For illustration of the behaviour of the solution, let γ0 = κ0 = 0. This
means that we look at the evolution of a single-slip system starting from an
ideal elastic material without damage.

We want to study the spatial variations of F , so we consider the family
of deformations

F (x) = Id +
α(x)

2
(n + m) ⊗ (n − m), (36)

for a function α : Ω → R. The ansatz (36) corresponds to a shear under an
angle of 45 degrees with respect to the chosen slip system.

For this choice (36) of F we compute Cmn = −α2

2 , Cmm = 1 − α + α2

2 .
Thus

c1(χ) =
ν(χ)

2

(

1 − α +
α2

2

)

+
λ

2
, c2(χ) = −ν(χ)

2
α2,

c3 = σY , c4 = ν(χ)(3 + α2).

We obtain for fmin

fmin(χ, α) =







ν(χ)(3 + α2) − (
ν(χ)

2 α2−σY )2+

2
“

ν(χ)(1−α+ α2

2 )+λ
” in S(Dχ0) \ K(χ),

ν(χ0)(3 + α2) − (
ν(χ0)

2 α2−σY )2+

2
“

ν(χ0)(1−α+ α2

2 )+λ
” in Ω \ S(Dχ0),

ν(χ)(3 + α2) + ν(χ)
2

(

1 − α − α2

2

)

+ λ
2 + σY in K(χ).

We study the convexity in α of fmin. This is needed for the lower semi-
continuity in ϕ of Ψ – lack of convexity gives rise to the presence of mi-

crostructure. It suffices to compute ∂2fmin

∂α2 , as fmin is smooth.
Setting u(α) := 4ν(2 − 2α + α2) + 8λ we compute in Ω \ K

∂2fmin

∂α2
= 2ν +

12ν2α2u2 + (4σ2
Y − ν2α4)(u′′u − 2u′u′)−8ν2α3uu′

u3
.

Here ν = ν(χ) in S(Dχ0) \ K(χ) and ν = ν(χ0) in Ω \ S(Dχ0).
A further calculation shows that this is non-negative for λ sufficiently

large. Thus (as in the case without phase transitions [10]) hardening opposes
the generation of microstructure. In contrast, for λ small, fmin is non-convex
in Ω \ K provided α is small.

On the other hand, in K(χ),

∂2fmin

∂α2
=

3

2
ν(χ). (37)

For this case we find that the phase transition has a convexifying effect on
the functional. There is no microstructure in the region K of the slip band
S(Dχ0) where the bulk phase has just formed.
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We note that the above computations in idealisation state that diffu-
sion does not affect the mechanical properties of the system, i.e. does not
influence the occurrence of microstructure. Still, the minimal values of Ψ
are affected by the diffusion and this also affects which microstructures are
optimal.

5. von Mises yield stress

The finite-strain version of the von Mises yield function criterion reads

YDχ(ξ, π,X) := ‖dev symX‖ − σY − π + |ξ|XS(Dχ). (38)

In this definition, as before, the material constant σY > 0 is the yield stress,
π ≥ 0 and the deviatoric part dev(X) of X in d space dimensions is given
by

dev(X) := X − 1

d
tr(X)Id.

The symmetrisation of X is given by symX := 1
2 (X

t
+ X).

Recall that by (6)

Q⋆
x,Dχ(c, a,B)= sup

(ξ,π,X)

{

ξc+πa+X : B
∣
∣
∣ ‖dev symX‖−π+|ξ|XS(Dχ) ≤ σY

}

.

We claim that

Q⋆
x,Dχ(c, a,B)=

{
σY ‖B‖ if B=Bt, tr(B)=0, |c|≤‖B‖XS(Dχ), ‖B‖+a≤0,
+∞ else.

For the proof of this formula, let us first find necessary conditions for
Q⋆

x,Dχ(c, a,B) < ∞. Choosing (ξ, π,X) := α(0, 0, Id) for arbitrary α ∈ R we

obtain tr(B) = 0. Similarly, when choosing orthogonal matrices X = −X
t

in the definition of Q⋆
x,Dχ, we find that B = Bt. For ‖B‖ 6= 0 we set

ζ := 1
‖B‖ (σY + π − |ξ|XS(Dχ)) and check that YDχ(ξ, π, ζB) = 0. Conse-

quently

ζ‖B‖2 + πa + ξc = σY ‖B‖ + π(a + ‖B‖) + |ξ|(sgn(ξ)c − ‖B‖XS(Dχ))

≤ Q⋆
x,Dχ(c, a, ζB) < ∞.

The formula for Q⋆
x,Dχ follows directly from this estimate.

The flow rule (5) becomes

(∂tχ, ∂tκ, P−1∂tP ) = ∂tΛ
(

sgn(ξ),−1, sign(dev symX)
)

.

Here we introduced sign(A) := A/‖A‖ if A 6= 0 and sign(0) is the set of all
symmetric, trace-free matrices A with ‖A‖ ≤ 1. This gives tr(P−1∂tP ) = 0
which implies with P (t = 0) = Id the condition detP = 1.
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A main obstruction to the construction of a time-discrete scheme is the
condition detP = 1 which has to be guaranteed by the choice on dh

t (P ).
The standard approach is

dh
t (P ) := log(P−1

0 P ). (39)

This expression is well-defined as long as P−1
0 P is symmetric and positive

definite. Ansatz (39) is meaningful as with symmetric and trace-free H :=
dh

t (P ) it follows P =P0 exp(H) which gives as desired det P =1 if detP0 =1.
The free energy minimisation (21) reads now

Ψ(µ, χ, κ, ϕ, P ) =

∫

Ω

[

|Dχ| + U(det F ) +
ν(χ)

2
tr[P tCP ]

+ψ⋆(µ, χ) +
λ

2
κ2 + σY ‖ log(P−1

0 P )‖
]

dx → min

where µ fulfils (23) and subject to the constraints

tr[log(P−1
0 P )] = 0, P−1

0 P = (P−1
0 P )t,

‖ log(P−1
0 P )‖ + κ − κ0 ≤ 0, |χ − χ0| ≤ ‖ log(P−1

0 P )‖XS(Dχ0).

Elimination of the second and third constraint yields after optimisation with
respect to κ

κ = κ0 − ‖ log(P−1
0 P )‖.

Thus we obtain with C = (Dϕ)tDϕ the simplified minimisation problem

Ψ(µ, χ, ϕ, P ) =

∫

Ω

[

|Dχ| + U(
√

det C) + ψ⋆(µ, χ) +
ν(χ)

2
tr[P tCP ] +

λ

2
κ2

0

+
λ

2
‖ log(P−1

0 P )‖2+(σY −λκ0)‖ log(P−1
0 P )‖

]

dx → min

subject to the condition (23) on µ and subject to

tr[log(P−1
0 P )] = 0, |χ − χ0| ≤ ‖ log(P−1

0 P )‖XS(Dχ0).

Introducing the symmetric matrix H via the equation P = P0 exp(H) and
replacing the optimisation with respect to P by an optimisation with respect
to H, we obtain

Ψ(µ, χ, ϕ,H) =

∫

Ω

[

|Dχ|+U(
√

detC)+
λ

2
κ2

0+
λ

2
‖H‖2+(σY −λκ0)‖H‖

+ψ⋆(µ, χ)+
ν(χ)

2
tr[exp(H)P t

0CP0 exp(H)]
]

dx → min

subject to (23) and to

tr(H) = 0, |χ − χ0| ≤ ‖H‖XS(Dχ0).
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As in Section 4 we study this problem analytically to find out whether there
is a convexifying effect of the phase transition within K. We consider local
spatial fluctuations in F for the choice

F (x) = Id + α(x) n ⊗ n,

where α ∈ R, x ∈ Ω and n is an arbitrary unit vector. Due to the isotropy
of Ψ , the results will not depend on the particular choice of n.

Like in Section 4 we assume κ0 = 0 and P0 = Id and introduce the ’flip
set’ K := {x ∈ S(Dχ0) | |χ0(x)− χ(x)| = 1} as that subset of Ω where the
constraint is active.

We qualitatively study the behaviour of Ψ in 2D writing H =

(
u v
v −u

)

for u, v ∈ R. So we have

Ψ(α) = inf
µ,χ

inf
H=Ht, tr(H)=0

∫

Ω

[

|Dχ| + U(
√

det C) +
λ

2
‖H‖2 + σY ‖H‖

+ψ⋆(µ, χ)+
ν(χ)

2
tr

(
exp(H)C exp(H)

)]

dx.

The optimisation with respect to µ is as before understood subject to con-
straint (23). The minimisation with respect to H immediately gives v = 0.

For U we make the standard choice

U(d) :=
ν̃(χ)

4
d2 − ν̃(χ) + 2ν(χ)

2
log(d). (40)

In the infinitesimal setting, the ansatz (40) reduces to an isotropic elastic
material with Lamé parameters ν and ν̃. For the analysis we set ν̃ ≡ 0.

On K we have ‖H‖ = 1. This implies

tr
[

exp(H)C exp(H)
]

= tr
[ ∞∑

j=0

1

j!(
√

2)j

(
1 0
0 (1 + α)2

) ∞∑

j=0

1

j!(
√

2)j

]

= exp(2
√

2)
[

1 + (1 + α)2
]

.

Consequently

Ψ(α)
∣
∣
∣
K

= inf
µ

inf
χ∈BV (Ω)

∫

K

[

|Dχ| − ν(χ) log |1 + α| + λ

2
+ σY

+ψ⋆(µ, χ) +
ν(χ)

2
exp(2

√
2)

(

1 + (1 + α)2
)]

dx

implying that α 7→ Ψ(α)|K is convex.

On Ω \ K, we observe the identity

tr[exp(H)C exp(H)] = tr

[

exp(2H)

(
(1 + α)2 0

0 1

)]

= (1 + α)2 exp(2u) + exp(−2u).
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We conclude that the free energy minimisation becomes

Ψ(α)
∣
∣
∣
Ω\K

= inf
χ, µ, u

∫

Ω\K

[

|Dχ| −ν(χ) log |1+α|+λu2+
√

2σY |u|

+ψ⋆(µ, χ)+
ν(χ)

2

(

(1+α)2 exp(2u) + exp(−2u)
)]

dx.

The Euler-Lagrange equation for the minimising u is

2λu +
√

2σY sgn(u) + ν(χ)
(

(1 + α)2 exp(2u) − exp(−2u)
)

= 0. (41)

The explicit analytic solution of (41) is lengthy. Instead, Figure 1 shows the
results of some numerical computations for ν(χ) ≡ 2, h = 0.001 and χ ≡ 1
in Ω, i.e. in the absence of phase transitions. Concerning the dependence
on α, the results coincide with those reported in [10]: For λ large enough,

it holds ∂2Ψ
∂α2

∣
∣
∣
Ω\K

≥ 0 and there is a regularising effect of hardening on the

formation of microstructure. For λ close to 0, we have that Ψ is non-convex.
In summary, we observe the same behaviour as in Section 4: Lack of

convexity of α 7→ Φ(α) occurs in Ω \ K and gives rise to the presence of
microstructure, whereas in the flip set K the convexity of Φ in α prohibits
oscillations on a small scale.
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Fig. 1. Ψ(α) for different values of L

Figure 1 shows in particular the dependence of the energy on diffusion,
i.e. for different L. The larger the value of L, the bigger the inflow of mass
given by

∫

Ω
div(L∇µ) =

∫

∂Ω
L∇µ ·n, and due to (15), there is a monotone

relationship between ̺j and µj .

6. Discussion

Based on rate-independent finite-strain elastoplasticity, a theory for
phase transitions in solids respecting hardening and diffusional effects was
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developed, where the stored mechanical energy W depends additionally on
a phase parameter χ. As main result, a waiting time phenomenon was de-
rived and it was shown that microstructure does not occur in those regions
where a phase transformation has just taken place.

Possible applications of the derived model are materials with a manu-
factured structure variation on the macroscopic scale, especially composites
like the metal-intermetallic laminates, [36] and [37], or certain ceramic-metal
(’cermet’) materials, see for instance [24].

When studying mechanical systems, the effect of diffusion may be neg-
ligible in many cases, but not always. The experiments in [25] demonstrate
the influence of diffusion on a phase boundary. Furthermore, diffusion leads
to a shift in the actual position of the minimisers of the free energy. This
may result in topological changes in the occurring microstructure. The opti-
cal microscopy on NiTi specimen in [7] gives indications to this phenomenon
for shape memory materials.

Finally, it is noteworthy to observe the following simplification in the
derivation of our model: The decomposition (1) and ansatz (2) do not keep
track of the lattice orientation at time t. This is completely inadequate to
model materials with damage, or as an extreme case, lattice recrystallisa-
tion. In our model, neglecting the lattice orientation leads to a non-physical
interfacial surface energy. The term

∫

Ω
|Dχ| stands for an isotropic surface

energy, but neglects the different lattice orientations on both sides of the
interface which lead to geometric misfits and alter the interfacial energy.
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