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Abstract This article deals with the mathematical deriva-

tion and the validation over benchmark examples of a nu-

merical method for the solution of a finite-strain holonomic

(rate-independent) Cosserat plasticity problem for materials,

possibly with microstructure. Two improvements are made

in contrast to earlier approaches: First, the micro-rotations

are parameterized with the help of an Euler-Rodrigues for-

mula related to quaternions. Secondly, as main result, a novel

two-pass preconditioning scheme for searching the energy-

minimizing solutions based on the limited memory Broyden-

Fletcher-Goldstein-Shanno quasi-Newton method is proposed

that consists of a predictor step and a corrector-iteration.

After outlining the necessary adaptations to the model, nu-

merical simulations compare the performance and efficiency

of the new and the old algorithm. The proposed numerical

model can be effectively employed for studying the mechan-

ical response of complicated materials featuring large size

effects.
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1 Introduction

In recent years, the scientific interest towards sophisticated

and heterogeneous materials featuring multiple internal length

scales has grown significantly, mainly due to the possibility

of playing with the internal microstructure of these materi-

als to model and engineer structures that exhibit properties

not found in conventional materials (refer, e.g., to [1,2] and

references therein). Such materials include cellular solids, fi-

brous and particle composites, biological materials, robots,

and also building-scale systems made of masonry structures

[3,4,5,6,7,8]. The mechanical modeling of these materials

and structures calls for the introduction of degrees of free-

dom that are not accounted for in classical continuum me-

chanics, typically rotation of points (or micro-rotations) and

couple stresses [9,10,11]. A viable continuum description

of such phenomena is provided by the micropolar theories

of Cosserat continua [12], which have been intensively ap-

plied since their introduction in 1909 to a variety of different

problems in solid and structural mechanics, fluid dynamics,

liquid crystals, granular materials, powders, etc. (cf. [13,14,

15] for an overview). Particularly interesting is the Cosserat

modeling of chiral honeycomb lattices with bending-dominated

behavior whose mechanical response cannot be accurately

described by classical continuum theories due to large size

effects, [3]. So far, physical models of these exciting mate-

rials have been fabricated through additive manufacturing

(AM) technologies in polymeric materials and have been de-

scribed through Cosserat elasticity, [3]. The numerical model

http://arxiv.org/abs/1906.08229v1
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presented in this work allows for simulating the response of

ductile versions of such metamaterials, assuming radial load-

ing and holonomic plasticity, [16,17,18], which are, e.g.,

fabricated via AM techniques manual assembling methods

employing metallic materials, [19,20,21].

Since the Cosserat model of a micropolar material in-

duces sensitivity to the microrotation strain gradient, such

generalized continua are endowed with an internal length

scale such that localization zones have a finite width. The

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a

well-known quasi-Newton method where instead of storing

the full Hessian matrix H (a big matrix for large dimensions)

an approximation is computed by the sum of two rank-one

matrices. In the limited-memory (L-BFGS) variant, [22,23],

the approximation to H is constructed from a small number

of vectors by a rank-one update formula, see Eqn. (32) be-

low. The resulting algorithm is still considered the state-of-

the-art method when huge systems of equations with a very

large number of unknowns need to get solved.

In [24], a L-BFGS algorithm is developed for the solu-

tion of a finite-strain rate-independent Cosserat model of fi-

nite plasticity. Therein, the elastic Cosserat micro-rotations

Re are parameterized by a vector α = (α1,α2,α3) ∈ R3 of

Euler angles,

R̃e(α) := R3(α3)R2(α2)R1(α1)

:=




1 0 0

0 cosα3 sinα3

0 −sinα3 cosα3







cosα2 0 −sinα2

0 1 0

sinα2 0 cosα2







cosα1 sinα1 0

−sinα1 cosα1 0

0 0 1


 . (1)

Two main criticisms of the approach in [24] are eminent.

The first is that Euler angles are not well-suited to parame-

terize the rotation group S O(3) and have several shortcom-

ings. Especially the parameterization may degenerate and

become non-unique.

In other areas of mechanics such as unmanned aerial

vehicle (UAV) control, quaternion-based descriptions have

demonstrated their superior performance, see [25,26]. There-

fore, in this article, the alternative parameterization

Re(q) :=




q2
0+q2

1−q2
2−q2

3 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q2
0−q2

1+q2
2−q2

3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3+q0q1) q2
0−q2

1−q2
2+q2

3




(2)

is studied which is based on an Euler-Rodrigues vector q =

(q1,q2,q3,q4) defined on the unit sphere

S3 :=
{

q = (q1,q2,q3,q4) ∈ R4
∣∣∣ |q|2 = 1

}
.

Formula (2) goes back to historical work by L. Euler in

1775, [27]. The approach was independently reinvented by

Rodrigues in 1840, [28]. As was already discovered early, it

can also be derived from quaternion theory, [29].

The second major criticism to [24] is that the quasi-Newton

iteration may get stuck in a local minimum of the mechan-

ical energy without finding the global minimizer. Precon-

ditioning of the numerical scheme may help to speed up

the code and correctly compute the global minimizer. While

there is vast literature on preconditioning in general, only a

few articles deal with preconditioning of the L-BFGS-method,

[30,31,32,33], especially when directly related to energy

minimization, [34].

The first goal of this paper is to study the implications of

(1), (2) on the finite-strain Cosserat algorithm, assuming ra-

dial loading and holonomic-type plasticity [16,17,18]. Sec-

ondly, as main result, a two-step preconditioning strategy of

the L-BFGS algorithm is proposed that consists of a predic-

tor step followed by a corrector iteration for solving the time-

discrete problem. This two-pass approach effectively defines

a non-linear preconditioning strategy.

This article is organized in the following way. In Sec-

tion 2, the finite-strain Cosserat model is reviewed. Section 3

derives background theory on a quaternion-based Cosserat

theory. Section 4 revisits the L-BFGS update scheme and de-

rives the aforementioned preconditioning method. Section 5

performs various numerical tests, followed by a discussion

of the results and an outlook. At the end of the paper, a com-

plete list of symbols with explanations can be found. The

generalization of the present approach to more general cases

of gradient-type plasticity [44,45,46,47,48] is addressed to

future work.
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2 The finite-strain Cosserat model of holonomic plastic

materials with microstructure

The deformation mapping of the current material from the

reference configuration Ω ⊂ R3 to the deformed state Ωt is

described by a diffeomorphism ϕ ∈ G l+(3), for times t ≥ 0.

Throughout, Ω is assumed a smooth Lipschitz domain.

Assuming radial loading and holonomic-type plasticity

[16,17], the fundamental relationship of the Cosserat approach

is the multiplicative decomposition

F = FeFp = ReUeFp (3)

of the deformation tensor F := Dϕ , where Fe, Fp are the

elastic and the plastic deformation tensors, Ue =Rt
eDϕF−1

p ∈

G l(3) is the stretching component, and

Re ∈ S O(3) := {R ∈ G l(3) | det(R) = 1, RtR = I}

are the micro-rotations. In (3), Ue need not be symmetric

and positive definite, i.e. the decomposition Fe = ReUe is in

general not the polar decomposition.

We fundamentally assume that the mechanical energy

depends on the elastic part Fe of the deformation, only. With

κ denoting the density of the (geometrically necessary) dis-

locations, it follows by frame indifference that the stored me-

chanical energy is of the form, [35],

W (Fe,κ) =Wst(Ue)+Wc(Ke)+V(κ),

where Ke =(Rt
e∂xl

Re)1≤l≤3 is the (right) curvature tensor, Wst

denotes the stretching energy, Wc the curvature energy due

to bending and torsion of the material, and V the energy

of stored dislocations. For these functionals we make the

ansatz, cf. [14,36],

Wst(Ue) :=µ‖symUe − I‖2 + µc‖skw(Ue − I)‖2

+
λ

2
|tr(Ue − I)|2, (4)

Wc(q) :=µ2‖Ke(q)‖
2 = µ2‖∇Re(q)‖

2

=µ2

3

∑
l=1

‖∂lRe(q)‖
2, (5)

V (κ) :=ρκ2. (6)

In (4), (5), µ2 := µ
2

L2
c with the internal length scale Lc > 0,

the Cosserat couple modulus µc > 0, and λ > 0, µ > 0

are the Lamé parameters; ∂l := ∂
∂xl

, 1 ≤ l ≤ 3 for short;

ρ > 0 is a constant. In (4), sym(A) := 1
2
(A+At), skw(A) :=

1
2
(A− At) denote the symmetric and skew-symmetric part

of a tensor A, respectively; tr(A) := ∑i Aii is the trace oper-

ator, ‖A‖ :=
√

tr(AtA) the Frobenius matrix norm; u ·v :=

∑3
i=1 uivi is the inner product in R3, I the real 3× 3 identity

matrix. For A,B ∈ R3×3, A :B := tr(AtB) = ∑3
i, j=1 Ai jBi j de-

notes the inner product in R3×3. For a general introduction

to tensor calculus in plasticity, we recommend [37,38].

Applying ideas from [39], see also [40], the time evo-

lution of the deformed material can be computed by a se-

quence of minimization problems for the mechanical energy.

If h > 0 is a fixed time step, for given (F0
p ,κ

0) of the previ-

ous time step, the values of (ϕ ,Re,Fp,κ) need to be calcu-

lated at time t + h. Let P := F−1
p be the plastic backstress,

and P0 := (Fp
0)−1. Then the approximations

dh
t (Fp) :=

I−P−1P0

h
, ∂ h

t κ :=
κ −κ0

h

of the time derivatives are used. Other forms of time inte-

grators are discussed in [41]. We obtain the minimization

problem

E (ϕ ,q,Fp,κ) :=

∫

Ω

Wst(Ue(ϕ ,q,Fp))+Wc(Ke(q))+V(κ)

+Λ
(
1−|q|2

)2
− fext ·ϕ−Mext :Re(q)

+ hQ∗(dh
t (Fp),∂

h
t κ)dx−

∫

Γt

t·ϕ dS

−

∫

ΓC

Mt :Re(q)dS → min (7)

subject to the initial and Dirichlet boundary conditions

ϕ(x,0) = x, κ(·,0) = κ0 in Ω ,

ϕ = g
D
, q = qD on ΓD

(8)

with fixed Dirichlet boundary data qD and gD. As is typical

of a variational theory, the functional E represents the total

mechanical energy of the system minus the ground state en-

ergy. In (7), (8), ΓD ⊂ ∂Ω is that part of the boundary where

Dirichlet conditions are applied; Γt is the part of the bound-

ary where traction boundary conditions apply; ΓC ⊂ ∂Ω the

boundary where surface couples are applied. It must hold
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ΓD ∩Γt = /0, ΓD ∩ΓC = /0. For simplicity, we assume from

now on ΓD = ∂Ω and Γt = ΓC = /0.

In (7), the term Λ(|q|2 − 1)2 ensures the validity of the

constraint |q|= 1 in Ω , where Λ > 0 is a constant. By fext =

fext(t), Mext = Mext(t), the external volume force density

and external volume couples are specified, respectively. The

term hQ∗(dh
t (Fp),∂

h
t κ) is the dissipated mechanical energy

in the time interval from t to t+h. It is the Legendre-Fenchel

dual

Q∗(Fp,κ) := sup
(X ,ξ )

{
X : Fp + ξκ −Q(X ,ξ )

}
(9)

of the plastic potential

Q(X ,ξ ) :=

{
0, for Y (X ,ξ )≤ 0,

∞, else,

where Y ≤ 0 is the yield function with Y = 0 indicating plas-

tic flow. In case of the van Mises condition,

Y (σ ,ξ ) := ‖devsymσ‖−σY − ξ

with devσ := σ − 1
3
I the deviatoric part of σ . The above for-

mulas establish a rate-independent theory where the material

responds immediately (infinitely fast) to applied forces.

As a result of plastic deformation due to structural changes

within the material like the increase of immobilized dislo-

cations inside the lattice structure, hardening occurs, [42,

43]. It is assumed throughout the text that plastic deforma-

tions only occur along one a-priori given material-dependent

single-slip system, specified by a normal vector n and a slip

vector m with |m |= |n |= 1 and m ·n = 0, see [44].

The real parameter γ determines the plastic slip and the

plastic deformation tensor by

Fp = Fp(γ) := I+ γm⊗n . (10)

Formula (10) is obtained from Ḟp = γ̇ m ⊗n by integration

from the initial state Fp(t = 0) = I to time t.

In contrast to [36], we restrict here to the case of one slip

system, by leaving the multislip case for future work.

As can be checked, [45], the dissipated energy satisfies

the relationship

Q∗(Ȧ, k̇) =

{
σY |γ̇|, if Ȧ = γ̇ m⊗n and |γ̇|+ k̇ ≤ 0,

∞, else.
(11)

As is well known, plastic deformations always occur on the

boundary of the set of feasible deformations. Consequently,

see [36], the constraint |γ − γ0|+ κ − κ0 ≤ 0 appearing in

the definition of Q∗ has to be satisfied with equality, leading

to

κ =−|γ − γ0|+κ0, (12)

which allows us to define κ as a function of γ , γ0, and κ0.

Plugging in (12) in V (κ) and dropping an inconsequential

constant ρ(κ0)2, we end up with the optimization problem

E (ϕ ,q,γ) :=

∫

Ω

[
Wst(R

t
e(q)DϕFp(γ)

−1)+Wc(q)

+Λ(|q|2 − 1)2 − fext ·ϕ −Mext : Re(q)

+ρ
(
γ−γ0

)2
+ |γ−γ0|

(
σY−2ρκ0

)]
dx → min

(13)

subject to the initial and boundary conditions (8) for ΓD =

∂Ω .

The functional E in (13) coincides with the one in [49]

except for the new term Λ
(
|q|2 − 1

)2
and the parameteriza-

tion (2) instead of (1) for the micro-rotations.

For a fixed discrete time step h> 0 and known (γ0,κ0) at

time t, the new (ϕ ,q,γ) representing values at time t +h are

calculated from (13). Finally, the new κ is computed from

(12) and (γ,κ) become the initial values of the next time

step.

If the material is initially free of dislocations, κ(·,0) = 0,

the hardening law (12) implies κ(t + h) ≤ κ(t) ≤ 0 for all

times t. Hence, −2ρκ0 ≥ 0 in (13) represents the increase

of the yield stress σY due to stored dislocations.
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3 An application of the Euler-Rodrigues formula

Following the classical notation in [50,51], let

H := spanR{1, i , j ,k}

=
{

q = q0 + q1i + q2j + q3k
∣∣ q0,q1,q2,q3 ∈ R

}

denote the space of quaternions, where the quaternion imag-

inary units satisfy i 2 = j 2 = k2 = ijk =−1. Let

Hp := {q = q0 + q1i + q2j + q3k ∈H | q0 = 0}

be the space of pure quaternions and

q = q0 + q̂ := q0 + q1i + q2j + q3k . (14)

The set H is equipped with the multiplication (for p,q ∈H)

pq := p0q0 − p̂ · q̂+ p0q̂+ q0 p̂+ p̂× q̂, (15)

where p̂ · q̂ := p1q1 + p2q2 + p3q3 specifies as above the in-

ner product and p̂× q̂ the vector product of R3, respectively.

In general, pq 6= qp, so H is an associative, non-commutative

algebra. Let q := q0 − q̂ be the conjugate of q and

|q| :=
(
qq
)1/2

=
(
qq
)1/2

=
(
q2

0 + q2
1 + q2

2 + q2
3

)1/2
(16)

be the modulus of q. By Formula (15), q ∈ H∗ := H \ {0}

possesses the multiplicative inverse q−1 = q

|q|2
. Let

so(3) := {ω ∈ R3×3 | ωt =−ω}

be the Lie algebra of S O(3). The alternating skew tensor

ε : Hp → so(3) is defined by

ε(q̂) :=




0 −q3 q2

q3 0 −q1

−q2 q1 0


 . (17)

Evidently,

ε(q̂)v = q̂× v for v ∈ R3 ≃Hp. (18)

By direct inspection, it is straightforward to verify that for

every q ∈ S3

Re(q)v := qvq for v ∈ R3 ≃Hp (19)

defines a rotation in S O(3). Using (15), this leads to

Re(q) = (2q2
0 −|q|2)I+ 2q̂⊗ q̂+ 2q0ε(q̂). (20)

Plugging in the above definitions, this coincides with For-

mula (2).

The mapping Re thus introduced has the properties

Re(1) = I, Re(q) = Re(q)
t , Re(pq) = Re(p)Re(q)

and is therefore an algebra-homomorphism. It is a double

cover of S O(3), especially it is non-unique, since

Re(q) = Re(−q) for q ∈ S3. (21)

In comparison, the parameterization (1) breaks down for α2 =
π
2

, in which case α1 and α3 denote a rotation around the

same axis. In summary, both (2) and (1) set up rivaling charts

on the manifold S O(3) which have certain disadvantages

when used globally.

Formula (2) can be used to interpolate between rotations and

allows to introduce a distance in S O(3), see, e.g., [52]. This

is a prerequisite to studying surface energies between grains

or particles of different orientations, [53].

For x ∈R3 and a quaternion field q = q(x), the m-th material

curvature vector or Darboux vector is given by

Km
e (q) := 2q∂mq ∈Hp, 1 ≤ m ≤ 3. (22)

The following lemma computes the derivatives of Re(q) and

Ke(q) in H with |q|= 1.

Lemma 1 (Lie Derivatives of Re and Km
e ) Let q = q(x) :

R3 → S3 and 1 ≤ l,m ≤ 3. Then

∂lRe(q) = Re(q)ε(K
l
e (q)), (23)

∂lK
m
e (q) = 2q

[
∂l∂mq− ∂lqq∂mq

]
. (24)

Proof An elementary proof of (23) can be found in [54],

Chapter 11. The following proof is a modification of an argu-

ment in [55]. Let v ∈R3 ≃Hp and let w ∈R3 denote various
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changing vectors. Then it holds

ε(Kl
e (q))v = ε(2q∂lq)v by Eqn. (22)

= 2q∂lq× v by Eqn. (18)

= 2q∂lqv by Eqn. (15)

= 2q̂∂lqv by Eqn. (14)

= q∂lqv− q∂lqv since w−w = 2ŵ

= q∂lqv+ v∂lqq since v =−v

= q(∂lqvq+ qv∂lq)q since qq = |q|2 = 1

= q(∂l(qvq))q since ∂lv = 0

= q(∂lRe(q)v)q by Eqn. (19)

= Re(q)
t∂lRe(q)v since (Re(q)w)

t = qwq.

As this is true for every v ∈ R3 ≃Hp, this shows

ε(Kl
e (q)) = Re(q)

t∂lRe(q).

Multiplication with Re(q) from the left yields (23).

In order to show (24), multiplying (22) with q from the left

yields

2∂mq = qKm
e (q).

Consequently,

2∂l∂mq = ∂lqKm
e (q)+ q∂lK

m
e (q)

or equivalently

q∂lK
m
e (q) = 2∂l∂mq− ∂lqKm

e (q).

Multiplication of this identity with q from the left leads to

∂lK
m
e (q) = 2q∂l∂mq− q∂lqKm

e (q).

With (22), this shows (24). �

Applying the results of Lemma 1 to Wc, it holds by Eqns. (23)

and (17),

Wc(q) = µ2

3

∑
l=1

||∂lRe(q)||
2 = µ2

3

∑
l=1

||Re(q)ε(K
l
e (q))||

2

= µ2

3

∑
l=1

||ε(Kl
e (q))||

2

= 2µ2

3

∑
l=1

[
(Ke

l
1(q))

2 +(Ke
l
2(q))

2 +(Ke
l
3(q))

2
]

= 2µ2

3

∑
l=1

|Kl
e (q)|

2. (25)

For the first derivative, using (22) and (24), this results in

∂mWc(q) = 4µ2

3

∑
l=1

̂∂mKl
e (q) · K̂

l
e (q)

= 16µ2

3

∑
l=1

[
q(∂m∂lq− ∂mqq∂lq)

]
·
[
q∂lq

]
. (26)

4 Preconditioning

When implementing the L-BFGS method for the Cosserat

problem (13), frequently situations are encountered where

the algorithm requires many iterations to converge. Also it

may happen that the iteration is stopped before a correct min-

imizer has been reached. Therefore, in this section, certain

modifications of the L-BFGS algorithm are discussed. It is

noteworthy that this does not only increase the speed of the

code, but may be an essential step to correctly compute the

minimizers.

Starting point is the minimization problem (13) written as

E (x)→ min, (27)

where x∈RD corresponds to a spatial discretization of (ϕ ,q,γ)

by finite elements or finite differences. The L-BFGS algo-

rithm is a quasi-Newton method and constructs a minimiz-

ing sequence (xk)k∈N ⊂ RD by setting

dk :=−Hk∇E (xk),

xk+1 := xk +αdk.
(28)

Here, Hk approximates the inverse Hessian (D2E (xk))
−1 and

is constructed from rank-one updates, dk is a descent direc-
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tion, and α ∈ R is a parameter computed by a linesearch al-

gorithm. The iteration (28) stops if for chosen small ε0 > 0

|∇E (xk)|< ε0 max{1, |xk|}. (29)

Letting

sk−1 := xk − xk−1,

yk−1 := gk − gk−1 := ∇E (xk)−∇E (xk−1),

the BFGS-update is given by

Hk =Hk−1 +
(yt

k−1Hk−1yk−1

yt
k−1

sk−1

+ 1
) sk−1st

k−1

yt
k−1

sk−1

−
1

yt
k−1sk−1

[
sk−1yt

k−1Hk−1 +Hk−1yk−1st
k−1

]
(30)

=
(
I−ρk−1sk−1yt

k−1)Hk−1

(
I−ρk−1yk−1st

k−1)

+ρk−1sk−1st
k−1

=:V t
k−1Hk−1Vk−1 +ρk−1sk−1st

k−1

=
(
V t

k−1 . . .V
t
0

)
H0

(
V0 . . .Vk−1

)
(31)

+
k−1

∑
l=1

(V t
k−1 . . .V

t
l )sl−1st

l−1

(
Vl . . .Vk−1

)
+ρk−1sk−1st

k−1

with ρ l := 1
yt

l
sl

and Vl := I−ρ lyls
t
l .

In the limited-memory variant of (30), the matrices Hk are

not stored explicitly. Instead, given a small number m ∈ N

and vectors s0, . . . ,sm−1, y0, . . . ,ym−1, the multiplication

Hk∇E (xk)

is carried out by the two-loop iteration, see [22],[56],

gk := ∇E (xk)

FOR i = m− 1, . . . ,0

α i := ρ is
t
igk

gk := gk −α iyi

rk := H0
k gk (32)

FOR i = 0, . . . ,m− 1

β k := ρ iy
t
irk

rk := rk +(α i −β k)si

Hk∇E (xk) := rk.

The first FOR-loop of the above scheme for determining

rk = Hkgk computes and stores
(
Vl . . .Vm−1

)
gk for 0 ≤ l ≤

m−1. After carrying out the multiplication (32), the second

FOR-loop then computes (31).

The above scheme is considered one of the most effective up-

date formulas of numerical analysis and requires only O(mD)

operations. The parameter m is usually chosen as 3 ≤ m ≤ 7,

see [57], and increasing m further does not improve the qual-

ity of the update.

In (32), for each iteration step k, one is free to pick H0
k . In the

original implementation of the algorithm, in order to reduce

the condition numbers of Hk, the diagonal is scaled with the

Cholesky factor δ k, [58],

H0
k = δ kI, δ k :=

st
k−1yk−1

yt
k−1yk−1

. (33)

Instead, another matrix or non-linear scheme such as a fixed

point iteration may be used in place of H0
k in (32) such that

ideally, H0
k ∼ D2E (xk).

In order to find an efficient preconditioning method, it is

helpful to study the particular features of the Cosserat func-

tional E . From physical insight and numerical investigations,

it is evident that the hardest part in solving (13) is the com-

putation of the optimal rotations, i.e. finding the quaternion

field q. Therefore, the following two-step strategy for the so-

lution of one time-step is effective:

Step 1 (Predictor): Fix (ϕ ,γ).

Solve with the L-BFGS-method the optimization problem

Eϕ,γ (q)→ min .

Step 2 (Corrector): Solve with the L-BFGS-method the full

problem (27). Pick the solution qopt of Step 1 as initial values

for q.

Typically, the solution of Step 1 is very fast in compar-

ison to Step 2 since far less variables need to be optimized

and the complicated dependence of q on (ϕ ,γ) is eliminated.

Step 1 provides a reasonable approximation to the solution

of the full problem (27). In the conducted tests, the com-

bined numerical costs for solving Step 1 and Step 2 turned

out significantly lower than for solving the original mini-

mization problem directly in one pass with the un-precon-
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ditioned L-BFGS method. This is discussed below in more

detail.

In Step 1, (ϕ ,γ) is fixed with data of the previous time

step. At the first time step, γ is loaded with the initial values

γ0 and ϕ is initialized with an extension of the boundary

values gD in Ω that satisfies the Cauchy-Born rule.

Both Step 1 and Step 2 are preconditioned. In Step 1, a

special preconditioning matrix Z replacing H0
k is chosen that

resembles the common discretization of the Laplace opera-

tor on structured grids. Step 2 is preconditioned with the fi-

nal converged matrix Hk computed in Step 1. As this matrix

is obtained from a L-BFGS-procedure, it has a data-sparse

representation by vectors (s0,y0), . . . ,(sm−1,ym−1).

In order to derive the preconditioning-matrix Z of Step 1,

recall the computation of the total curvature energy by finite

differences in 3D

∫

Ω

Wc(q)dx ≈
w

8

d1

∑
i=0

d2

∑
j=0

d3

∑
k=0

Ni jkWc(q(yi jk)) (34)

used in [24], where Ni jk ∈ N are numerical weights derived

from a Newton-Cotes formula, yi jk ∈ Ω are points of the

numerical mesh with equal spacings

η1 :=
L1

d1

, η2 :=
L2

d2

, η3 :=
L3

d3

, (35)

Ω = (0,L1)×(0,L2)×(0,L3) is assumed, dl ∈N is the num-

ber of discretization points in direction l, l = 1,2,3, and

w := η1η2η3 is an integration factor.

Since for the preconditioning matrix only a reasonably

good approximation of the second derivative is needed, in

the following Ni jk = 8 is assumed (the value of Ni jk in Ω \

∂Ω ). First, let

Wc(q) := 2µ2|∂xq|2.

Then, by a straightforward computation, for fixed subscripts

0 ≤ I ≤ d1, 0 ≤ J ≤ d2, 0 ≤ K ≤ d3 and fixed component

0 ≤ b ≤ 3 of q,

∂

∂qb
IJK

∫

Ω

Wc(q(x))dx ≈
wµ2

2η2
1

∂

∂qIJK
b

∑
i

(
qb

i+1,J,K − qb
i−1,J,K

)2

=
wµ2

η2
1

∑
i

(
qb

i+1,J,K − qb
i−1,J,K

)(
δ i+1,I − δ i−1,I

)

=
wµ2

η2
1

(
− qb

I−2,J,K + 2qb
I,J,K − qb

I+2,J,K

)
(36)

with the short-hand notation qi jk ≡ q(yi jk). In the same way

the second derivative

∂ 2

(∂qb
IJK)

2

∫

Ω
Wc(q(x))dx

can be computed. Let D1=̂(I,J,K) be the line index and

D2=̂(I2,J2,K2) be the column index of the 2nd derivative

matrix Z. Then, from (36),

ZD1,D2
:=

wµ2

η2
1





+2, if D1 = D2,

−1, if |I− I2|= 2,

0, otherwise.

Likewise, if Wc is given by (38), then up to a pre-factor, Z is

2 on the diagonal, equals −1 if |I− I1|= 2 or |J− J1|= 2 or

|K −K1|= 2, and is 0 otherwise.

In the implementation, Z is not stored explicitly. The

multiplication Zg for a vector g ∈ RD is carried out by ex-

ploiting the band structure of Z.

5 Numerical tests

Subsequently, different algorithms for the solution of (13)

are investigated. First, the following general remarks are in

place.

Remark 1 Following [24], for small ε > 0, in (13) the mod-

ulus | · | is replaced by

rε(x) :=





x, x > ε,

x2/ε, −ε ≤ x ≤+ε,

−x, x <−ε.

This removes the singularity at the origin and allows the ap-

plication of Newton’s method.

Remark 2 Since the quasi-Newton method applied in this

article computes variations of q that are not in S3, the param-

eterization (2) is not applicable unmodified in the numerical

code. Instead, the mapping

R̂e(q):=
1

|q|2




q2
0+q2

1−q2
2−q2

3 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q2
0−q2

1+q2
2−q2

3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3+q0q1) q2
0−q2

1−q2
2+q2

3




(37)
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is used which is defined for all q ∈R4 \{0}. When minimiz-

ing Eε , due to the term Λ
(
|q|2 − 1

)2
, the computed optimal

q lies (approximately) in S3.

Remark 3 All plastic deformations considered in this sec-

tion satisfy det(Fp) = 1. Hence the plastic deformations pre-

serve the volume.

5.1 Comparison of the parameterizations by Euler angles

and Euler-Rodrigues formula

The quaternion-based algorithm, due to its additional com-

ponent in the representation of Re, requires about 14% more

computer memory. Table 1 has the exact figures for different

spatial resolutions. Let Algorithm 1 denote the algorithm of

[24] which is based on finite differences in 3D, the L-BFGS

method, Euler angles, and the curvature energy (5), Algo-

rithm 2a be the analogous quaternion-based algorithm that

solves (13); finally Algorithm 2b be identical to Alg. 2a, but

with the simplified curvature energy

W̃c(q) := 2µ2

3

∑
l=1

|∂lq|
2. (38)

This choice is motivated by the fact that Euler angles permit

to write (5) as

Wc(α) = 2µ2

2

∑
l=1

|∂lα|2, (39)

see Eqn. (25) or [49]. As the numerical costs for comput-

ing (38) and (39) are very similar, this permits an unbiased

comparison of the two parameterizations.

In [49], a class of 3D analytic solutions to (13) is calcu-

lated for an ultra-soft material with σY = ρ = 0 subject to

the boundary conditions

Dϕ(t) = I+β(t)m⊗n on ∂Ω . (40)

This represents a simple shear problem for prescribed values

β (t) ∈ R. The Cauchy-Born rule is valid here and (40) is

satisfied in Ω .

The above test constitutes a benchmark problem. The

following simulation compares the performance and speed

of convergence for both Alg. 1 and Alg. 2. The stopping

criterion is (29) with ε0 := 10−7.

Parameters (Benchmark test):

Ω = (0,1)3, t ∈ [0,1], µ = 104, µc = 2 ·104,

µ2 := µ
L2

c

2
= 100, λ = 103, ρ = σY = fext = 0, Mext = 0 ,

m = (1,0,0)t , n = (0,1,0)t , β (t) = 0.25 ∗ t, h = 0.1,

ε = 10−4, Λ = 20, qD = (1,0,0,0).

Initial values: ϕ0 ≡ I, κ0 = γ0 = 0 in Ω .

Results: γ(·, t) = β (t), Re =Ue = I, Wst =Wc = 0 in Ω ,

ϕ(x, t) = (x1 + β (t)x2,x2,x3) in Ω , i.e. the va-

lidity of the Cauchy-Born rule.

Table 2 summarizes the required number of iterations

and computation times for all variants. The stopping crite-

rion is (29) with ε0 := 10−7. As can be seen, Alg. 2b re-

quires about 20% less iterations, Alg. 2a about 10% less iter-

ations than Alg. 1. This behavior is typical. In our numerical

tests, the quaternion-based algorithms reveal superior con-

vergence. Table 3 illustrates the deviation of the numerical

solution from the constraint |q|= 1.

5.2 The effect of preconditioning

This section conducts numerical tests of the preconditioning

strategy presented in Section 4. While for large values of the

stop parameter ε0 the code usually converges after a small

number of iterations, preconditioning becomes mandatory

when ε0 is chosen small. Fig 1 demonstrates that reducing

ε0 may go along with an exponential increase of the number

of iterations. Simultaneously, fine properties of the physical

solution may be missed when ε0 is set too large, cf. also

Table 3. The following bending problem of a 3D rod, see

[36, Eqn. (27)], serves as a test problem. For given β(t) as

in (40), ϕ at ∂Ω is prescribed by

gbend
D (x1,x2,x3, t) :=




x1

x2 +
2L1
π

[
sin

(
3π
2
+ π

2
x1
L1

)
+ 1

]
β (t)

x3


 .

(41)
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In order to determine the boundary conditions on q, let

Rbend
D := polar(Dgbend

D F−1
p ),

where polar(·) is the polar decomposition, computed with

the algorithm in [59]. Then set

q = qbend
D on ∂Ω ,

where Re(q
bend
D ) = Rbend

D and qbend
D is computed from Rbend

D

with the algorithm in [60].

Parameters (Bending problem):

Ω = (0,5)×(0,1)×(0,2), t ∈ [0,1], λ = µ = 0.025,

µc = 0.4, µ2 = 0.02; ρ = σY = fext = 0, Mext = 0 ,

m = (1,0,0)t , n = (0,1,0)t , β(t) = 0.25 ∗ t, h = 0.1,

ε = 10−4, Λ = 20, Wc(q) = 2µ
3

∑
l=1

|∂lq|
2,

Initial values: ϕ0 ≡ I, κ0 = γ0 = 0 in Ω .

Boundary values: ϕ = gbend
D , q = qbend

D on ∂Ω .

Results: γ(x, t) = sin(π
2

x1
L1
)β (t), q = (1,0,0,q4), Ue = I,

Wst ≡ 0, ϕ = gbend
D in Ω .

Table 4 compares the numerical costs for solving the first

time step of the bending problem with the original L-BFGS-

algorithm (where H0
k is defined by (33)) and with the pre-

conditioned two-step L-BFGS-algorithm of Section 4 when

ε0 := 10−11. Again, this behavior is typical. In our numer-

ical tests, the two-step preconditioner leads to a significant

speed-up, often accompanied with increased precision.

6 Discussion

In this paper, a parameterization by quaternions is applied to

a strongly non-linear finite-strain Cosserat model of plastic

materials, possibly with microstructure. Despite increased

memory requirements, in the conducted numerical tests the

quaternion-based algorithm needed less iterations and con-

verged faster. As main result, a novel two-level precondition-

ing scheme is proposed that exploits the physical properties

of the Cosserat model. The preconditioner solves a simpli-

fied problem for Re with fixed (ϕ ,γ) which represents the

most complicated step in computing a global minimizer of

Eε . Note that the degrees of freedom in the micro-rotations

are responsible for the occurrence of a large number of lo-

cal minima. With this reasonably good guess for Re, the

preconditioned algorithm is eventually able to succeed to a

global minimizer. The preconditioning strategy is compati-

ble with the L-BFGS update scheme and can be regarded

as a non-linear preconditioning technique. Numerical tests

support that this scheme significantly reduces the algorith-

mic costs and is essential to computing the physical solu-

tion when high precision is required. Similar two-step L-

BFGS-algorithms may also be applicable to other classes of

problems that depend in an un-symmetrical way on its vari-

ables. Fig. 2 documents a further important numerical fea-

ture: Since the energy landscape of Eε consists of many flat

plateaus, the L-BFGS-scheme stagnates for a long time with

each step only slightly decreasing Eε . It is unknown if and

when an iteration significantly decreases the energy. When

ε0 in (29) is taken too large, the algorithm may wrongly in-

terpret this stagnation as convergence. It would be desirable

to have analytic results on the choice of ε0, or even better

an algorithm that is capable to prevent this stagnation period.

Finally, it may be desirable to develop a specialized L-BFGS

algorithm that restricts the variations of the functional w.r.t.

certain variables to the tangent space.

We address the above generalizations and enrichments

of the numerical model presented in this study, together with

the analysis of the more general case of gradient-type plas-

ticity and hysteretic response under general loading, [44,45,

46], to future work. Additional future research lines will be

devoted to applying the current Cosserat model to bending-

dominated lattices with plastic behavior which exhibit arbi-

trarily large size effects and consist, e.g., of cubical mod-

ules/particles connected by deformable links or Sarrus link-

ages tessellating triangular lattice structures [3]. Physical

models of such systems will be fabricated through AM in

ductile materials, [19]. These mockups will be laboratory-

tested in order to validate the accuracy of numerical simu-

lations and to demonstrate the presence of size effects that

cannot be described through classical continuum or homoge-

nization theories. Recent results revealing metamaterial-type
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behaviors of the above systems, which are related to auxetic

response [3] and/or high strength effects induced by bend-

ing and twisting of the material, will be extended to the plas-

tic regime on accounting for a ductile response of the back-

ground material.

Figure captions

Parameterizations Resolution No. No. Memory

(d1,d2,d3) Unknowns Nodes (MB)

Euler angles (32,32,32) 214683 35937 1.64

Euler angles (64,64,64) 1774907 274625 13.5

Euler angles (128,128,128) 14436987 2146689 110

Euler angles (256,256,256) 116462843 16974593 889

Quaternions (32,32,32) 244476 35937 1.86

Quaternions (64,64,64) 2024956 274625 15.4

Quaternions (128,128,128) 16485372 2146689 126

Quaternions (256,256,256) 133044220 16974593 1015

Table 1: Comparison between the parameterizations by Eu-

ler angles (1) and by quaternions (2). ’No. Unknowns’ is the

total number of unknowns in the discrete model, ’Memory’

the total memory for storing the data in case of 64 bit preci-

sion, ’No Nodes’ the total number of discretization points in

the finite difference mesh.

Algorithm 10×10×10 30×30×30 50×50×50 70×70×70

Alg. 1 359 (0.91s) 1022 (119s) 1228 (723s) 1383 (2040s)

Alg. 2a 332 (0.93s) 919 (107s) 1150 (650s) 1239 (1973s)

Alg. 2b 299 (0.89s) 812 (81s) 891 (541s) 1119 (1370s)

Table 2: Averaged number of iterations for Alg. 1 and

Alg. 2a/b for different spatial resolutions d1×d2×d3 and the

benchmark problem over the time interval [0,1]. Averaged

computation times are in brackets.
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Fig. 1: Convergence of Alg. 1 and the two variants of Alg. 2

for the first time step of the benchmark problem. The values

of Eε are rendered on the ordinate as a function of the L-

BFGS-iterations on the abscissa. Top left: Spatial resolution

d1 = d2 = d3 = 30. Top right: Resolution d1 = d2 = d3 = 40.

Bottom: Resolution d1 = d2 = d3 = 50. The exact solution

in all cases is Eε = 0.
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Algorithm 10×10×10 30×30×30 50×50×50 70×70×70

Alg. 2a 8.42 ·10−9 4.64 ·10−8 5.01 ·10−7 1.04 ·10−6

(ε0 = 10−7)

Alg. 2a 8.21 ·10−14 4.81 ·10−12 1.22 ·10−12 3.05 ·10−11

( ε0 = 10−9)

Table 3: Value of max
t∈[0,1]

∫
Ω

Λ(|q(x, t)|2 − 1)2 dx for differ-

ent spatial resolutions, two stop values (cf. Eqn. (29)), and

Alg. 2a.

Resolution Iterations Iterations Time Time
L-BFGS pc-L-BFGS L-BFGS pc-L-BFGS

10×10×10 22166995 41/13554468 383min 28s 234min 37s

20×20×20 15773252 133/162642 2656min 31s 24min 56s

30×30×30 62300391 269/229012 41131min 17s 128min57s

Table 4: The first time step of the bending problem for the

original (’L-BFGS’) and the preconditioned (’pc-L-BFGS’)

scheme in comparison for ε0 = 10−11. For the precondi-

tioned scheme, both predictor and corrector iterations are

listed. ’Time’ is the total computation time for the solution

of one time step.
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Fig. 2: The progression of Eε (ordinate) for the first 10000 L-

BFGS-iterations (abscissa) of the original L-BFGS method

(black) and the preconditioned L-BFGS method (blue) for

d1 = d2 = d3 = 10, ε0 = 10−11, and the first time step of the

bending problem. As can be seen, even the preconditioned

algorithm requires many iterations to overcome local min-

ima of the energy.

Appendix - List of symbols

A :B tensor product of A, B, below (6)

u ·v inner product of u , v ∈ R3

sym(σ) symmetric part of a tensor σ , (4)

skw(σ ) skew-symmetric part of σ , (4)

tr(σ) trace of tensor σ

σ t transpose of σ ; Rt =R−1 for R∈S O(3)

‖ · ‖ Frobenius matrix norm, (4)

| · | Euclidean vector norm in R4, (16)

Ω ⊂ R3 reference domain, undeformed solid

(x, t) space and time coordinates

ϕ deformation vector of the solid, (3)

F =Dϕ deformation tensor, (3)

Fe elasticity tensor, (3)

Fp plasticity tensor, (3)

Re rotation tensor, (1), (2), (3)

Ue (right) stretching tensor, (3)

Ke (right) curvature tensor, (22)

I identity tensor, (I)kl = (δ kl)kl , (10)

α Euler angle parameterization of Re, (1)

γ single-slip parameterization of Fp, (10)

q Quaternion parameterization of Re, (2)

qD Dirichlet boundary values of q, (8)

E mechanical energy, (13)

h > 0 discrete (fixed) time step, (13)

γ0 values of γ at old time t, (12)

κ0 values of κ at old time t, (12)

κ dislocation density, (12)

V (κ) dislocation energy, (6)

Wst stretching energy, (4)

Wc curvature energy, (5)

X back stress (dual variable to Fp), (9),

ξ hardening (dual variable to κ), (9)

fext external volume forces, (13)

Mext external volume couples, (13)

σY yield stress, (13)

Q∗ dissipated energy, (11)

m slip vector, (10)

n slip normal, (10)

ρ > 0 dislocation energy constant, (13)

g
D

Dirichlet boundary values of ϕ , (8)

ε > 0 regularization of | · |, Remark 1

Λ > 0 Lagrange parameter to |q|2 = 1, (13)

λ , µ Lamé parameters, (4)

µc Cosserat couple modulus, (4)
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Lc internal length scale, (5)

µ2 parameter µ scaled by L2
c , (5)

d1,d2,d3 spatial resolution, (34)

η1,η2,η3 points on the numerical mesh, (35)

NIJK discrete numerical weights, (34)

β (t) deformation parameter, (40), (41).
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