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In this work, we propose a systematic way of computing a low-rank globally adapted localized Tucker-tensor
basis for solving the Kohn-Sham density functional theory (DFT) problem. In every iteration of the self-consistent
field procedure of the Kohn-Sham DFT problem, we construct an additive separable approximation of the Kohn-
Sham Hamiltonian. The Tucker-tensor basis is chosen such as to span the tensor product of the one-dimensional
eigenspaces corresponding to each of the spatially separable Hamiltonians, and the localized Tucker-tensor basis
is constructed from localized representations of these one-dimensional eigenspaces. This Tucker-tensor basis
forms a complete basis, and is naturally adapted to the Kohn-Sham Hamiltonian. Further, the locality of this basis
in real-space allows us to exploit reduced-order scaling algorithms for the solution of the discrete Kohn-Sham
eigenvalue problem. In particular, we use Chebyshev filtering to compute the eigenspace of the Kohn-Sham
Hamiltonian, and evaluate nonorthogonal localized wave functions spanning the Chebyshev filtered space, all
represented in the Tucker-tensor basis. We thereby compute the electron-density and other quantities of interest,
using a Fermi-operator expansion of the Hamiltonian projected onto the subspace spanned by the nonorthogonal
localized wave functions. Numerical results on benchmark examples involving pseudopotential calculations
suggest an exponential convergence of the ground-state energy with the Tucker rank. Interestingly, the rank of
the Tucker-tensor basis required to obtain chemical accuracy is found to be only weakly dependent on the system
size, which results in close to linear-scaling complexity for Kohn-Sham DFT calculations for both insulating
and metallic systems. A comparative study has revealed significant computational efficiencies afforded by the
proposed Tucker-tensor approach in comparison to a plane-wave basis.
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I. INTRODUCTION27

Electronic structure calculations within the Kohn-Sham28

density functional theory (DFT) [1,2] have been very suc-29

cessful in providing significant insights into a wide range30

of materials properties over the past decade by enabling31

quantum-mechanically informed studies on ground-state ma-32

terials properties. The Kohn-Sham approach to DFT is based33

on the key result by Hohenberg and Kohn [1] that the34

ground-state properties of a materials system can be described35

by a functional of electron density, which to date remains36

unknown. However, Kohn and Sham [2] addressed this37

challenge in an approximate sense by reducing the many-body38

problem of interacting electrons to an equivalent problem of39

noninteracting electrons in an effective mean field governed by40

the electron density. This effective single-electron formulation41

encompasses an unknown exchange-correlation term that in-42

cludes the quantum-mechanical interaction between electrons,43

which is modeled in practice, and the widely used models44

have been successful in predicting a range of properties across45

various materials systems.46

However, the computational complexity of traditional47

approaches of solving the Kohn-Sham problem scales as48

O(M N2), where M denotes the number of basis functions and49

N specifies the system size (number of atoms or number of50

electrons). This enormous computational cost associated with51

Kohn-Sham DFT calculations, approaching cubic scaling as52

M ∝ N , has restricted the size and complexity of accessible53

materials systems. Thus, to enable accurate large-scale DFT54

calculations, it is desirable to develop computational methods 55

employing a systematically improvable and complete basis, 56

but which is also effective as that it can accurately capture the 57

electronic structure using a small number of basis functions 58

(small M). In addition, it is also desirable to develop computa- 59

tional methods that exhibit reduced-order scaling with system 60

size. To this end, this work develops an algorithm to construct 61

an efficient, yet complete, basis that is systematically adapted 62

to the Kohn-Sham Hamiltonian and combines this approach 63

with reduced-order scaling methods for the solution of the 64

Kohn-Sham problem to develop a computationally efficient 65

methodology for large-scale Kohn-Sham DFT calculations. 66

Among the complete basis sets employed in DFT calcula- 67

tions, the plane-wave basis [3–5] is the most widely used, and 68

is naturally suited for the computation of bulk-properties of 69

materials. Although the plane-wave basis provides variational 70

convergence in the ground-state energy with exponential 71

convergence rate, the computations are restricted to periodic 72

geometries with periodic boundary conditions. Furthermore, 73

the plane-wave basis functions are extended in real space, and 74

this limits the scalability of numerical implementations on 75

parallel computing architectures. The other widely employed 76

basis sets include the atomic-orbital-type basis functions [6–8], 77

which are reduced-order basis functions that provide good 78

accuracy with relatively few basis functions. However, these 79

basis sets do not constitute a complete basis and may not 80

offer systematic convergence for all materials systems. Also, 81

in some cases, parallel scalability across processors is limited 82

due to the nonlocality of these basis functions. Recent efforts 83
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have also focused on developing adaptive reduced-order basis84

functions [9,10], which offers a promising direction to develop85

computationally efficient large-scale DFT calculations.86

Over the past few decades, systematically improvable real-87

space techniques for DFT calculations have been an active area88

of research. Some notable developments include discretization89

techniques based on finite difference discretization [11,12],90

wavelet basis [13,14], and finite element basis [15–19].91

Among the real-space techniques, the finite element basis—92

a piecewise polynomial basis—has desirable features such93

as admitting general geometries and boundary conditions,94

locality of the basis functions that supports development of95

reduced-order scaling methods via localization, and good96

parallel scalability. However, the number of basis functions97

M required to achieve chemical accuracy is usually larger98

in comparison to plane-wave basis and atomic-orbital basis.99

Thus it is desirable to develop a basis that is systematically100

improvable and complete such as plane waves, wavelets, or101

finite elements, has locality in real space such as wavelets and102

finite elements, is efficient such as atomic-orbital type basis,103

and exhibits good parallel scalability.104

In addition to developing efficient basis functions, many105

efforts in the past decade have focused on developing algo-106

rithms for the solution of Kohn-Sham equations that have a107

reduced computational complexity. We refer to [20,21] for108

a comprehensive review of these methods. These methods109

usually exploit the locality [22] in representing the wave110

functions directly or indirectly, by either computing the111

single-electron density matrix (divide and conquer method112

[23–25], Fermi-operator expansion type techniques [26–30],113

density-matrix minimization [31,32], subspace projection type114

methods [33,34]), or representing the density matrix in terms115

of localized Wannier functions (Fermi-operator projection116

method [35,36], orbital minimization approach [37,38]).117

While these methods have been successful in achieving linear-118

scaling complexity for materials systems with a band gap,119

the computational complexity can deviate significantly from120

linear scaling for metallic systems with vanishing band gaps.121

The development of reduced-order scaling techniques which122

can handle both insulating and metallic systems in a unified123

framework is still an active area of research [26,27,29,30,34].124

In this work, we exploit low-rank tensor-structured ap-125

proximations [39,40] to develop a Tucker-tensor algorithm126

for solving the Kohn-Sham equations. This constitutes con-127

structing a complete, yet efficient localized Tucker-tensor basis128

that is adapted to the Kohn-Sham Hamiltonian, and using129

subspace-projected localization techniques for the solution of130

Kohn-Sham equations in the Tucker-tensor basis. This work131

has been inspired by recent studies on a posteriori numerical132

analysis of the computed electronic structure of materials133

systems [41], which revealed that tensor-structured approx-134

imations based on canonical and Tucker type representations135

[42–44] can provide low-rank approximations to the electronic136

structure of a wide range of materials systems. Further, a137

recent study [45] has shown that the Tucker rank required138

to approximate the computed electronic structure of materials139

is only weakly dependent on the system size, thus providing a140

useful direction to exploit the low-rank Tucker approximation141

for developing reduced-order scaling algorithms for DFT142

calculations.143

The key challenge in this work is to develop a systematic 144

procedure for computing the Tucker-tensor basis adapted to 145

the Kohn-Sham eigenvalue problem in order to efficiently 146

represent the a priori unknown Kohn-Sham wave functions. 147

To this end, for every self-consistent field (SCF) iteration of a 148

DFT calculation, we compute a spatially additive separable 149

approximation of the Kohn-Sham Hamiltonian and solve 150

for the 1D-eigenfunctions of the separable one-dimensional 151

Hamiltonians. Using a localization procedure [46], we con- 152

struct a one-dimensional nonorthogonal localized basis span- 153

ning the eigenspaces of the corresponding one-dimensional 154

Hamiltonians. We then construct the Tucker-tensor basis using 155

the tensor product of these one-dimensional localized basis 156

functions. The discrete Kohn-Sham eigenproblem is subse- 157

quently computed by projecting the continuous problem onto 158

the space spanned by this Tucker-tensor basis, where all the 159

operations are conducted using tensor-structured algorithms. 160

The eigenspace corresponding to the occupied states of the 161

discrete Kohn-Sham Hamiltonian is computed by Cheby- 162

shev filtering followed by the computation of nonorthogonal 163

localized wave functions (represented in the Tucker-tensor 164

basis) spanning the eigenspace. The relevant quantities such 165

as the density matrix, the electron-density, and the band 166

energy are computed via Fermi-operator expansion of the 167

subspace-projected Hamiltonian onto the space spanned by 168

the nonorthogonal localized wave functions. 169

The proposed Tucker-tensor approach constructs a lo- 170

calized tensor-structured basis adapted to the Kohn-Sham 171

Hamiltonian in every SCF iteration and consequently deviates 172

significantly from the usual fixed spatial basis sets currently 173

employed in DFT calculations. The complexity estimates 174

suggest that the proposed algorithm scales linearly with system 175

size if the discretized matrices in the localized Tucker-tensor 176

basis and the localized wave functions are sufficiently sparse 177

(realized for large-scale materials systems). Even in the case 178

where the sparsity is not realized, like relatively smaller 179

materials systems, reduced-order scaling with system size is 180

obtained if the Tucker-rank remains only weakly dependent 181

on the system size. 182

In order to assess the accuracy and performance of the 183

proposed Tucker-tensor algorithm, we conduct benchmark 184

pseudopotential calculations on both metallic and insulating 185

systems. In all our benchmark studies, we observe an ex- 186

ponential convergence in the ground-state energy with the 187

Tucker rank. Further, we find that the number of Tucker- 188

tensor basis functions required to obtain chemical accuracy 189

grows sublinearly with the system size, both for metallic and 190

insulating systems. Interestingly, the Tucker rank, and hence 191

the number of Tucker-tensor basis functions, was insensitive 192

to significant perturbations in the electronic structure—such 193

as those resulting from introducing random vacancies in a 194

nanocluster. The computational time for these benchmark 195

calculations suggests a close to linear-scaling complexity with 196

respect to the system size for both metallic and insulating 197

systems, which is closely related to the sublinear dependence 198

on the number of Tucker-tensor basis functions with the 199

system size. In the limit of very large system sizes, the 200

required number of Tucker-tensor basis functions will scale 201

linearly with system size. However, a sufficient increase in 202

the system size renders the matrices involved in the proposed 203
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algorithm sparse, owing to the locality in the Tucker-tensor204

basis and the wave functions, which in turn results in a linear-205

scaling computational complexity of the proposed approach.206

A comparative study of the proposed approach on modest-size207

benchmark calculations suggests that the number of Tucker-208

tensor basis functions required to achieve chemical accuracy209

is about five times lower than the number of plane-wave basis210

functions, and offers about a three to fourfold computational211

speedup compared to plane-wave discretizations.212

The remainder of this article is organized as follows. We213

begin by recalling some fundamentals of tensor-structured214

techniques in Sec. II, followed by the real-space formulation215

of the Kohn-Sham density functional theory in Sec. III.216

We then discuss the proposed Tucker-tensor algorithm for217

Kohn-Sham DFT in Sec. IV followed by the numerical results218

on benchmark problems in Sec. V. We conclude with an219

outlook on future developments in Sec. VI.220

II. LOW-RANK TENSOR APPROXIMATIONS221

Tensors, when represented efficiently by a small number of222

parameters, have significant advantages in terms of reducing223

the storage and computational costs in a variety of applications.224

For convenience, we recall here some fundamental concepts225

of the tensor-structured methods and refer to [39,42–44] for226

a comprehensive review. For convenience, we restrict our227

presentation here to tensors of order three.228

Let A be a real-valued tensor of order three,229

A = (
ai1i2i3

) ∈ V, (1)

where (i1,i2,i3) ∈ ×3
k=1Ik with nonempty finite index sets I1,230

I2, I3 ⊂ N, and V := ×3
k=1Vk with Vk := R|Ik |.231

The simplest decomposition of a given tensor is the232

canonical decomposition [44], given by a linear combination233

of rank-1 tensors234

A ≈ A(R) =
R∑

i=1

civ
(1)
i ⊗v

(2)
i ⊗v

(3)
i , (2)

where {v(k)
i }Ri=1 is a set of orthonormal vectors for k =235

1,2,3. The parameter R in the decomposition is called the236

canonical rank of the tensor approximation. The storage cost237

of the tensor A in the canonical representation is O(R n),238

where n := maxk=1,2,3 |Ik| denotes the univariate grid size.239

However, the computation of this decomposition is a NP-hard240

and ill-posed problem [47]. Fast and stable algorithms for241

reducing arbitrary full-size tensors to the canonical format242

with controlled accuracy are lacking.243

On the other hand, robust algorithms for the representation244

of the full-size tensors in the rank-structured Tucker-tensor245

format are available, and thus this is the preferred tensor-246

structured format in this work. The rank (r1,r2,r3)-Tucker247

representation (approximation) of A is given by248

A(r) =
r1∑

l1=1

r2∑
l2=1

r3∑
l3=1

βl1l2l3v
(1)
l1

⊗v
(2)
l2

⊗v
(3)
l3

. (3)

In Eq. (3), for each k ∈ {1,2,3}, {v(k)
lk

}1�lk�rk
constitutes an249

orthonormal basis of Tk := span1�lk�rk
v

(k)
lk

with dimTk = rk .250

The coefficients tensor β := (βl1l2l3 ) ∈ Rr1×r2×r3 is called the251

core tensor. As shown in Ref. [41], the Tucker approximation 252

error of the electronic structure of molecular systems decays 253

exponentially with increasing Tucker rank r := maxk=1,2,3 rk . 254

Further, the overall storage cost of A(r) is bounded by r3 + 255

3rn. Since usually r � n, this leads to an impressive data 256

compression [41,45]. Furthermore, A(r) can be computed from 257

A by a minimization procedure, 258

A(r) := argmin
A∈Tr

‖A − A‖2
F , (4)

where ‖A‖F =
√

tr(AT A) is the Frobenius norm. One method 259

for solving the minimization problem in Eq. (4) is the 260

alternating least squares (ALS) algorithm [44], and we refer 261

to [40,43] for other algorithms. 262

The Tucker-tensor approximation discussed above becomes 263

unattractive in higher dimensions due to the exponentially 264

growing memory requirements for storing the core tensor 265

when dealing with larger dimensions. This has motivated 266

alternative tensor structured formats like tensor trains (TT) 267

[48,49], wherein a d-dimensional tensor A = (ai1i2i3...id ) is 268

approximated as 269

A ≈
∑

α1,α2,··· ,αd−1,αd

G
(1)
i1α1

G
(2)
α1 i2 α2

. . . G
(d)
αd id

, (5)

where auxiliary indices αk vary from 1 to rk and rk are 270

called compression ranks or simply TT ranks. The basic 271

arithmetic and storage involved in the TT approach is linear 272

in dimension d and polynomial in r = maxk rk . We also note 273

that more-general tensor decomposition approaches like the 274

hierarchical tensor representation [50–52] and tree tensor 275

network states [53,54] have been proposed to reduce the 276

computational complexity and storage costs of the tensor- 277

structured representations. 278

In this work, as explained in Sec. IV, we focus on 279

developing a methodology to compute a Tucker-tensor basis 280

that effectively represents the single-electron wave functions 281

spanning the occupied eigenspace of the Kohn-Sham Hamil- 282

tonian. We restrict ourselves in this work to the Tucker-tensor 283

format since the single-electron wave functions are functions 284

in a three-dimensional space where the Tucker-tensor format 285

is efficient. Furthermore, the underlying representation of the 286

Tucker-tensor format provides a convenient way of computing 287

the Galerkin projection of the continuous Kohn-Sham problem 288

into the computed Tucker-tensor basis as discussed subse- 289

quently. 290

III. THE KOHN-SHAM DENSITY FUNCTIONAL THEORY 291

In Kohn-Sham density functional theory (DFT) [2,55], the 292

variational problem of evaluating the ground-state properties 293

of a given materials system consisting of Ne electrons and 294

Na atomic nuclei located at R = (Rj )1�j�Na is equivalent 295

to solving the nonlinear eigenvalue problem for N > Ne/2 296

smallest eigenvalues 297(− 1
2∇2 + Veff(�,R)

)
ψi = εiψi, i = 1,2, . . . ,N, (6)

where εi and ψi denote the eigenvalues and the corresponding 298

eigenfunctions (canonical single particle wave functions) of 299

the Hamiltonian, respectively. In the present work, for the 300

sake of simplicity, we discuss the formulation in a nonperiodic 301
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setting restricting ourselves to spin-independent Hamiltonians.302

However, the present discussion as well as the ideas proposed303

subsequently can easily be generalized to periodic or semiperi-304

odic materials systems and spin-dependent Hamiltonians.305

The electron density—a central quantity in DFT—at any306

spatial point x = (x1,x2,x3) in terms of the canonical wave307

functions is given by308

�(x) = 2
N∑

i=1

f (εi,μ)|ψi(x)|2, (7)

where f (ε,μ) ∈ [0,1] is the orbital occupancy function, and309

μ represents the Fermi energy which is computed from the310

constraint that the total number of electrons in the system is Ne.311

In ground-state DFT calculations, it is common to represent f312

by the Fermi distribution f (ε,μ) = 1/(1 + exp[(ε − μ)/σ ]),313

which tends to a Heaviside function as the parameter σ ↘ 0.314

In Eq. (6), the effective single-electron potential in the315

Hamiltonian is given by316

Veff(�,R) := δExc

δ�
+ δEH

δ�
+ Vext(R)

= Vxc(�) + VH(�) + Vext(R). (8)

In the above, Exc represents the exchange-correlation energy317

that accounts for quantum-mechanical interactions between318

electrons, and we adopt the widely used local density approxi-319

mation (LDA) [56,57]. The Hartree energy, EH, represents the320

classical electrostatic interaction energy between the electrons321

and is given by322

EH(�) := 1

2

∫
R3

∫
R3

�(x′)�(x)

|x − x′| dx′ dx = 1

2

∫
R3

VH(�)�(x) dx.

(9)
Finally, Vext(R) denotes the external electrostatic potential323

corresponding to the nuclear charges. In this work, we adopt324

the commonly used pseudopotential approach, where only325

the valence-electron wave functions are computed. The pseu-326

dopotential, which provides the effective nuclear electrostatic327

potential Vext(R) for the valence electrons, is commonly328

represented by the operator Vext = Vloc + Vnl, where Vloc329

is the local part and Vnl is its nonlocal part. Using the330

norm-conserving Troullier-Martins pseudopotentials [58] in331

the Kleinman-Bylander form [59], the action of these operators332

on a Kohn-Sham wave function in real space is given by333

Vloc(x,R)ψ(x) : =
Na∑

J=1

V J
loc(x − RJ )ψ(x),

Vnl(x,R)ψ(x) : =
Na∑

J=1

∑
lm

CJ
lmϕJ

lm(x − RJ )
V J
l (x − RJ ),

(10)

where334


V J
l (x − RJ ) := V J

l (x − RJ ) − V J
loc(x − RJ ),

CJ
lm : =

∫
ϕJ

lm(x − RJ )
V J
l (x − RJ )ψ(x) dx∫

ϕJ
lm(x − RJ )
V J

l (x − RJ )ϕJ
lm(x − RJ ) dx

.

In the above, V J
l (x − RJ ) denotes the pseudopotential com- 335

ponent of atom J corresponding to the azimuthal quantum 336

number l, V J
loc(x − RJ ) is the corresponding local potential, 337

and ϕJ
lm(x − RJ ) is the corresponding single-atom pseudo- 338

wave-function with azimuthal quantum number l and magnetic 339

quantum number m. 340

For given positions of nuclei, the system of equations 341

corresponding to the Kohn-Sham eigenvalue problem is 342

Hψi = εiψi,

2
N∑

i=1

f (εi,μ) = Ne, �(x) = 2
N∑

i=1

f (εi,μ)|ψi(x)|2, (11)

where 343

H := ( − 1
2∇2+Vxc(�)+VH(�)+Vloc(x,R)+Vnl(x,R)

)
.

(12)
As the HamiltonianH depends on �, which in turn is computed 344

from the eigenfunctions of H, the system of equations in 345

Eq. (11) is solved by a self-consistent field (SCF) iteration 346

in a suitable basis. Upon self-consistently, solving the Kohn- 347

Sham eigenvalue problem, the ground-state energy is given 348

by 349

Etot = 2
N∑

i=1

f (εi,μ)εi +
∫
R3

[Exc(�) − Vxc(�)�] dx

− 1

2

∫
R3

�VH(�) dx + 1

2

Na∑
I,J=1
I �=J

ZIZJ

|RI − RJ | .

Therein, the last term on the right denotes the nuclear-nuclear 350

repulsive energy EZZ with ZI denoting the valence charge of 351

the I th nucleus. 352

IV. TUCKER-TENSOR ALGORITHM FOR DFT 353

We now present a Tucker-tensor algorithm for the solution 354

of the Kohn-Sham equations that has reduced computational 355

complexity in comparison to conventional approaches. In 356

every cycle of the SCF iteration, the proposed algorithm 357

provides a prescription to compute a nonorthogonal locally 358

adapted Tucker-tensor basis using a separable approximation 359

of the Hamiltonian. The Kohn-Sham eigenvalue problem 360

is subsequently solved by projecting the problem onto the 361

span of this computed Tucker-tensor basis, and by com- 362

puting the eigenspace corresponding to the occupied states 363

using Chebyshev filtering techniques. Let �(n) denote the 364

input electron density to the nth SCF iteration and Hn ≡ 365

H(�(n)(x),R) be the corresponding Hamiltonian. The proposed 366

Tucker-tensor algorithm consists of the following key steps 367

with specific details discussed subsequently. (1) Construct 368

a separable approximation of the Hamiltonian by using one 369

of two proposed competing variational methods (outlined 370

below), 371

Hx + Hy + Hz ∼ Hn. (13)

(2) Compute rd one-dimensional eigenfunctions for Hx , 372

Hy , Hz represented on a finite element grid, and subsequently 373
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employ a localization procedure to evaluate nonorthogo-374

nal localized basis functions spanning the eigensubspaces375

in each spatial dimension. (3) Compute a nonorthogo-376

nal localized Tucker-tensor basis TL := (T L
ijk)1�i,j,k�rd

as377

the tensor-product of the one-dimensional localized basis378

functions of step 2. (4) Compute the projection Hn
h of Hn

379

onto TL. (5) Employ Chebyshev filtering to compute the380

approximate occupied eigensubspace of Hn
h corresponding381

to the lower end of the eigenspectrum comprising of oc-382

cupied states and a few unoccupied states above the Fermi383

energy. Subsequently, localize the Chebyshev filtered wave384

functions by utilizing a nonorthogonal localization procedure385

as described in Ref. [34]. (6) Project Hn
h onto the occupied386

eigensubspace of Hn
h represented by the localized Chebyshev387

filtered wave functions. Employ a Fermi-operator expansion of388

this subspace-projected Hamiltonian to compute the relevant389

quantities of interest such as the density matrix, the output390

electron-density and the ground-state energy. Then proceed391

with the SCF iteration.392

We now begin to discuss various details of the proposed393

algorithm. Let the domain be cuboidal, i.e., � = ×3
k=1 ωk with394

one-dimensional bounded real sets ωk , and enclose the com-395

pact support of the Kohn-Sham wave functions. We discretize396

ωk by using isoparametric 1D finite elements, and represent397

functions on ωk by using finite element basis functions—the398

piecewise polynomial functions constructed from the finite399

element discretization [60]. We denote by nk (for k = 1,2,3)400

the dimension of the finite element space discretizing ωk , or,401

in other words, the number of finite element basis functions in402

each spatial dimension k. In the present work, we use a higher-403

order finite element discretization with polynomial degree404

p > 2. We note that, while the ideas presented in this work are405

equally applicable to any basis, the choice of the finite element406

basis is motivated by the locality of the basis and its adaptive407

capability.408

Given the input electron density to the nth SCF iteration,409

�(n)(x), we begin by computing the local effective potential410

on �,411

V loc
eff (x) := Vxc(�(n)(x)) + VH(�(n)(x)) + Vloc(x). (14)

We note that the evaluation of VH [cf. Eq. (9)] involves the412

computation of a 3D convolution integral. To this end, for413

chosen rank r� ∈ N and x′ = (x ′
1,x

′
2,x

′
3), we first compute the414

rank-r� Tucker-tensor decomposition of the density �(n)(x)415

as416

�(n)(x′) ≈
r�∑

i,j,k

σ
(n)
ijk �

(n)
i (x ′

1)�(n)
j (x ′

2)�(n)
k (x ′

3). (15)

Next, we approximate the kernel |x − x′|−1 by a series417

of Gaussians (see Ref. [61], where also the values of418

αp, βp are tabulated), and obtain for a rank parameter419

T ∈ N,420

1

|x − x′| ≈
T∑

p=1

αpe−βp(x1−x ′
1)2

e−βp(x2−x ′
2)2

e−βp(x3−x ′
3)2

. (16)

Thus the computation of VH(�(n)) reduces to the computation 421

of a series of 1D convolution integrals, as 422

VH(�(n)(x)) =
∫

�

�(n)(x′)
|x − x′| dx′

≈
T∑

p=1

αp

r�∑
i,j,k

σ
(n)
ijk

[ ∫
ω1

�
(n)
i (x ′

1)e−βp(x1−x ′
1)2

dx ′
1

×
∫

ω2

�
(n)
j (x ′

2)e−βp(x2−x ′
2)2

dx ′
2

×
∫

ω3

�
(n)
k (x ′

3)e−βp(x3−x ′
3)2

dx ′
3

]
. (17)

Upon evaluating VH , we compute V loc
eff given by Eq. (14). 423

Further, to aid the evaluation of terms arising in subsequent 424

computations, we compute the rank-rv Tucker-tensor decom- 425

position of V loc
eff , denoted by V̂ loc

eff (x). For the same reason, 426

by evaluating the rank-rv Tucker-tensor decomposition of 427

the atom-centered pseudopotential and pseudo-wave-function 428

components, we compute the tensor-structured approximation 429

of the nonlocal part of the pseudopotential operator and denote 430

this by V̂nl(x,R). 431

A. Separable approximation of Hn
432

We now explain step 1 of the Tucker-tensor algorithm in 433

more detail and present two methods to compute the additive 434

separable approximation of Hn. One of the proposed methods 435

is based on a rank-1 approximation of the eigenfunction 436

corresponding to the lowest eigenvalue of the Kohn-Sham 437

Hamiltonian, while the second method involves an additive 438

separable approximation of the Kohn-Sham potential Veff. 439

While the first method is applicable to both local and 440

nonlocal pseudopotentials, the latter is restricted to local 441

pseudopotentials, only. 442

a. Method I. Rank-1 decomposition of wave functions. We 443

start with the ansatz for the eigenfunction, 444

ψ(x) :=
3∏

k=1

ψk(xk), (18)

and denote by X the function space of all one-time (weakly) 445

differentiable rank-1 functions in �. The problem of comput- 446

ing the smallest eigenvalue of the Kohn-Sham Hamiltonian 447

[Eq. (12)] in the function space X is equivalent to the 448

variational problem 449

min
ψ∈X

L(ψ), (19)

with the Lagrangian 450

L(ψ) : = 1

2

∫
�

⎡⎢⎣ 3∑
p=1

|∂xp
ψp(xp)|2

3∏
q=1
q �=p

ψ2
q (xq)

+ 2
(
V̂ loc

eff (x) + λ
) 3∏

k=1

ψ2
k (xk)

+ 2
3∏

k=1

ψk(xk)V̂nl(x,R)
3∏

k=1

ψk(xk)

]
dx.
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Here, λ is a Lagrange multiplier corresponding to the constraint451

3∏
k=1

∫
ωk

ψ2
k (xk) dxk = 1. (20)

Minimizers of (19) satisfy the Euler-Lagrange equations452

δL(ψ)
δψk

= 0 for k = 1,2,3. Hence the minimizers ψk are the453

solutions of the one-dimensional problems454 [
−1

2

d2

dx2
k

+ V loc
k (xk)

mk

+ V nl
k (xk)

mk

]
ψk(xk)

= −
(

λ + ak

2mk

)
ψk(xk), (21)

where we introduced the one-dimensional quantities455

V loc
k (xk) : =

∫
ω̂k

V̂ loc
eff (x)

3∏
j=1
j �=k

ψ2
j (xj ) dx̂k,

mk : =
∫

ω̂k

3∏
j=1
j �=k

ψ2
j (xj ) dx̂k,

ak : =
∫

ω̂k

3∑
p,q=1

p �=q; p,q �=k

∣∣∂xp
ψp(xp)

∣∣2
ψq(xq) dx̂k,

V nl
k (xk)ψk(xk) : =

Na∑
J=1

∑
lm

γ J
lm νJ

lm F
J,k
lm (xk) with

F
J,k
lm (xk) : =

∫
ω̂k

ϕ̂J
lm(x − RJ )̂
V J

l (x − RJ )

×
3∏

j=1
j �=k

ψj (xj ) dx̂k,

γ J
lm : =

∫
ωk

F
J,k
lm (xk)ψk(xk) dxk,

(
νJ

lm

)−1
: =

∫
�

ϕ̂J
lm(x − RJ )̂
V J

l (x − RJ )ϕ̂J
lm

× (x − RJ ) dx,

with notations456

dx̂1 := dx2 dx3, dx̂2 := dx1 dx3,

dx̂3 := dx1 dx2, ω̂k := X 3
j=1
j �=k

ωj.

In the above expressions, ̂
V J
l and ϕ̂J

lm denote the rank-rv457

Tucker-tensor decomposition of 
V J
l and ϕJ

lm, respectively.458

We note that the integrals involved in the above expressions459

reduce to a product of integrals in one dimension owing to460

the tensor-structured representation of all field quantities, thus461

rendering the computational complexity of evaluating these462

terms very low.463

The minimizing functions ψk(xk) obtained from the self-464

consistent solution of (21) are fixed to construct the one-465

dimensional potentials V loc
k and V nl

k . The eigenfunctions of the466

resulting one-dimensional Hamiltonians in Eq. (21) are then467

used to construct the Tucker-tensor basis after localization, see 468

Sec. IV B below. 469

b. Method II. Weighted residual minimization. In this 470

method, which is restricted to local pseudopotentials, we 471

construct an additive separable approximation of V loc
eff by 472

solving the weighted residual minimization problem 473

min
V loc

k ∈L1(ωk) 1�k�3

∫
�

w(x)

[
V̂ loc

eff (x) −
3∑

l=1

V loc
l (xl)

]2

dx, (22)

where w(x) ∈ L2(�) represents a nonnegative weight func- 474

tion. We then construct the one-dimensional Hamiltonians 475

for k = 1,2,3 as Hk := − 1
2

d2

dx2
k

+ V loc
k (xk) resulting in the 476

one-dimensional eigenvalue problems 477

Hkξk,i = εk,iξk,i . (23)

The weight is chosen as w(x) :=|�(n)(x)|α with α :=1 to 478

penalize the error in the separable approximation of V̂ loc
eff (x) in 479

the vicinity of atoms where the electron density is higher in 480

comparison to the regions far away from the atoms. 481

B. Construction of a 3D Tucker-tensor basis TL
482

The methods outlined in Sec. IV A provide a systematic 483

approach to constructing an additive separable approxima- 484

tion to the Kohn-Sham Hamiltonian. Solving the eigenvalue 485

problems [Eq. (21) for method I or Eq. (23) for method 486

II], we compute the eigenfunctions associated with the one- 487

dimensional Hamiltonians in each spatial dimension. We re- 488

mark that the one-dimensional eigenfunctions thus computed 489

form a complete basis for admissible functions on each ωk . 490

In the discrete numerical setting, we compute rd1 , rd2 , rd3 491

eigenfunctions corresponding to the lowest eigenvalues of the 492

one-dimensional Hamiltonians in x1, x2, x3 spatial directions, 493

respectively. For the sake of notational simplicity in presenting 494

our ideas, we assume rd1 = rd2 = rd3 =: rd . We denote by 495

(ξk,i)1�i�rd
the eigenfunctions in the direction k spanning the 496

spaceVrdk for k = 1,2,3. The three-dimensional Tucker-tensor 497

basis for the Kohn-Sham DFT problem can thus be constructed 498

as a tensor product given by 499

T := {Tabc}1�a,b,c�rd
:= {ξ1,aξ2,bξ3,c}1�a,b,c�rd

. (24)

However, the eigenfunctions (ξk,i)1�i�rd
have a global support 500

on ωk , thereby rendering the support of the corresponding 501

three-dimensional Tucker-tensor basis global on �. The global 502

nature of these functions results in dense matrices for the 503

Kohn-Sham DFT problem, which is not desirable. To this end, 504

we construct a localized representation of the Tucker-tensor 505

basis {Tabc}1�a,b,c�rd
by localizing the 1D eigenfunctions 506

(ξk,i)1�i�rd
around the atomic locations in each of the spatial 507

directions xk for k = 1,2,3. Various localization procedures 508

employing nonorthogonal localized functions [37,62–64] have 509

been proposed in the context of electronic structure calcula- 510

tions, which have better localizing properties than orthogonal 511

functions. In the present work, we adopt the weighted L2
512

localization technique proposed in E et al. [46] to construct 513

the localized 1D basis-functions spanning the eigenspace 514

Vrdk for k = 1,2,3. However, we note that other localization 515

procedures such as those proposed in Ref. [65] can also 516
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be used. We obtain the localized basis by solving for each517

k = 1,2,3 the minimization problem518

argmin
φ∈Vrdk , ‖φ‖=1

∫
ωk

w(xk)|φ(xk)|2 dxk. (25)

Here, w(xk) � 0 is chosen to be a smooth weighting function519

of the form |xk − bIk
|2, and bIk

denotes a localization center.520

Such a choice of w(xk) minimizes the spread of the basis-521

functions from a localization center. In the present work, the522

localization center bIk
is chosen to be the kth direction atom-523

coordinate RIk
corresponding to the I th atom for k = 1,2,3.524

Let rIk
denote the number of localized functions we desire525

to compute at every atom-coordinate RIk
. Representing the526

localized function as527

φ(xk) =
rdk∑
i=1

αiξk,i(xk) ∈ Vrdk , (26)

the minimization problem in Eq. (25) is equivalent to solving528

the generalized eigenvalue problem in each spatial direction k529

for the smallest rIk
eigenvalues,530

GIkα = λα, (27)

where for i,j = 1, . . . ,rdk
531

G
Ik

ij :=
∫

ωk

∣∣xk − RIk

∣∣2
ξk,i(xk) ξk,j (xk) dxk . (28)

In the present work, we choose rIk
corresponding to the I th

532

atom such that
∑

I rIk
= rdk

. We note that we can rewrite GIk533

in Eq. (28) in matrix notation as534

GIk = LT
b KIk

b Lb, (29)

where (·)T is the matrix transpose, the columns of the matrix535

Lb correspond to the finite element nodal values of the536

eigenfunctions {ξk,1(xk),ξk,2(xk), . . . ,ξk,rdk
(xk)}, and537 (

KIk

b

)
ij

:=
∫

ωk

∣∣xk − RIk

∣∣2
Ni(xk)Nj (xk) dxk, (30)

with Ni denoting the finite element basis function correspond-538

ing to node i.539

Upon solving Eq. (27) for each Ik , we represent the540

computed localized one-dimensional functions spanning Vrdk541

by (φk,i)1�i�rd
. Thus the three-dimensional localized Tucker-542

tensor basis functions for solving the Kohn-Sham DFT543

problem are constructed to be544

TL := {
T L

abc

}
1�a,b,c�rd

:= {φ1,aφ2,bφ3,c}1�a,b,c�rd
. (31)

In practice, we use a truncation tolerance to achieve a compact545

support for (φk,i)1�i�rd
, and consequently for {T L

abc}1�a,b,c�rd
.546

C. Discrete Kohn-Sham eigenvalue problem547

The projection of Hn onto ×3
k=1 V

rdk , denoted by Hn
h,548

expressed in the localized Tucker-tensor basis TL is given by549 (
Hn

h

)
(ijk),(abc) :=

∑
p,q,r

〈
T L

ijk

∣∣T L
pqr

〉−1〈
T L

pqr

∣∣Hn
∣∣T L

abc

〉
. (32)

We note that it is convenient to approximate the Kohn-Sham550

potential Veff [Eq. (8)] using a Tucker-tensor decomposition,551

which reduces all integrals involved in Eq. (32) to products 552

of one-dimensional integrals, and is used in the present work. 553

The discrete Kohn-Sham eigenvalue problem in the localized 554

Tucker-tensor basis is given by the nonHermitian standard 555

eigenvalue problem 556

H̃� i = εh
i � i , (33)

with H̃ := M−1H, where H denotes the discrete Hamiltonian 557

matrix with matrix elements HIJ and M denotes the overlap 558

matrix arising because of the nonorthogonality of the localized 559

Tucker-tensor basis functions with matrix elements MIJ for 560

subscripts I,J ∈ ×3
k=1{1, . . . ,rdk

}. By εh
i we denote the ith 561

eigenvalue corresponding to the discrete eigenvector � i in 562

Eq. (33) expressed in the localized Tucker-tensor basis TL. 563

The matrix elements MIJ and HIJ are given by 564

MIJ : =
∫

�

T L
I (x) T L

J (x) dx, (34)

HIJ : = 1

2

∫
�

∇T L
I (x)·∇T L

J (x)dx +
∫

�

T L
I (x)V̂ loc

eff (x)T L
J (x)dx

+
∫

�

T L
I (x)V̂nl(x,R)T L

J (x) dx, (35)

with V̂ loc
eff and V̂nl denoting the rank-rv Tucker-tensor decompo- 565

sitions of V loc
eff and Vnl, respectively. As a consequence of apply- 566

ing the Tucker-tensor decompositions V̂ loc
eff and V̂nl, the right- 567

hand sides of (34) and (35) reduce to a tensor-structured format 568

involving one-dimensional integrals. Thus the computational 569

complexity associated with the computation of the discrete 570

Hamiltonian and overlap matrix in Eqs. (34) and (35) is evalu- 571

ated to be O(r2
d n) + O(r6

d ) + O(r2
d r3

v n) + O(r6
d r3

v ), with n := 572

maxk nk relating to the number of nodes in the one-dimensional 573

finite element mesh (univariate grid size). However, as we 574

use a localized Tucker-tensor basis, by exploiting the locality 575

in the basis functions, the computational complexity of 576

evaluating the matrix elements reduces to O(c1/3n) + O(c) + 577

O(c1/3r3
v n) + O(c r3

v ), where c denotes the maximum number 578

of nonzero entries in the matrices H and M. Finally, the inverse 579

overlap matrix M−1 involved in the computation of H̃ is eval- 580

uated using a scaled third-order Newton-Schulz iteration [66]. 581

D. Computation of the DFT ground-state energy 582

a. Chebyshev filtered subspace iteration. An approximation 583

to the eigenspace of the discrete Kohn-Sham eigenproblem 584

in Eq. (33), spanned by N > Ne/2 lowest eigenfunctions, is 585

computed by using a Chebyshev-filtered subspace iteration 586

(ChFSI) technique [67]. We refer to Refs. [19,34] for the details 587

of its implementation in the context of finite element dis- 588

cretization. The ChFSI technique exploits the rapid growth of 589

Chebyshev polynomials in (−∞, −1) to magnify the relevant 590

eigenspectrum, and thereby providing an efficient approach 591

for the solution of the Kohn-Sham eigenvalue problem. 592

In each iteration of the SCF procedure, the action of a 593

Chebyshev filter on a given subspace is accomplished by 594

the recursive construction of the Chebyshev polynomial of 595

the discrete Hamiltonian together with its action on the 596

subspace. This involves matrix-vector multiplications between 597

the discretized Hamiltonian H̃ and the vectors obtained during 598
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the course of the recursive iteration. We note that, if the599

discretized Hamiltonian is sufficiently sparse and the vectors600

obtained during the process of recursive iteration of the601

Chebyshev filtering procedure are sparse, the computational602

complexity of the relevant matrix-vector multiplications scales603

as O(N ).604

b. Localization and truncation. Developing a localized605

representation of the wave functions spanning the occupied606

eigenspace is one of the key ideas that has been exploited607

in developing reduced-order scaling algorithms [33,34], and608

is also employed here. We use the algorithm developed in609

Ref. [34] to construct a nonorthogonal localized basis of the610

subspace spanned by Chebyshev filtered wave functions. We611

recall the main ideas and present them in the context of612

the Tucker-tensor basis for the sake of completeness. The613

localized basis of the subspace spanned by the Chebyshev614

filtered wave functions, henceforth referred to as the localized615

Chebyshev filtered basis, is obtained by solving the generalized616

eigenvalue problem for the nP smallest eigenvalues for every617

atom P ,618

WP α = λSα, (36)

where for l,m = 1, . . . ,N619

WP
lm : =

∫
�

|x − RP |2 ψ
f

l (x) ψf
m(x) dx, (37a)

Slm : =
∫

�

ψ
f

l (x) ψf
m(x) dx, (37b)

and nP denotes the number of localized functions we desire to620

compute at every atom centered at RP = (RPx1 ,RPx2 ,RPx3 ).621

The number nP is chosen to be equal to the number of622

occupied single atom orbitals corresponding to the P th623

atom; α is a vector containing the coefficients corresponding624

to the linear combination of Chebyshev filtered functions625

{ψf

1 (x),ψf

2 (x), . . . ,ψf

N (x)}. The matrix WP can be recast in626

matrix notation as627

WP = LT KP L, (38)

where the columns of the matrix L correspond to the coeffi-628

cients of the Chebyshev filtered wave functions expressed in629

Tucker-tensor basis, and with630

KP
IJ :=

∫
�

|x − RP |2 T L
I (x)T L

J (x) dx. (39)

Let K0 denote the matrix in Eq. (39) for a reference atom631

located at R0. We note that the matrix KP for any P can be632

represented in terms of K0 as633

KP = K0 + |R0 − RP |2M + 2
3∑

k=1

(
R0xk

− RPxk

)
Bxk , (40)

where634

K0 := (
K0

1,O2,O3
) + (

O1,K0
2,O3

) + (
O1,O2,K0

3

)
,

M := (O1,O2,O3) , Bx1 := (B1,O2,O3),

Bx2 := (O1,B2,O3) , Bx3 := (O1,O2,B3),

with the notation (X,Y,Z) := X ⊗ Y ⊗ Z,

and [with φk,i as in Eq. (31)] 635(
K0

k

)
ij

:=
∫

ωk

(
xk − R0xk

)2
φk,i(xk)φk,j (xk) dxk,

(Ok)ij :=
∫

ωk

φk,i(xk)φk,j (xk) dxk, (41)

(Bk)ij :=
∫

ωk

(
xk − R0xk

)
φk,i(xk)φk,j (xk) dxk

for k = 1,2,3. Thus WP , for any atom P , can be evaluated as 636

a linear combination of five matrices independent of the atom 637

P , where the integrals involved in each of the matrices can 638

be evaluated as the product of one-dimensional integrals. We 639

note that the matrices K0
k , Ok , and Bk are sparse owing to the 640

locality of the Tucker-tensor basis TL, thereby rendering KP
641

sparse. Further, we truncate the wave functions involved in 642

the computation of L using a truncation tolerance, rendering 643

L sparse. Thus the computational complexity involved in the 644

construction of WP for all atoms P = 1, . . . ,Na scales as 645

O(N ). Using the eigenvectors α from the solution of the 646

eigenvalue problem in Eq. (36) for each atom P , the linear 647

combination of the Chebyshev filtered vectors is computed to 648

construct the nonorthogonal localized wave functions, which 649

span the Chebyshev filtered space. We refer to these localized 650

wave functions which span the Chebyshev filtered subspace as 651

the localized Chebyshev filtered wave functions, and denote 652

them in matrix form by �L. In practice, we achieve compact 653

support for these localized wave functions by introducing a 654

truncation tolerance. 655

c. Computation of the electron-density. To compute the 656

electron-density in a given self-consistent field iteration, we 657

first evaluate the projection of the Hamiltonian onto the space 658

spanned by the Chebyshev filtered wave functions represented 659

in the basis of the localized Chebyshev filtered functions, 660

which is given by Hφ = S−1�T
LH̃�L with S = �T

LM�L [34]. 661

Furthermore, S−1 can be computed in O(N ) complexity if S 662

and S−1 are exponentially localized [68]. If the discretized 663

Hamiltonian H̃ and the matrix �L are sparse with a bandwidth 664

independent of N , Hφ can be computed in O(N ) complexity. 665

Following [34], the electron-density is given by (cf. Eq. (60) 666

in Ref. [34]) 667

�(x) = 2 T T (x) M−1/2 �L f (Hφ) S−1 �T
LM−1/2T (x), (42)

where TT (x) = [T1(x), T2(x), T3(x), . . . , Tr3
d
(x)] and 668

f (Hφ) = 1

1 + exp
(Hφ−μ

σ

) , (43)

with μ being the chemical potential, σ = kBT , and kB the 669

Boltzmann constant. A Chebyshev polynomial expansion is 670

used to approximate f (Hφ) in Eq. (43), and if Hφ is sufficiently 671

sparse, f (Hφ) can be computed in O(N ) complexity [27]. 672

Furthermore, the computation of the Chebyshev polynomial 673

expansion requires the evaluation of the Fermi energy μ, which 674

is achieved by using the constraint 675

2 tr(f (Hφ)) = Ne. (44)

Here, Ne is the number of electrons in the given system. The 676

Fermi energy can be efficiently computed with the methods 677

described in Ref. [27], which scale as O(N ). Finally, the band 678
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energy required in computing the total energy of the system is679

evaluated by680

Eband = 2
N∑

i=1

f (εi,μ)εi = 2 tr(f (Hφ)Hφ). (45)

V. NUMERICAL SIMULATIONS681

In this section, we investigate the accuracy, performance,682

and scaling of the proposed Tucker-tensor algorithm for the683

solution of the Kohn-Sham equations. As benchmark examples684

we conduct pseudopotential calculations on nonperiodic three-685

dimensional materials systems representative of both metallic686

and insulating systems. The benchmark metallic systems con-687

sidered include aluminum nanoclusters of various sizes: single688

aluminum atom, aluminum dimer, and nanoclusters containing689

1 × 1 × 1 (14 atoms), 2 × 2 × 2 (63 atoms), 3 × 3 × 3 (172690

atoms), 4 × 4 × 4 (365 atoms), and 5 × 5 × 5 (666 atoms)691

face-centered-cubic (fcc) unit cells. The benchmark insulating692

systems include methane molecule and alkane chains C8H18,693

C16H34, and C33H68. The x, y, and z axes for the Tucker tensor694

calculations are chosen as the eigendirections of the moment695

of inertia tensor of the atomic system computed using the696

atomic locations and atomic masses of the various elements697

in the materials system. This provides a systematic approach698

of orienting the axis to align with the atomistic system and699

improve the efficiency of the Tucker tensor approach. In all our700

simulations, we choose the ranks r�, rv , and the number T of701

terms in the expansion in Eq. (17), such that the approximation702

errors are higher-order compared to the discretization errors703

of the finite-dimensional Tucker-tensor basis in Eq. (24). In704

particular, we choose the ranks705

r� = rv := 45, T := 35,

and the values of αn and βn are taken from Ref. [61]. Norm-706

conserving Troullier-Martins pseudopotentials [58] have been707

employed in the case of aluminum nanoclusters and alkane708

chains for investigating the performance of method I in the709

proposed Tucker-tensor algorithm, while bulk local pseudopo-710

tentials [70] are employed for conducting a comparative study711

between methods I and II. We use the n-stage Anderson mixing712

scheme [69] on the electron density for the self-consistent713

field iteration of the Kohn-Sham problem, and employed a714

stopping tolerance of 10−7 in the square of the L2 norm of715

electron density difference between successive iterations. The716

Chebyshev filtered subspace iteration is used with a Chebyshev717

polynomial degree of 25 for the computation of the eigenspace718

associated with the occupied states. In our current Python719

implementation, all the matrices expressed in the Tucker-720

tensor basis are parallelized using MPI, and are executed on721

a parallel computing cluster with the following specifications:722

dual-socket eight-core Intel Core Sandybridge CPU nodes with723

16 processors (cores) per node, 64 GB memory per node, and724

40 Gbps Infiniband networking between all nodes for fast725

MPI communications. However, the ALS algorithm [Eq. (4)]726

employed in computing the Tucker-tensor decomposition of727

the three-dimensional fields, is not parallelized, thus requiring728

the various fields (�, VH, Veff) on the tensor-structured grid to729

be stored locally on every compute node. This has limited the730

size of the materials systems considered in the present study.731
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FIG. 1. Convergence of the ground-state energy with respect to
the Tucker rank using local pseudopotential. Case study: aluminum
atom.

The computational complexity of the proposed subspace 732

projection algorithm relies on the locality of the Tucker-tensor 733

basis, the locality of the localized Chebyshev filtered wave 734

functions spanning the occupied space, and the dependence 735

of the rank rd on the system size. The truncation tolerances 736

employed in the various stages of the algorithm determine the 737

sparsity of the matrices in our formulation (H̃,Hφ,�L,S,WP ). 738

In the present study, we use dense data structures for all the 739

matrices involved, since the truncation tolerances employed in 740

our simulations resulted in matrices with fraction of nonzero 741

entries greater than 2% for the materials systems studied. 742

The overhead cost of using a sparse data-structure at these 743

density fractions results in more computational inefficiencies 744

than treating the matrices as dense matrices. 745
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FIG. 2. Convergence of the ground-state energy with respect to
the Tucker rank using local pseudopotential. Case study: aluminum
dimer.
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FIG. 3. Convergence of the ground-state energy with respect to
the Tucker rank using local pseudopotential. Case study: Aluminum
1 × 1 × 1 nanocluster

In the present work, we employ the recently developed746

real-space approach for Kohn-Sham DFT calculations using a747

higher-order finite element basis [19,34] to provide reference748

energies to assess the approximation errors in the ground-state749

energies obtained with the proposed Tucker-tensor approach.750

These reference energies are converged up to 0.1 meV in the751

ground-state energy per atom with respect to discretization and752

other numerical parameters.753

A. Metallic systems754

We first conduct a comparative study between the two755

methods of constructing the separable Hamiltonian which756

were proposed in Sec. IV A. To this end, we employ bulk757

local pseudopotentials [70] to conduct simulations on three758
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FIG. 4. Convergence of the ground-state energy with respect to
the Tucker rank for nonlocal pseudopotential using method I. Case
study: aluminum atom and dimer.
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FIG. 5. Convergence of the ground-state energy with respect to
the Tucker rank for nonlocal pseudopotential using method I. Case
study: aluminum nanoclusters.

benchmark examples consisting of a single aluminum atom, 759

aluminum dimer, and an aluminum nanocluster containing 760

1 × 1 × 1 (14 atoms) fcc unit cell with a lattice constant of 761

7.45 a.u. For each of these benchmark systems, the relative 762

error in ground-state energy is computed as a function of the 763

Tucker rank rd , and is plotted in Figs. 1–3. The results show that 764

both methods of computing the separable Hamiltonian provide 765

similar accuracies in the ground-state energies. Further, there 766

is an exponential convergence in the ground-state energy 767

for increasing Tucker ranks. We also note that the Tucker 768

rank required to achieve chemical accuracy (∼5 meV in the 769

ground-state energy per atom) is weakly dependent on the 770

system size: ∼25 for single atom, ∼30 for dimer, and ∼32 for 771

1 × 1 × 1 aluminum nanocluster. 772

We next employ method I for computing the separa- 773

ble Hamiltonian while using the norm-conserving Troullier- 774

Martins pseudopotentials [58] in the Kleinman-Bylander form 775

[59]. The convergence of the ground-state energy with the 776

Tucker rank is examined for the benchmark systems compris- 777

ing of single aluminum atom, aluminum dimer, and aluminum 778

nanoclusters containing 1 × 1 × 1 (14 atoms), 2 × 2 × 2 (63 779

atoms), and 3 × 3 × 3 (172 atoms) fcc unit cells with a 780

lattice constant of 7.45 a.u. Figures 4 and 5 show these 781

results which indicate an exponential rate of convergence 782

TABLE I. Ground-state energies per atom (eV) for various sizes
of aluminum nanoclusters computed with the proposed algorithm.

Al cluster Tucker rank Energy Ref. energy

1 × 1 × 1 45 −55.80965 −55.81430
2 × 2 × 2 49 −56.45924 −56.46504
3 × 3 × 3 53 −56.69260 −56.69669
4 × 4 × 4 57 −56.80104 −56.80561
4 × 4 × 4
with 5 vacancies 57 −56.76531 −56.76964
5 × 5 × 5 60 −56.87367 −56.87822
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FIG. 6. Computational CPU-time per SCF iteration for 1 × 1 × 1
to 5 × 5 × 5 fcc Al nanoclusters.

of the ground state energy with increasing Tucker rank.783

Furthermore, the number of basis functions, r3
d , required to784

obtain chemical accuracy in the ground-state energy, for the785

case of nonlocal pseudopotentials, grows sublinearly with786

system size asO(N0.22) for the range of systems studied—with787

Tucker rank rd being ∼33 for single atom, ∼41 for dimer,788

and around 45, 49, and 53 for 1 × 1 × 1, 2 × 2 × 2, and789

3 × 3 × 3 aluminum nanoclusters, respectively. Moreover, we790

obtained ground-state energies within chemical accuracy for791

4 × 4 × 4 and 5 × 5 × 5 nanoclusters using the Tucker-tensor792

basis with Tucker ranks of 57 and 60, respectively. We also793

introduced 5 random vacancies in the 4 × 4 × 4 nanocluster794

and found that the ground-state energy within chemical795

accuracy is obtained with a Tucker basis of rank 57 even796

for this system. The ground-state energies computed with the797

proposed Tucker-tensor algorithm are tabulated in Table I, and798

are within chemical accuracy of the reference energies. This799

demonstrates the effectiveness of the computed Tucker-tensor800

basis in accurately representing the electronic structure of801

materials systems with varying sizes and complexity.802

The computational CPU times per SCF iteration for each803

of these systems is plotted against the number of electrons804

in Fig. 6. All computational times reported in this study805

denote CPU times in hours (CPU time = number of cores806

× wall-clock time in hours). The scaling with the system807

TABLE II. Comparison of the proposed Tucker-tensor approach
with plane-wave basis for a 3 × 3 × 3 FCC Al cluster. Reference
ground-state energy for this system is −56.69669 eV per atom.

Type of Number of Absolute error in
basis basis energy per Time
set functions atom (meV) (CPU hrs)

Plane-waves basis
(cutoff energy 20 Ha;
cell size 60 a.u.) 461,165 3.8 910

Tucker basis 148,877 4.1 360

TABLE III. Comparison of the proposed Tucker-tensor approach
with plane-wave basis for a 5 × 5 × 5 FCC Al cluster. Reference
ground-state energy for this system is −56.87822 eV per atom.

Number Absolute
Type of of basis error in energy Time
basis set functions per atom (meV) (CPU hrs)

Plane-waves basis
(cutoff energy 20 Ha;
cell size 80 a.u.) 1,093,421 4.3 8640

Tucker basis 216,000 4.6 2364

size for the aluminum clusters is found to be O(N1.2). It is 808

remarkable that we obtain close to linear-scaling complexity 809

even for metallic systems with the proposed Tucker-tensor 810

algorithm for the range of systems studied. Albeit using 811

dense data structures in our computations, we obtain close 812

to linear-scaling complexity due to the sublinear dependence 813

of the number of Tucker-tensor basis functions on the system 814

size. We expect that in the limit of very large system sizes, the 815

number of Tucker-tensor basis functions will grow linearly 816

with the system size. However, the increase in system size 817

renders the matrices involved in the proposed algorithm sparse, 818

owing to the locality in the Tucker-tensor basis and the 819

localized Chebyshev filtered wave functions. We note that the 820

complexity estimates for the proposed Tucker-tensor algorithm 821

(cf. Sec. IV) suggest linear-scaling complexity with system 822

size for the case of sparse matrices. Thus we expect the close 823

to linear-scaling computational complexity to also hold in the 824

limit of large system sizes. 825

Tables II and III show the comparison of computational time 826

and number of basis functions for the proposed algorithm using 827

Tucker-tensor basis and plane-wave basis (ABINIT software 828

[71]) for the computation of ground-state energy of 3 × 3 × 3 829

and 5 × 5 × 5 aluminum nanoclusters to within discretization 830

error of less than 5 meV. The parameters used in the Tucker 831

tensor calculations (domain size, SCF mixing scheme and 832

stopping tolerances) have also been used in the plane-wave 833

calculations for a consistent comparison. These results show 834

that the proposed Tucker-tensor approach requires a 3–5 835

times lower number of Tucker-tensor basis functions in 836

comparison to the number of plane-wave basis functions. 837

FIG. 7. Electron-density contours on the midplane of 4 × 4 × 4
fcc nanoclusters.
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FIG. 8. Convergence of the ground-state energy with respect to
the Tucker rank (rdx) for the insulating benchmark systems.

The computational times for the proposed methodology and838

the current nonoptimized implementation are also lower than839

the plane-wave implementation in ABINIT by a factor of 2.5840

in the case of 3 × 3 × 3 aluminum nanocluster and by a841

factor of 3.7 in the case of 5 × 5 × 5 aluminum nanocluster.842

Further optimization of our in-house code may lead to more843

significant speedups than the factors reported here, and may844

provide significant savings in the computational times for845

large-scale DFT calculations. Figure 7 shows the electron-846

density contours on the mid-plane of a 4 × 4 × 4 nanocluster847

computed with the proposed Tucker-tensor approach.848

B. Insulating systems849

We consider three-dimensional alkane chains as our bench-850

mark systems, including CH4 (methane), C8H18, C16H34,851

and C33H68. We use norm-conserving Troullier-Martins pseu-852

dopotentials [58], and method I for computing the separable853

approximation of the Hamiltonian. We orient the alkane chains854

along the x direction and use C-C and C-H bond lengths to855

be 2.91018 and 2.0598 a.u. with the H-C-H and C-C-C bond856

angles taken to be 109.470. Figure 8 shows the convergence857

of the ground-state energy with increasing Tucker rank rdx .858

For these simulations, we choose rdy = rdz = 46 for methane859

and rdy = rdz = 55 for C8H18, C16H34 and C33H68. In the860

case of alkane chains, the results indicate that the Tucker861

rank required to achieve chemical accuracy in the ground-state862

TABLE IV. Ground-state energies per atom (eV) for the various
insulating systems computed using the proposed algorithm.

Cluster Tucker rank(rdx) Energy Ref. energy

CH4 46 −43.73506 −43.73892
C8 H18 55 −58.77419 −58.77903
C16 H34 68 −60.49686 −60.50081
C33 H68 85 −61.43695 −61.44174
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FIG. 9. Computational CPU time per SCF iteration for the
insulating benchmark systems.

energy is—rdx ∼ 46 for CH4, rdx ∼ 55 for C8H18, rdx ∼ 68 863

for C16H34, and rdx ∼ 85 for C33H68. Furthermore, the number 864

of basis functions (rdxrdyrdz) grows sublinearly with the 865

system size as O(N0.3) for the range of systems studied. 866

The computed ground-state energies with their Tucker ranks 867

are tabulated in Table IV. The computational CPU times per 868

SCF iteration for these systems plotted against the number 869

of electrons are given in Fig. 9, and the scaling with system 870

size is found to be O(N1.05). Figure 10 shows the electronic 871

structure—isocontours of the electron density—of CH4 and 872

C8H18. 873

FIG. 10. Isocontours of the electron density of CH4 and C8H18

computed with the proposed Tucker-tensor DFT algorithm.
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VI. SUMMARY874

An algorithm for the solution of the Kohn-Sham problem1 875

is presented that exploits the low-rank approximation of the876

electronic-structure afforded by Tucker-tensor representations.877

A systematic procedure is developed for computing a localized878

Tucker-tensor basis adapted to the Kohn-Sham eigenvalue879

problem. To this end, in every iteration of the self-consistent880

field procedure of the Kohn-Sham problem, a separable881

approximation of the Kohn-Sham Hamiltonian is constructed,882

and the localized Tucker-tensor basis is computed using the883

eigenfunctions of the separable Hamiltonians in each spatial884

dimension. The localized Tucker-tensor basis is subsequently885

used to solve the Kohn-Sham eigenvalue problem by using886

Chebyshev filtering and Fermi-operator expansion techniques887

to compute the occupied eigenspace and the electron-density.888

Numerical investigations on representative benchmark exam-889

ples reveal an exponential convergence of the ground-state890

energy with respect to the Tucker rank. In addition, the Tucker891

rank required to obtain chemical accuracy in the computed892

ground-state energies is found to only weakly depend on the893

system size, with the number of Tucker-tensor basis functions894

exhibiting a sublinear dependence on the system size for895

the range of benchmark systems considered in this study.896

Our benchmark studies suggest further that the proposed897

algorithm exhibits a close to linear-scaling complexity with898

system size for both insulating and metallic systems. This899

reduced-order scaling is a result of combining the low-rank900

Tucker-tensor basis with localization techniques, and consti-901

tutes a promising direction for large-scale DFT calculations.902

A comparative numerical study for 3 × 3 × 3 and 5 × 5 × 5903

aluminum nanoclusters as benchmark systems shows about 904

a fivefold reduction in the number of basis functions and 905

about a three to fourfold computational speedup for the current 906

implementation of the proposed algorithm over the plane-wave 907

implementation in ABINIT. We note that there is much scope for 908

optimizing our current Python implementation, and thus the 909

computational efficiency afforded by the proposed algorithm 910

may potentially be much larger. Finally, in the present work, 911

we used a serial version of the ALS algorithm to compute 912

the Tucker-tensor decomposition of the three-dimensional 913

fields, thus limiting the sizes of the materials systems to 914

those systems where the data corresponding to all relevant 915

three-dimensional fields is accommodated in the memory 916

of a single compute node. Overcoming this limitation, and 917

developing an efficient and scalable parallel implementation 918

of all aspects of the proposed algorithm has the potential 919

to enabling DFT calculations on system sizes not accessible 920

heretofore. 921
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