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A mathematical model for describing natural and experimental diffusion induced segregation (DIS) in the 
case of a (Zn,Fe)S single crystal with three coexisting phases is derived. As main result, a new and quite 
general segregation principle for ternary systems is discovered where one phase has a flat free energy density 
and serves as catalyst for the segregation of the other two phases. The model includes also a stochastic noise 
term to represent fluctuations of the copper concentration. Numerical simulations in 2-d underline the 
physical significance of the model and allow to make quantitative predictions. 
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1 Introduction 

This article is the continuation of the work [1] where the so-called chalcopyrite disease within sphalerite was 
studied. Hereby the reaction models concerning atomistic mechanisms implying vacancy and metal diffusion 
as well as redox conditions from experimental DIS (Diffusion Induced Segregations) were used for the 
mathematical simulations. The corresponding experimental studies simulating natural DIS show that primary 
sphalerites bearing Fe > 3 at. % can be provoced to show DIS of Cu-Fe-S-phases, if firstly Fe2+ is oxidized to 
Fe3+ by increasing sulfur fugacity. If then Cu diffuses into these sphalerites Cu reacts with Fe3+ to form e.g. 
chalcopyrite(ccp), i.s.s. (intermediate solid solution within the Cu-Fe-S-system) or “cubanite” (CuFe2S3). The 
natural phenomena and experimental results for i.s.s.-respectively DIS-ccp are exemplary shown in Figures 1 
to 4. The corresponding data verify the experimental results and interpretations to be in agreement to natural 
DIS reactions.  

Starting from former mathematical simulations only concerning two phase reaction phenomena we are 
going to extend these results to a ternary system where beside the two phases sphalerite and chalcopyrite, 
cubanite is present as third phase. Subsequently it is transferred by Cu-enrichment in the main DIS-phases. 
This is important for the extension of experimental situations to natural conditions and to common material 
science phenomena and to understand very first DIS stages. The third phase is only occuring in submicroscopic 
dimensions and only in status nascendi. As main result of our analysis we will show that cubanite can be 
regarded as precursor to the formation of chalcopyrite. Significant improvements are incorporated into the 
mathematical formulation, in particular the phase transitions are now formulated as sharp interfaces and a 
stochastic term accounts for fluctuations of the copper concentration on the micro scale. An additional new 
____________________ 
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aspect is that the phase parameter is now the global minimiser of the free energy; we will discuss that issue in 
length in Section 3. 

 

  
 

Fig. 1 Fe-bearing sphalerite crystal (grey) with DIS-ccp 
(light) from mineralized hydrothermal veins of East Banke, 
Nigeria. At the rim of the crystal the DIS-particles are fine-
grained, whereas towards to the core the segregation particles 
become larger due to coarsening. Width of LM-micrograph 
420µm, reflected light, 1. Polar., oil. 

 

Fig. 2 Experimental simulation of DIS-i.s.s. using 
natural Fe-bearing and exsolution free sphalerite (grey) 
from St. Cristoph, Saxony. The crystal was embedded 
in synthetic Fe-rich i.s.s. (yellow, Fe/Cu=1.3) to run at 
T=573K over t=14d at a relatively high sulfur fugacity 
of the CuS/Cu2-xS buffer. The experiment yields a fine-
grained DIS-bearing rim (yellow) in the primary 
sphalerite crystal. Width of LM-micrograph: 125µm, 
reflected light, Polar., oil. 

 
 

  
 

Fig. 3 Experimental simulation of DIS-i.s.s. (yellow) using 
a synthetic Fe-bearing sphalerite crystal (grey) embedded in 
a Fe-rich i.s.s. (yellow, Fe/Cu=1.3). Experimental 
parameters are T=873K for t=7d at the sulfur fugacity of the 
Fe1-xS/FeS2 buffer. The resulting microphenomena show 
that the former sphalerite rim is partially replaced by dense 
i.s.s. (yellow). A possible third phase as primary exsolution 
cannot be seen because of submicroscopic dimensions. 
Within the remaining sphalerite (grey) tiny DIS-particles 
(yellow) occur which are followed up by coarsened 
exsolution particles (yellow) towards the core of the crystal. 
Width of LM-micrograph: 125µm, reflected light, Polar., 
oil. 

 

Fig. 4 Experimental simulation of DIS-i.s.s. (light ) and 
DIS-bn (brownish) as a third phase using a synthetic Fe-
bearing sphalerite crystal (grey) embedded in bornite 
(Cu5FeS4, bn). Experimental parameters are T=973K for 
t=2d at the sulfur fugacity of the Fe0.920S buffer. The 
resulting microphenomena show abundant DIS-i.s.s. in the 
core of the sphalerite surrounded by DIS-bn. I.s.s. is 
tranformed to bornite in the outer parts of the sphalerite 
crystal due to Cu-enrichment which also leads to 
coarsening of the DIS-grains. Width of LM-micrograph: 
220µm, reflected light, Polar., oil. 
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The main result of our analysis is the understanding of how cubanite triggers the segregation of sphalerite and 
chalcopyrite. We will find that cubanite is important in the early stages of DIS to lower the activation energy 
and to start the segregation. In the late stages, it only occupies a small part of the crystal (which is maybe the 
reason why its role has been ignored up to now). With regard to these facts, the mechanism we find is named 
‘catalytic segregation principle’ in this article. It is probable that similar phenomena can be observed in other 
materials and that the documented mechanism is not restricted to sulphide systems alone. 

2 Derivation of the mathematical model 

We introduce functions ( , )i ic c x t=  that trace the concentrations of the involved constituents at time t and 

space point x ∈ Ω  where Ω  is a (time-independent) domain in R , 1 3D D≤ ≤  that is occupied by the crystal. 

In particular we introduce 3 2 2
1 2 3 4 5, , , ,c Fe c Fe c Cu c Zn c+ + + +≈ ≈ ≈ ≈ ≈ vacancies. 

Reflecting the conditions during the crystallographic experiments we will assume that the temperature T is 
held constant. This also simplifies the formulation within the framework of non-equilibrium thermodynamics. 

As explained in [1] we will assume the relationship 1
5 12c c=  that can be deduced from the electric 

neutrality of the crystal and which has been verified by the crystallographic measurements. Furthermore we 

introduce 1
6 2c ≡ , the (constant) concentration of sulphur. For a concentration vector 1 4( , , )c c c= …  the free 

energy density of phase l is denoted by lf , where throughout this article 1l =  stands for chalcopyrite, 2l =  for 

sphalerite and 3l =  for cubanite. 

For ( )lf c  we make the order-disorder approach 

 
24 4

1 1

( ) ln .l
l i i i i i

i i

f c c c cβ α
= =

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑ ∑   (1) 

 

The constants l
iβ  and iα  are positive. The second term in (1) measures the volume response when replacing 

2Zn +  by other metal ions. The ansatz (1) is reasonable because the high temperature transitions are random 
pairwise interactions. 

We introduce three functions { }( , ) 0,1 , 1 3l l x t lχ χ= ∈ ≤ ≤  that measure the volume fraction of phase l. 

These indicators fulfil 1 2 3 1χ χ χ+ + ≡ , thus with known vector of phase functions 1 2( , ),χ χ χ=  the volume 

fraction 3 1 2: 1χ χ χ= − −  of cubanite is also known. Technically speaking lχ  are functions of bounded 

variation, see [9]. Since 0 and 1 are the only possible values of ,lχ  every point x ∈ Ω  corresponds to exactly 

one of the three phases. Thus, unlike the former model for chalcopyrite disease, no ‘mushy regions’ occur 
during the computations and the interfaces at the phase boundaries are sharp. 

Since the bulk free energy density is the convex hull of { }1 2 3, , ,f f f  as a consequence of the 

thermodynamic identity ,F E TS= −  we write the total free energy of the system in the form 
 

3

1

( , ) ( , ) ( ) ( )l l M
l

F c f c f c T sχ χ χ χ
=Ω Ω Ω

= = +∑∫ ∫ ∫  

 

with the mixing entropy density 
 

1 2( ) ( ) ( | | | |)Ms Wχ χ ε χ χ= + ∇ + ∇  
 

and the double well potential 
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3

1

( ) : ln .l l
l

W χ χ χ
=

= ∑  

 

The term ε  in the definition of Ms  is related to the surface tension of the transition layer between two 

neighbouring interfaces and | |lχ
Ω

∇∫  is the total variation of lχ  in .Ω  

The constitutive relation for the mass fluxes iJ  is assumed to be of the isotropic Onsager form 
 

4

1

,i ij j
j

J L µ
=

= ∇∑  

 

where the mobility L  is a symmetric positive-semidefinite 4x4 tensor and 1 4( , , )µ µ µ= …  denotes the vector 

of chemical potentials with 
 

.j
j

F

c
µ ∂=

∂
 

 

For the control mechanism of the vector 1 2( , )χ χ χ=  of phase parameters we introduce the equation 
 

1 21 2 ( , ) 1 2( , ) arg min ( , , ),F cχ χχ χ χ χ=  (3) 

 

where 1 2( , )χ χ  fulfil the constraints on lχ  presented above. Equation (3) states that lχ  are global minimisers - 

a fact that is crucial for our analysis. In this regard the model differs significantly from the model for 
chalcopyrite disease within sphalerite. The ideas behind this ansatz are explained in Section 3. 

Now we can state the complete model: 

Find for 0t ≥  functions 1 2 3 4 1 2, , , , ,c c c c χ χ  such that in R DΩ ⊂  for 0t >  
 

( )4

1
div ( , ) , 1 4,

j

f
t i ij cj
c L c iχ∂

∂=
∂ = ∇ ≤ ≤∑  (2) 

 

1 21 2 ( , ) 1 2( , ) arg min ( , , ),F cχ χχ χ χ χ=  (3) 

 

0( ,0) ( ), 1 4,i ic x c x i= ≤ ≤  (4) 
 

0( ,0) ( ), 1, 2l lx x lχ χ= =  (5) 
 

1 2 4 1 2 3 30,c c c c g∂ = ∂ = ∂ = ∂ = ∂ = =ν ν ν ν νχ χ  (6) 

 
with initial conditions for 0,t x= ∈ Ω  and boundary conditions for 0,t x> ∈ ∂Ω . 

Neumann boundary conditions (6) are essential to affirm mass conservation for 1 2 4, ,c c c  which is 

0( , ) ( )i ic x t dx c x dx
Ω Ω

=∫ ∫  for 1,2,4i =  and every 0.t >  This leads to a coupling of the concentration 

components which is a decisive property for the validity of the segregation principle as we shall see. 

3 A catalytic segregation principle 

In order to explain this segregation principle, we first restrict to special cases and keep the argumentation 
simple. Later we will treat the general case. 
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Eq. (3) states that 1 2( , )χ χ χ=  is a global minimiser of .F  We assume for the moment that the concentration 

vector has only one component, i.e. 1c c= . By lc  we denote the concentration value where ( )lf c  attains its 

minimum. We introduce 4 constants 13 23,c c± ±  which are uniquely specified by the conditions 
 

1 13 3 13 13 1 13 3( ) ( ), ,f c f c c c c c± ± − += < < <  (7) 
 

2 23 3 23 23 3 23 2( ) ( ), .f c f c c c c c± ± − += < < <  (8) 
 

The constants 13 23,c c± ±  allow to determine directly for every concentration c  which of the three phases has 

smallest bulk free energy density.  
Let at 0t =  only sphalerite and cubanite be present occupying volumes 2V  and 3.V  Additionally we 

neglect the surface energy and assume that c  is constant in each of the sets 2V  and 3 ,V  thus 0c B≡  in 2V  and 

0c C≡  in 3V  for suitable constants B and C. To fix the initial conditions we want to assume that 
 

13 3 23 2, .c C c c B c+ −< < < <  (9) 
 

Now we will investigate the time evolution of c  starting from this initial data. Let at time 1 0t >  sphalerite 

occupy a volume 2 ,V  cubanite a volume 3V  and let c B≡  in 2 ,V c C≡  in 3.V  Throughout the text ~ refers to 

data at time 1t . 

As a consequence of the minimisation rule (3), for every point in Ω  the smallest bulk free energy 
determines the dominant phase and consequently 

 

{ }1,2,3| ( ( )) min ( ( )) .l l j jV x f c x f c x== ∈ Ω =  (10) 

 

Assuming that the change C C−  is not too large such that still 13 23c C c+ −< < , we find with (10) that 2 2V V=  

and 3 3.V V=  

 

Fig. 5 Sketch of the free energy densities of the 
ternary system if c has only one component. 

  
 

By mass conservation, the concentrations B  and C  are coupled by the relation 
 

2 3| | ( ) | | ( ).V B B V C C− = −  
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This allows to write C  as a function of B : 
 

2

3

| |
( ) .

| |

c B V
C B

V

−
=  (11) 

 

Here, 0c c
Ω

= ∫  is the average of c  over Ω  which due to mass conservation is invariant with respect to time. 

With (11) we find that the free energy at time 1t  for the two phase configuration is 

 

2 2 3 3( ) | | ( ) | | ( ( ))F B V f B V f C B= +  

 
and this yields at once 

 

2 2 3( ) | | '( ) '( ( )) .
F

B V f B f C B
B

∂ ⎡ ⎤= −⎣ ⎦∂
 

 

For the setting fixed by (9) we infer that ( ) 0.
F

B
B

∂ <
∂

 This indicates that the free energy can be lowered 

by an increase of B  which by Formula (11) goes along with a decrease of .C  The dynamic behaviour of c  

starting from initial data (9) is now clear: During the evolution, C  decreases more and more, until at some 

moment 13C c+<  which means that for this concentration, the chalcopyrite phase has the lowest energy value 

and the cubanite phase flips over to chalcopyrite. Hence we end with a distribution of sphalerite and 
chalcopyrite where we started with sphalerite and cubanite. This puts some light on the principle we want to 
study. 

At this point, some comments are in place about the nature of the phenomenon and the assumptions made 
during the above exemplary derivation. 
1. The energy barrier between chalcopyrite and sphalerite (for the binary system) is significantly higher than 

the barriers between chalcopyrite and cubanite and between cubanite and sphalerite (for the ternary 
system), as Figure 5 illustrates. Therefore the segregation of the ternary system sphalerite-cubanite-
chalcopyrite starts at much smaller spatial variations of c  than this is the case for the binary system 
sphalerite-chalcopyrite. Thus we see that cubanite helps in the segregation of the other two phases. In the 
later stages of the dynamic process we found above that cubanite disappears in most of the domain. 
Therefore it makes sense to speak of a catalytic segregation principle where cubanite is the catalyst for the 
segregation of sphalerite and chalcopyrite. 

2. The flatness of 3f  in comparison to 1f  and 2f  is essential for the functioning of the principle. Not only 

that this lowers the energy barriers, furthermore as a rule of thumb we can say that the flatter ,lf  the faster 

the change in time of c  in .lV  Therefore, the concentration in cubanite is the first to pass one of the 

thresholds 13c+  or 23c−  leading to the disappearance of this phase. From (11) we can read off how the rule of 

thumb is weakened if the volume 3V  of the third phase at 0t =  is considerably larger than 2.V  

3. Mass conservation is also essential for the functioning of the principle as it couples the concentrations of c  

in .lV  In the above discussion we deduced from (11) that an increase of B  implies a decrease of .C  This is 

no longer true if the mass of c  may vary. 
4. The simplifying assumptions we made above are no severe restrictions: (a) The constancy of c  within a 

single phase is asymptotically true for large times t  (because diffusion is smearing out the spatial 
differences of c ). The same argument also explains why we could disregard the surface energy (because 
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the surface energy is important only for a small region close to the transition layers and not for the bulk 
region). (b) The constancy assumption on c  neglects one important aspect: If c  is continuous (e.g. growing 

from 1c  to 2c ), there remains a small layer between sphalerite and chalcopyrite with 3c c≈  in which 

cubanite has smallest free energy density. This small layer does not disappear. (c) The choice (9) on the 
initial conditions was only made to select one scenario. Other two-phase settings lead to analogous results: 

The concentration B  in sphalerite approaches the minimal value 2c  and the concentration in cubanite 

changes opposite to it in order to ensure conservation of mass. (d) If c  has more than one component, the 
above argumentation can be repeated independently for each entry provided mass conservation holds for 
this co-ordinate. Thus the presented dynamic holds for 1 2,c c  and 4.c  The concentration 3c  of Cu + is 

different, more on this in Section 3. (e) If all three phases are simultaneously present and if the occupied 
volumes are the same, the phase j  with steepest free energy density will dominate the others and the 

concentration with respect to this phase will move towards the minimum .jc The other phases will follow 

this shift according to mass conservation. If the occupied volumes are different, this effect is weakened like 
in the case of two coexisting phases. 

5. We want to explain the difference between Equation (3) and the Allen-Cahn ansatz used in the model of 
chalcopyrite disease within sphalerite. The Allen-Cahn model must be vector-valued to fit to the ternary 
system. The correct formulation is for 1, 2l =  where /l lFψ χ= ∂ ∂  is the derivative of the potential F  

where F  looks as in Figure 6 with three disjoint minima. 
 

2
1 2( , , ),t l l l cχ ε χ ψ χ χ∂ = ∆ −  (12) 

 
 

Fig. 6 Potential F with the three minima at (0,0), (1,0) 
and (0,1). 
  

 
 

Figure 6 shows the potential F  for a fixed value of c  plotted as a function of 1χ  and 2.χ  Admissible 

values of 1 2( , )χ χ  are contained within the triangle with corners (1,0) (chalcopyrite), (0,1) (sphalerite) and 

(0,0) (cubanite) even though Figure 6 displays the entire square. These three corners are at the same time 
the positions of the local minima of .F  The evolution of 1 2( , )χ χ  governed by (12) starts for every x ∈ Ω  

randomly with a χ  close to the maximum 1 2 0.5χ χ= =  and moves (inside the triangle of admissible χ ) 

downhill to one of the three minima. The location of the reached minimum determines the phase in .x  

Once a local minimum has been reached, 1 2( , )χ χ  becomes stationary and does not change any more. This 

demonstrates why the Allen-Cahn ansatz is not suitable to model the investigated ternary system. Using 
(12), the phase parameter will stay in a local minimum, for instance cubanite, even if another phase, i.e. 
chalcopyrite, has a smaller free energy value. Thus, no flipping over from cubanite to chalcopyrite is 
possible for a model that relies on Equation (12). 
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In continuation of the last argument, we will now explain the role of 3c  and take the effect of diffusion induced 

segregation into account. If a sufficient amount of copper has penetrated the matrix, chalcopyrite becomes 
energetically favourable whereas for small values of 3 ,c  sphalerite has the smallest free energy. Looking at 

Figure 6 this means that the local minimum at (1,0) (chalcopyrite) is to be decreased for larger 3c  whereas the 

local minimum at (0,1) (sphalerite) has to be increased (the phase parameter controlled by the global 
minimisation (3) does not move along a path as in the Allen-Cahn evolution but jumps directly to the global 
minimum). In this way DIS is also taken into account in the binary model of chalcopyrite disease within 
sphalerite. Energy minimisation automatically leads to a preference of chalcopyrite in copper rich regions. 

As the experimental results of both the binary and the ternary system clearly demonstrate, chalcopyrite 
forms complicated patterns in the vicinity of the crystal boundary. This is the result of different nucleation 
speeds in different parts of the single crystal and a competition of surface energy and volume energy. It is our 
firm belief that impurities play a crucial role as nucleation centres in the early stages of segregation, but more 
mineralogical experiments must be carried out in this direction to understand this complex matter. 

Up to that point, the model we developed represents a perfect homogeneous material without impurities. 
The chalcopyrite interface predicted by that model would be perfectly regular following the copper front 
moving inward towards the crystal centre. In order to account for different segregation speeds, we 
lower/increase the minima of the potential F  by stochastic fluctuations. A stochastic source term in the 
context of spinodal decomposition has first been introduced by Cook [5]. Langer [7] has also developed a 
statistical theory of spinodal decomposition leading to a Fokker-Planck equation. 

In our case this means 
 

( )24

1 1 31
( ) ln ( ),i i i ii i

f c c c c m cβ α
=

= + +∑ ∑  

 

( )24

2 2 31
( ) ln ( ).i i i ii i

f c c c c m cβ α
=

= + −∑ ∑  

 
Here, the term 

 

3 3 3( ) ( ln ( , ))m c c c x tβ δ ξ= + +  (13) 

 
accounts for DIS and determines the phase with smallest energy value. ,β δ  are positive constants and 3( )m c  

is positive for small copper concentrations below a certain threshold 1x  and negative above it. Without 

stochastic source ξ  this concept is due to Kobayashi [6] and the term 3( )m c  is discussed in our earlier article 

on chalcopyrite disease in sphalerite, see in particular Figure 3 therein. By adding the positive value 3( )m c  for 

a small copper concentration to 1,f  chalcopyrite will less likely have the smallest free energy. Similarly, a 

negative value of 3( )m c  lowers the free energy and chalcopyrite is preferred. 

In (13), the term ( , )x tξ  is the aforementioned small random fluctuation and can be regarded as the path of 

a Brownian motion. 

4 Numerical simulations 

In this section we present the results of a numerical simulation with high resolution that illustrates the 
characteristic properties of the model. The finite element triangulation of Ω  as well as the time step t∆  is not 
optimised during the computation run. The simulations are carried out for a two-dimensional layer Ω  and (2)-
(6) are solved in their dimensional form. For the physical parameters, the measured quantities were used. 
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Fig. 7 Time evolution of the phase parameter from t=35d (top), t=60d, t=110d to t=190d (bottom). At t=0d 
only sphalerite(blue) is present (not displayed). As copper enters the crystal, chalcopyrite (red) forms close 
to the crystal boundary. Always a thin cubanite layer (green) is located in the interface between the other two 
phases. We can observe how the segregation starts with small islands that more and more concentrate until a 
connected front is formed. 
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The diffusivity constants were taken from the published data in [8]. The numerical implementation makes use 
of linear finite elements and a very efficient Quasi-Newton method that relies on GMRES to solve the 
linearized equations, see again [1] for details. 
 

Physical Parameters: 3 41, 2 10 6 10m m− −Ω = ⋅ × ⋅ , 500 ,T C= ° 2 93 10 mε −= ⋅ , 3 4 0,α α= =  
42.6 10 / ,CUD m s−= ⋅  71.85 10 / ,ZnD m s−= ⋅  41.26 10 / ,FeD m s−= ⋅  1 1,α = 2 0.9.α =  

Triangulation Data: 33153 points, 65536 triangles, 810h −= . 

General Parameters: 54 10 ,GMRESε −= ⋅  34 10 ,t −∆ = ⋅  810 ,η −=  20β = , 4δ = . 

Initial conditions: 01 0.001,c ≡ 02 0.3c = , 03 0.001c =  and 0χ  the global minimum of 0( , )F cχ χ  

according to Equation (3). 
Boundary conditions: 1 2 0n nc c∂ = ∂ = , 3 0.25c =  and 1 2 0n nχ χ∂ = ∂ =  on ∂Ω . 

 

   
0t d=  35t d=  110t d=  

 

Fig. 8 Diffusion of Cu+. The density of the level sets indicates the steepness of the copper gradient. At t=0d, the initial 
datum falls from 0.25 at the boundary to 0.001 in the centre. 

 
 

The graph of Zn behaves opposite to the graph of Cu+. It decreases near the boundary. The concentration of 
Fe3+ + Fe2+ is not displayed, it is a constant and invariant in time and space. 

5 Discussion of the results and outlook 

As presented above, the mathematical model is capable of capturing significant features of the ternary system 
in agreement with natural and experimental data. In experimental simulations of DIS-ccp, submicroscopic 
cubanite or corresponding phases may occur in status nascendi. As main result of our analysis, cubanite can be 
regarded as precursor to the formation of chalcopyrite. Those primary formed exsolutions are rapidly 
transformed by coarsening to visible DIS-phases as e.g. chalcopyrite or i.s.s. These results and interpretations 
agree with the presented mathematical simulations: The numerical implementation supplies a quantitative 
description of the physical process and gives fast predictions even in situations where the crystallographic 
experiments take very long. As result of the sharp interface model and the improved spatial resolution, the 
simulations can now even capture small islands of chalcopyrite that proceed the main front. 

Nevertheless, the following aspects deserve a deeper investigation: 
a) The model reflects DIS phenomena of sphalerite-cubanite-chalcopyrite on a medium spatial scale. The 

micro structure is not resolved and unknown from experiment. 
b) The diffusivities of the constituents are assumed to be constant. As is well known, the actual physical 

parameters vary in space and depend on parameters on the micro scale. A correct representation in 
particular of the copper diffusion is a challenging task. 

c) It is probable that the catalytic effect of cubanite on the decomposition of sphalerite and chalcopyrite has its 
root in the lattice geometry of the unit cell of these substances. This should be analysed by further 
experiments and ab initio computations. 

d) The inhomogeneities are not purely random as assumed in our model. The precise knowledge about the 
coupling of ( , )x tξ  and other parameters (e.g. the Fe and Zn concentrations) would be of high importance 
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to improve the accuracy of the predictions by the model. Unfortunately, this objective seems to be 
extremely difficult to accomplish by in situ measurements. Yet there is hope that by careful mathematical 
investigations of the coupling between diffusion rates and size of the impurities for this ternary system, 
together with an application of the catalytic segregation principle derived in this article, more can be set 
about the early stages of segregation. 
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