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SUMMARY

We derive a two-phase segregation model in solids under isothermal conditions where due to
plastic effects the number of vacancies changes when crossing a transition layer, i.e. a reconsti-
tutive phase transition. We show the thermodynamic correctness of the model and review the
existence of weak solutions in suitable spaces. By a formal asymptotic analysis we study the
dynamics of the interface and its dependence on the unsymmetric vacancy distribution.
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1 Introduction

The present article is devoted to the analysis of interface motion that arises during two-phase
segregation in solids. It is motivated by recent experimental results in [20] and [21] on steels,
where a jump of the chemical potential across the interface is observed that depends on the
unsymmetric number of vacancies of the sub-lattices. These observations do not fit to existing
mathematical and physical models for interface dynamics like the Allen-Cahn or phase field
equations, [4], the Cahn-Hilliard system, [9], the Stefan problem, [16], or other recent models
for phase transitions in solids, see for instance [10], [1] and [3].

Jumps of the chemical potential that depend on the particular structure of the sub-lattice were
observed and studied before in [6] and [7] for models of Ga/As precipitates, where the defects
are very important for the macroscopic properties of the material.

In [20] also some numerical simulations are done. They are based on the representation fl =
∑M

i=0 Xliµli(Xl1, . . . , XlM ) of the free energy density of Phase l and a formula for the mass
flux J related to the Onsager relation, see (5) below. Both crucial identities thus depend on
the vector µ of chemical potentials which in turn depends in a complicated way on the molar
fractions Xli. This functional dependence is resolved with huge data bases like CALPHAD or
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SGTE, see [14], [12], and http:\\www.calphad.org, http:\\www.sgte.org. In this way, the
jump of the chemical potential is captured in the numerical computations in [20]. The objective
of the present article is to explain this dynamic behaviour by going to a microscopic model,
in this case of phase field type. Instead of studying transformations of the lattice to a chosen
reference configuration which will not be possible in general, the creation and annihilation of
vacancies are modelled formally by reactions, see Eq. (10). The jump in µ is the consequence of
an unsymmetric generation of defects during the rearrangement of the atomic lattice. This leads
to a local change of the number of available lattice positions N which is the reason for the local
fluctuation of µ close to an interface.

The outline of this article is the following. In Section 2 we introduce some notation and derive
the model. A thermodynamic validation is contained in Section 3 followed by a short review
of existence results in Section 4. Finally, in Section 5 the kinetics of the transition layers by
formally matched asymptotics are studied.

2 Derivation of the Model

We consider an isothermal regime where the temperature θ is kept constant. Let Ω ⊂ R
D be a

bounded domain with Lipschitz boundary containing M ≥ 1 different species of molecules. By
Ck(Ω) we denote the k-times continuously differentiable functions in Ω, by Ck

0 (Ω) the functions in
Ck(Ω) with compact support and by Hm,2(Ω) the Sobolev space of m-times weakly differentiable
functions in the Hilbert space L2(Ω). Finally, Hm,2

0 (Ω) is the closure of C∞
0 (Ω) w.r.t. ‖·‖Hm,2(Ω).

Let %i = %i(x, t) be the number of lattice sites per volume occupied by an atom of species i,
1 ≤ i ≤ M , which are conserved quantities (

∫

Ω %i(x, t)dx = consti for all t), and let %0 denote
the number of vacant lattice positions per volume, a quantity which may change locally in Ω.
Set % := (%0, . . . , %M ).

If we assume that there are no interstitials, mass conservation leads to

M
∑

i=0

%i = N, (1)

where N is the number of lattice sites per volume which is constant in each phase. As we assume
that at most two coexisting phases are present we introduce a phase parameter χ = χ(x, t) ∈ [0, 1]
as an indicator function of phase 1, say.

The free energy F of the system is

F = F (%, χ) =

∫

Ω

f(%, χ,∇χ) dx

with the free energy density f(%, χ,∇χ). For f we make the ansatz

f(%, χ,∇χ) = χf1(%) + (1 − χ)f2(%) + θ
(

W (χ) +
γ̃

2
|∇χ|2

)

(2)

where the last term is due to the entropy of mixing. Furthermore, γ̃ > 0 determines the square
root of the thickness of the boundary layer between the two phases, and

W (χ) := χ lnχ + (1 − χ) ln(1 − χ) − θcχ
2

is a double well potential for a constant θc > 0 chosen large. To simplify notation we set γ := θγ̃.
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The unconserved order parameter χ is governed by the Allen-Cahn equation

τ∂tχ = −
∂F

∂χ
(%, χ) = γ4χ + ω(%, χ), (3)

where τ = τ(θ) is a positive constant that adjusts the time scale of the propagation in χ and

ω(%, χ) := (f2 − f1)(%) − θW ′(χ).

The functions fl in (2) denote the convex and smooth free energy densities of phase l. A possible
choice on fl is the entropic ansatz

fl(%) := kBθ
M
∑

i=0

%i

(

ln %i − lnN +
El

i

kBθ

)

, l = 1, 2, (4)

where kB is the Boltzmann constant, El
i > 0 are enthalpic energy terms, and the densities %i

are defined as above. By

µi(%, χ) :=
∂f

∂%i
(%, χ,∇χ), 0 ≤ i ≤ M

we denote the i-th chemical potential and µ := (µ0, . . . , µM ). Analogous to %0, the term µ0

denotes the chemical potential with respect to the vacancy concentration.

The diffusion process is modelled by ∂t%i = −div(Ji) + ri, 0 ≤ i ≤ M , where the reaction terms
ri describe the creation/annihilation of vacant lattice sites due to plastic deformations close to
a phase transition. For later use we define r := (r0, . . . , rM ).

Onsager’s law, [17], [18], postulates that every thermodynamic flux is linearly related to every
thermodynamic force. Since in our case the thermodynamic forces are the negative chemical
potential gradients, we obtain the phenomenological equations, see [15], p.137,

Ji = −
M
∑

j=0

Lij∇µj , 0 ≤ i ≤ M, (5)

with a mobility matrix L ∈ R
(M+1)×(M+1) which for simplicity we assume to have constant co-

efficients. In order to be compatible with Condition (1) we demand
∑M

i=0 Ji = 0 or
∑M

i=0 Lij = 0
for any 0 ≤ j ≤ M . The Onsager reciprocity law, [17], [18], [15], states that L has to be sym-
metric which we assume in the following. This symmetry has its origin in the time reversibility
of the underlying stochastic process which goes along with the symmetry of the corresponding
Hamiltonian, see [19] for details. Thus the symmetry of L is an universal property. Addition-
ally, L is positive semi-definite and we assume its kernel to be one-dimensional (Le = 0 for
e = (1, . . . , 1) ∈ R

M+1).

Plastic deformations close to an interfacial layer lead to the creation and annihilation of vacant
lattice positions. In the sequel we shall model the creation and annihilation formally by reactions.
Geometrically, vacancies are created or destroyed by locally altering the lattice structure.

The explicit form of these reactions can be motivated by first considering a system without
diffusion. We write

∂t%0 = r
I
− r

II
,

where r
I

> 0 is the creation rate of vacancies, r
II

> 0 the annihilation rate of vacancies.
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Led by the thermodynamic considerations of Section 3, we make the ansatz

r
II

r
I

= exp
( µ0

kBθ

)

. (6)

The rates r
I

and r
II

are determined only up to a common positive factor. Therefore, we can
only expect a condition on the ratio r

II
/r

I
.

For the annihilation rate we make the Arrhenius approach

r
II

= %0 a(%, χ) exp
(χE1

0 + (1 − χ)E2
0 − EA(χ)

kBθ

)

. (7)

Equation (7) states that we have a thermal activation process. EA(χ) > 0 is the activation
energy that has to be exceeded to start the process and El

0 > 0 is the energy in phase l before
the reaction. (7) further ensures that there is no annihilation if no vacancies are present (%0 = 0).

The thermodynamic validity of the model can be shown for arbitrary factors a(%, χ) ≥ 0. For
the physical situation considered here, a only depends on χ and we set

a(%, χ) = a(χ) :=
[ 1

16
−

(

χ −
1

2

)2]

+
. (8)

Here [v]+ := v if v ≥ 0 and [v] := 0 if v < 0 denotes the positive part of an argument v. The
setting (8) guarantees a ≥ 0. It is chosen such that a(χ) = 0 for χ ≤ 1

4 and χ ≥ 3
4 , in particular

a(χ) = 0 in the bulk phases where χ = 1 or χ = 0. This is because vacancies are created or
annihilated only in the interfacial layer, but not in the bulk.

We introduce the symbol

β0 := exp
(χE1

0 + (1 − χ)E2
0 − EA(χ)

kBθ

)

> 0. (9)

Ansatz (6) and the Arrhenius law (7) imply

r0(%, χ) = r
I
− r

II
= a(%, χ)β0%0

[

exp
(−µ0

kBθ

)

− 1
]

, ri(%, χ) = 0, 1 ≤ i ≤ M. (10)

The derivation of the model is now complete. To sum up, for 0 ≤ i ≤ M we are concerned with
the system of equations

∂t%i = div
(

M
∑

j=0

Lij∇µj

)

+ ri, (11)

µi =
∂f

∂%i
(%, χ), (12)

τ∂tχ = γ4χ + ω(%, χ) (13)

combined with the initial conditions

%i(·, 0) = %i0, χ(·, 0) = χ0 in Ω, (14)

and the Neumann- and no-flux boundary conditions

∇%i · n∂Ω = [L∇µ]i · n∂Ω = ∇χ · n∂Ω = 0 on ∂Ω, t > 0. (15)

In this formulation, %i0 and χ0 are initial values for %i and χ, and n∂Ω denotes the outer normal
to ∂Ω. As a consequence to the reaction terms ri, the number of vacant lattice positions %0 is
different for each phase and this influences the jump of µi at an interface.
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3 Thermodynamic validation

We shortly verify the second law of thermodynamics for the equations (11)-(15). As the tem-
perature θ is kept constant it is enough to show that for a closed system the free energy of the
system decreases with time.

The chain rule yields d
dt

F (%, χ) =
∫

Ω (
∑M

j=0
∂F
∂%j

∂t%j + ∂F
∂χ

∂tχ). Thus we have to test (11)i with
∂F
∂%i

and (13) with ∂F
∂χ

. After summing up, integration over Ω and one integration by parts the
result is

d

dt

∫

Ω

f(%, χ,∇χ) +

∫

∂Ω

M
∑

i=0

µiJi · n∂Ω −

∫

Ω

[

M
∑

i=0

∇µi · Ji +
M
∑

i=0

µiri +
∂F

∂χ
∂tχ

]

= 0.

The crucial estimate is
∑M

i=0 µiri ≤ 0. This is equivalent to showing that

r0µ0 = (r
I
− r

II
)µ0 ≤ 0

or equivalently, since r
I

is positive,
(

1 −
r

II

r
I

)

µ0 ≤ 0.

The left hand side can by Ansatz (6) be rewritten as
[

1 − exp
( µ0

kBθ

)]

µ0

which yields the desired estimate and shows the thermodynamic correctness of the reactions.

With the help of (3) and (5) we thus find

d

dt

∫

Ω

f(%, χ,∇χ) +

∫

∂Ω

M
∑

i=0

µiJi · n∂Ω +

∫

Ω

[

L∇µ : ∇µ +
1

τ
(∂χF (%, χ))2

]

≤ 0. (16)

(16) is the constitutive inequality for the Helmholtz free energy. L∇µ : ∇µ represents the
entropy production due to mass fluxes of constituents 1 to M and vacancies, and 1

τ
(∂χF (%, χ))2

the production due to reorganisation of the phases. All production terms are positive yielding for
a thermodynamically closed system the desired estimate d

dt

∫

Ω f(%(x, t), χ(x, t),∇χ(x, t)) dx ≤ 0.

4 Existence of weak solutions

This section shortly reviews the existence theory to (11)-(15).

In fact one can easily adapt the proof in [3]. For polynomial free energies that satisfy suitable
growth conditions one considers a semi-implicit time discretisation with step size h > 0 (which
is the implicit time discretisation, except that the reaction term r is treated explicitly). Then
uniform bounds independent of h are derived that allow to pass to the limit h ↘ 0. In a second
step, by regularising the logarithmic free energy, one can extend the results of the first part to
logarithmic free energies.

The following theorem is formulated for the case of homogeneous Dirichlet boundary conditions
to (11)-(14), i.e. %i = χ = 0 on ∂Ω for t > 0.

Notice that the uniqueness part of the theorem can only be applied if %, χ and (1 − χ) stay
strictly positive.
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Theorem 1 Let Ω be a Lipschitz domain, f be given by (2), (4), and let the initial data fulfill
f(%0, χ0) < ∞, ω(%0, χ0) < ∞. Then there exists a weak solution (%, µ, χ) of (11)-(14) such that

(i) % ∈ C0, 1
4 ([0, T0]; L2(Ω; RM )),

(ii) ∂t% ∈ L2(0, T0; (H1
0 (Ω; RM ))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L2(Ω)),

(iv) ∂tχ ∈ L2(0, T0; (H1
0 (Ω))′),

(v) there exists a q > 1 such that ln %i ∈ Lq(ΩT ) for 0 ≤ i ≤ M ,
lnχ, ln(1 − χ) ∈ L2(ΩT ) and in particular 0 < χ, %i < 1 almost everywhere.

If ∂%f , ∂χf are Lipschitz continuous, the solution (%, µ, χ) is unique in the spaces stated above.

5 Analysis of the boundary layer dynamics

This section is concerned with the behaviour of the transition layer between two phases in the
limit γ ↘ 0 of a sharp interface. To this end we consider formal expansions of % and χ.

The physically most interesting case is where bulk diffusion and movement of the transition
layer are on the same time scale. Therefore we rescale the problem and set γ = ε, θc = 1

ε
. The

coefficient τ of ∂tχ in (13) is normalised to 1 and we assume Lε
ij = εLij such that the scaling

of the diffusion is the same as in the Allen-Cahn equation. To emphasize the dependence of the
solution on ε we write in the following %ε, χε.

Thus we are concerned with the system

∂tχε = ε4χε −
1

ε
W ′(χε) + f2(%ε) − f1(%ε), (17)

∂t%ε = εL4(χε∂%f1(%ε) + (1 − χε)∂%f2(%ε)) +
1

ε
r(%ε, χε) (18)

with initial values (14) and boundary conditions (15). In Equation (18) we used for a vector
v = (v0, . . . , vM ) the notation 4v = (4v0, . . . ,4vM ).

In this paragraph all functions/functionals as %ε, χε and W are supposed to be sufficiently
smooth.

The interface dynamics is studied in t, the fast time scale s, and the slow time scale h,

s :=
1

ε
t, h := εt.

First we study the bulk regions away from ∂Ω and choose expansions

%ε(x, t) = %(x, t) + ε%(x, t) + O(ε2), (19)

χε(x, t) = χ(x, t) + εχ(x, t) + O(ε2). (20)

Substituting this into (17), (18) we find to leading order O(ε−1)

W ′(χ) = 0, r(%, χ) = 0. (21)

For the rest of this section we shall deal with the asymptotic behaviour of %ε and χε close to an
interface away from ∂Ω. The interface Γ(t) of χε shall be parametrised by {x ∈ Ω | p(x, t, h) = 0}
where p is the signed distance function in direction to the normal of Γ.

The front Γ(t = 0) is preset by
p(x, 0, 0) = p0 (22)
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for a given function p0. For %ε and χε we consider the expansions

%ε(x, t) = %0(u, x, s, t, h) + ε%1(u, x, s, t, h) + O(ε2), (23)

χε(x, t) = χ0(u, x, s, t, h) + εχ1(u, x, s, t, h) + O(ε2) (24)

which are valid close to Γ(t) and

u :=
1

ε
p(x, t, h). (25)

If we insert (23), (24) in (17) and equate the terms of power ε−1 this yields

∂sχ
0 + ∂tp∂uχ0 − |∇p|2∂uuχ0 + W ′(χ0) = 0. (26)

From differentiating χ0(0, x, s, t, h) = 1
2 with respect to t it follows

∂tp(x, t, h) ∂uχ0(0, x, s, t, h) = 0. (27)

Similarly, when using (23), (24) in (18), the matching of terms with ε−1 yields

∂s%
0 + ∂tp ∂u%0 + r(%0, χ0) = |∇p|2L∂uuµ(%0, χ0), (28)

with µ(%0, χ0) = χ0∂%f1(%
0) + (1 − χ0)∂%f2(%

0).

Equations (26), (28) govern the evolution of %0(u, s) and χ0(u, s). Here the coefficient ∂tp only
depends on x, t, h and |∇p|2 = 1.

Under the assumption ∂uχ0(0, x, s, t, h) 6= 0 which is compatible with the a-priori estimates,
(26)-(28) simplifies to

∂sχ
0 + W ′(χ0) = |∇p|2∂uuχ0, (29)

∂s%
0 + r(%0, χ0) = |∇p|2L∂uuµ(%0, χ0). (30)

So, after an initial layer, we get

∂tp = 0 (31)

and

∂uuχ0 = W ′(χ0), (32)

L∂uuµ(%0, χ0) = r(%0, χ0). (33)

Motion of Γ in h

Now we consider the motion of the interface Γ for slow time h.

The first order expansion of χε is

∂sχ
1 + ∂tp ∂uχ1 − |∇p|2∂uuχ1 + W ′′(χ0)χ1

= −∂tχ
0 + (4p)∂uχ0 + 2∇p · ∇∂uχ0 − ∂hp ∂uχ0 + f2(%

0) − f1(%
0)

which simplifies to

∂sχ
1 − |∇p|2∂uuχ1 + W ′′(χ0)χ1 = (4p − ∂hp)∂uχ0 + 2∇p · ∇∂uχ0 + f2(%

0) − f1(%
0). (34)
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We assume that %0, χ0, %1, χ1 approach travelling waves in u for large h, i.e. for l = 1, 2

%l(u, x, s, t, h) ∼ Rl(u − c̃h, x, t, h) as h → ∞,

χl(u, x, s, t, h) ∼ X l(u − ch, x, t, h) as h → ∞.

These travelling waves satisfy the boundary conditions

Rl(u) → %− for u → −∞, Rl(u) → %+ for u → +∞,

X l(u) → χ− for u → −∞, X l(u) → χ+ for u → +∞.

The limits %±, χ± solve (21). In particular, χ± are minimisers of W .

Away from an initial layer, (34) becomes

−|∇p|2∂uuX1 + W ′′(X0)X1 = (4p)∂uX0 + 2∇p · ∇∂uX0 − ∂hp ∂uX0 + f2(R
0) − f1(R0). (35)

Differentiating (29) with respect to u we find

−|∇p|2∂uuuX0 + W ′′(X0)∂uX0 = 0. (36)

Now we multiply (35) with ∂uX0 and integrate from u = −∞ to u = +∞. For the left hand
side after integration by parts we find with (36)

+∞
∫

−∞

−|∇p|2∂uuX1∂uX0 + W ′′(X0)X1∂uX0du =

+∞
∫

−∞

[

− |∇p|2∂uuuX0 + W ′′(X0)∂uX0
]

X1 = 0.

We define

p(R0) :=

+∞
∫

−∞

(f2(R
0) − f1(R

0))∂uX0du.

The remaining terms on the right hand side yield

∂hp = 4p +

∇p · ∇

(

+∞
∫

−∞
(∂uX0)2du

)

+ p(R0)

+∞
∫

−∞

(∂uX0)2du

. (37)

In general, p(R0) 6= 0. Let us consider for illustration the case p(R0) = 0. Then we may rewrite
∂uX0 as ∂σX̂0/|∇p| where σ := u−ch

|∇p| and X̂0(σ) := X0(u − ch, x, t, h). We obtain

∂hp = 4p −
∇p · ∇|∇p|

|∇p|
= |∇p|κp, (38)

where κp denotes the mean curvature of the level set p = const. By (38) we recover the well-
known motion by mean curvature of level sets of Γ. In general due to the presence of p(R0), this
law is perturbed.
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Finally we study the behaviour of ∂tNε at the interface. To this end we introduce the interfacial
region

Iε(t) := {x ∈ Ω | a(χε(x, t)) > 0}

and define sets Γ1, Γ2 ⊂ Ω such that

Ω ∩ ∂Iε = Γ1 ∪ Γ2.

Let α̇ denote the velocity of Γ1 in normal direction with α = α(x, t, h).

∂tNε = 0

χε = 0

∂tNε = 0

χε = 1

Γ1Iε Γ2

Figure 1: Graph of χε and interfacial region

Summing the equations (11) for 0 ≤ i ≤ M we obtain

∂tNε =
rI − rII

ε
. (39)

Since Nε jumps in the variable u, we introduce the new scale

v :=
u + α(t)

ε
.

For Nε we consider the expansion

Nε(x, t) = N0(v, x, t) + ε2N1(v, x, t) + O(ε4), (40)

where N0, N1 are supposed to be differentiable in v. With (40) we find

∂tNε = ∂tN
0 +

α̇

ε
∂vN

0.

With (39), by comparing the terms of order ε−1, we find the ordinary differential equation

∂vN
0α̇ + rII − rI = 0. (41)

Depending on sgn(α̇), the initial conditions to (41) are given either at Γ1 (for v = −∞) or at Γ2

(for v = +∞).

From the minimality of the free energy, when differentiating f with respect to t, we find with
Equation (39)

0 = ∂vf ∂tv + ∂Nε
f ∂tNε

= ∂vf
α̇

ε
+ ∂Nε

f
rI − rII

ε
.

Using ansatz (40) we thus obtain

∂vf +
rI − rII

α̇
∂N0f = 0. (42)
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From the unboundedness of the interfacial region Iε in the variable v we infer the minimality of
f with respect to N0 in Iε.

It remains to investigate the behaviour of N0 in the interfacial region. For k = 1, 2, z ∈ Γk and
δ = (δ1, . . . , δD) ∈ R

D let

(N0
+)|Γk(z) := lim

δ↘0
N0(z + δ), (N0

−)|Γk(z) := lim
δ↘0

N0(z − δ).

Since ∂vf ≤ 0, Equation (42) yields for k = 1, 2

sgn(α̇)
[

f((N0
+)|Γk

) − f((N0
−)|Γk

)
]

≥ 0. (43)

As f is minimal with respect to N0 in Iε, we obtain

f((N0
−)|Γ1

) = f((N0
+)|Γ1

) for sgn(α̇) > 0, (44)

whereas f(N0) and hence N0 jumps at Γ2.

In the same way, the condition (43) evaluated on Γ2 implies

f((N0
−)|Γ2

) = f((N0
+)|Γ2

) for sgn(α̇) < 0, (45)

and f jumps at Γ1.

Obviously, with the two conditions (44), (45) we have found the characteristic influx condition
for the bulk equation ∂tN

0 = 0.

6 Discussion

This article studied a situation where the number of vacancies varies locally, thereby changing
the densities of the chemical constituents. This is usually not taken into account in standard
segregation models.

After stating the model, the main objective was to study the influence of the unsymmetric
vacancy distribution to the behaviour of the interface. We want to shortly comment on the
found results and point out the differences to the existing theory.

Due to (29) and (30), we find that %0 and χ0 are standing waves with respect to time t, whereas
they are travelling waves in the slow time variable h.

As (37) shows, the motion by mean curvature of the interface Γ does no longer hold as the
movement of the front depends now on two variables χ and %.

Let us comment on the spatial variation of N . Due to ansatz (7), (8), the reactions vanish if
χ = 0 or χ = 1 and hence ∂tN = 0 in the bulk phases. If we assume constant initial conditions for
N at t = 0, the number of available lattice sites per volume only changes whenever an interface
passes as explained by (43).

In fact, N(x, t) is determined by the last front that passed through x, i.e.

N(x, t) = N(x, τ(x, t)),

τ(x, t) = max{s | 0 ≤ s ≤ t, a(χ(x, s)) > 0}.

Finally, there is a deep connection between the jump of the chemical potential and nucleation, in
particular the size of nuclei, see [13]. We make no attempt to exploit this relationship here, but it
may be of great technological importance for understanding the properties of the material. In the
context of nucleation, it is noteworthy to observe that the use of reactions driven by Arrhenius
kinetics to model structural changes in the lattice is not new, as the growth or shrinking of
nucleation clusters is usually modelled by reactions (the so-called Szilard mechanism).
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