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Summary. We discuss two different approaches related to Γ -limits of free energy
functionals. The first gives an example of how symmetry breaking may occur on the
atomistic level, the second aims at deriving a general analytic theory for elasticity
on the lattice scale that does not depend on an explicitly chosen reference system.

1 Introduction

The analysis of the mechanical properties of crystals gives rise to internal ener-
gies that are connected to the geometry of the considered crystal and are often
linked to properties of the atomistic scale as explained in [CK88] and [JF00].
Applications to this theory include among others fatigue phenomena and frac-
ture mechanics. In the past, various attempts were made to develop a math-
ematically rigid theory. In particular we want to mention [Bal77], [CLL98],
[AO05], [OP99], [FT02] and [Tru96]. Nevertheless, up to now, the relationship
between macroscopic and atomistic scale is not completely understood.

Here we contribute to this topic. The text is subdivided into two parts. The
first gives a simple example where symmetry breaking occurs in the Γ -limit of
a one-dimensional monatomic chain when the interatomic distance vanishes.
Effects similar to the one presented in this first part may also show to be
relevant for numerical approximation schemes where in certain cases a com-
petition between elastic energy and surface energy leads to wrong numerical
solutions, see [Ble06].

The second line of investigation is the use of many-body Hamiltonians
of Kac type to describe elastic deformations, phase changes and eventually
plastic deformations of a domain Ω ⊂ Rn without postulating a reference
configuration on the particle level. It is interesting to compare this ansatz to
[AO05], where a theory based on algebraic topology is developed.
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One of the aims is to make a connection with the existing theory on linear
elastic dislocations, see [TK76], [Mer79], [CC*97], [BC05].

2 Phase transitions with symmetry breaking

2.1 The energy functional

For given length L > 0, let Ω := (0, L) ⊂ R be a domain that contains a
regular monatomic chain.

We suppose that the undeformed discrete reference configuration of Ω is
given by a system of n+1 atoms with equal distance located at points Rn

i ∈ R,

Rn
i := ihn 0 ≤ i ≤ n.

Here, the setting hn := L/n defines for given number n ∈ N the interatomic
distance. The limit n → ∞ corresponds to hn ↘ 0. The superscript n is
always used to indicate the dependence on the number of subdivisions.

By R̂n
i , 0 ≤ i ≤ n we denote the position of atom i after the deformation.

Finally, by uni , 0 ≤ i ≤ n we denote the two-dimensional displacement vector
of atom i, given by the relationship

uni = R̂n
i −Rn

i , 0 ≤ i ≤ n.

For given deformations {uni }0≤i≤n we introduce the abbreviations

pni :=
uni+1 − uni

hn

and for shortness the numbers s1 := 1, s2 := 2 and s3 := 1
2 .

We will study the behaviour of the following energy functional.

Wn(un) :=
{

+∞ if pni = 0 for some i,∑3
k=1W

n
k (un) else

where

Wn
1 (un) :=

n−2∑
i=0

(hn)−α
3∏

k=1

∣∣∣sk − pni+1

pni

∣∣∣2, Wn
2 (un) :=

n−3∑
i=0

∣∣∣1− pni+2

pni

∣∣∣2,
Wn

3 (un) := hn
n−2∑
i=0

[(pni + pni+1

2
− α1

)2

βni +
(pni + pni+1

2
− α2

)2

γni

]
and

βni :=
[
1− (hn)−α

∣∣∣1− pni+1

pni

∣∣∣2]
+
, γni :=

[
1− (hn)−α

∣∣∣2− pni+1

pni

∣∣∣2∣∣∣1
2
−
pni+1

pni

∣∣∣2]
+
.
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Here, 0 < α < 1 and [x]+ = x for x ≥ 0 and [x]+ = 0 for x < 0.
The concept behind this ansatz is the following. A minimiser of Wn

1 either
fulfils pni+1 � pni which specifies one lattice order that is in the sequel referred
to as Phase 1, or pni+1 � 2pni resp. pni+1 � 1

2p
n
i which characterises Phase 2.

Wn
2 represents a surface energy. It counts(and limits) the number of tran-

sitions between the two phases, as within a phase one asymptotically has
pni+2 = pni . Finally, Wn

3 represents an elastic energy. We will show below that
βni converges in L1(Ω) to the indicator function of Phase 1 and γni to the
indicator function of Phase 2 as n→∞; αk is the elastic constant to Phase k.

The functional Wn
1 represents the electrostatic energy due to interatomic

potentials that force the atoms to positions of a certain given lattice order.
For the analysis we extend the discrete deformation values {uni }i, to piece-

wise linear functions un in L2(Ω)∩An, where An denotes the space of piece-
wise linear functions, see [BDG99].

2.2 Identification of the Γ -limit for W n

Now we can state the main result. It characterises the Γ -limit ofWn as n tends
to infinity. Let χ1 := χ, χ2 := 1− χ. For u ∈ H1,2(Ω), χ ∈ BV (Ω, {0, 1}) set

E(u, χ) :=
1
4

∫
Ω

|∇χ|+
2∑

k=1

∫
Ω

χk (u′ − αk)2.

Additionally we introduce W : L2(Ω) → R by

W (u) :=
{

infχ∈BV (Ω,{0,1})E(u, χ) if u ∈ H1,2(Ω) is strictly monotone,
+∞ else.

Theorem 2.1 (Characterisation of the Γ -limit of Wn).
The following statements are valid:
(i) The boundedness of the energy functional Wn(un) implies the boundedness
of

( ∫
Ω

|(un)′|2
)
n

uniformly in n.

(ii) W is the Γ -limit of Wn as n→∞ with respect to convergence in L2(Ω).

Proof of (i):
Step 1: Construction of the characteristic function χ:
By C we denote various positive constants that may change from line to line.

Let (un) ⊂ L2(Ω) be a sequence with Wn(un) ≤ C. We set

dik :=
∣∣∣pni+1

pni
− sk

∣∣∣, ki0 := argmin
{
k �→ dik

∣∣ 1 ≤ k ≤ 3
}
.

The boundedness of Wn
1 (un) implies
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n−1∑
i=0

(hn)−α
3∏

k=1

(
sk −

pni+1

pni

)2

≤ C.

Therefore there exists a constant C > 0 such that

sup
i
diki

0
≤ C(hn)α/2. (2.1)

For n large enough we can thus define an indicator function χn to Phase 1 by

χn(x) :=

⎧⎨⎩
0 if x ∈ [ihn, (i+ 1)hn), i ≤ n− 2, ki0 �= 1,
1 if x ∈ [ihn, (i+ 1)hn), i ≤ n− 2, ki0 = 1,

χn(L− 2hn) if x ∈ [L− hn, L].

Next we show that χn ∈ BV (Ω; {0, 1}), i.e.∫
Ω

|∇χn| ≤ C. (2.2)

This follows from the boundedness of Wn
2 (un). Since for large n

pni+1

pni
= sk + o(1) for some k ∈ {1, 2, 3},

we see that if χn(x) jumps in x = (i+ 1)hn between 0 and 1, then(
1−

pni+2

pni

)2

≥ 1
4

+ o(1)

which showsWn
2 (un) ≥

(
1
4+o(1)

) ∫
Ω
|∇χn| and proves (2.2). Here we adapted

the Landau notation and denote by o(1) terms that tend to 0 as n→∞.
With (2.2), well-known compactness results imply the existence of a subse-
quence (again denoted by) χn and a χ ∈ BV (Ω, {0, 1}) such that χn → χ in
L1(Ω).

Step 2: Convergence of βn, γn in L1(Ω):
We extend the discrete quantities {βni }i, {γni }i to piecewise constant func-

tions in L1(Ω) by the definition

βn(x) :=
{
βni if x ∈ [ihn, (i+ 1)hn) and i ≤ n− 2,
0 if x ∈ [L− hn, L].

In the same manner, the extension γn of {γni }i is defined.
Straightforward computations show

βn → χ, γn → (1− χ) in L1(Ω) for n→∞, (2.3)
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where the function χ ∈ BV (Ω, {0, 1}) is the limit of χn found in Step 1.

Step 3: Boundedness of
∫
Ω

|(un)′|2 uniformly in n:

We choose constants a ∈ R+, b ∈ R such that

min{(x− α1)2, (x− α2)2} ≥ ax2 − b.

Due to the boundedness of Wn
3 (un) we thus find that there exist constants

C1, C2 > 0 such that

C1 ≥ (hn)2C2

n−2∑
i=0

(pni+1 + pni
2

)2(
βni + γni

)
.

Since pni+1 = skp
n
i + o(1) for a k ∈ {1, 2, 3} and large n we find that(pni+1 + pni

2

)2

≥
(
1 +

1
2

+ o(1)
)(pni

2

)2

.

The term
(
βni + γni

)
can for large n be estimated from below by a constant.

So we find the existence of a constant C > 0 with

C ≥ (hn)2
n−2∑
i=0

(pni
2

)2

. (2.4)

Due to the estimate (pnn−1)2 ≤ (2+o(1))pnn−2 the sum in (2.4) can be extended
to i = n− 1 and the estimate still holds.

The sum
∑

i(p
n
i )2 is directly related to

∫
Ω
|(un)′|2 where un is the piecewise

affine linear extension of {uni }i. With (2.4) extended to i = n− 1 this yields

sup
n

∫
Ω

|(un)′|2 = sup
n

hn
n−1∑
i=0

(pni )2 ≤ C. (2.5)

Proof of (ii):
Step 4: Lower semicontinuity of Wn:

We have to show: for every sequence (un)n∈N with un → u in L2(Ω) there
exists a subsequence (unk)k∈N with

W (u) ≤ lim inf
k→∞

Wnk(unk).

For unbounded Wn(un) there is nothing to show. So let Wn(un) ≤ C for all
n. From (2.5) follows un, u ∈ H1,2(Ω) for all n ∈ N. Because of the reflexivity
of the Hilbert space H1,2(Ω) we know that there exists a subsequence (again
denoted by) un such that un ⇀ u, in H1,2(Ω) for n → ∞. From Step 2 we
know that χn → χ, βn → χ, γn → 1 − χ in L1(Ω) for n → ∞. Because of
pn

i+1
pn

i
≥ 1

2 + o(1), for n ≥ n0 we find that un is monotone for large n.
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Now we estimate Wn(un) from below. We claim

lim inf
n→∞

Wn(un) ≥ E(u, χ) ≥W (u). (2.6)

With the help of Theorem 3.4, p.74 in [Dac89], the proof of (2.6) is straight-
forward, estimating every component of Wn(un) separately.

Step 5: Existence of a ”recovery sequence”:
We have to find a sequence (un) ⊂ L2(Ω) converging to u in L2(Ω) with

W (u) ≥ lim sup
n→∞

Wn(un).

If W (u) = +∞, there is nothing to show. Due to the monotonicity prop-
erties of u demonstrated above we know that the functional χ �→ E(u, χ) is
bounded from below in the BV-norm. Using the compactness properties of
BV (Ω) and the coercivity of E, it is clear that E(u, ·) attains its minimum,
i.e. W (u) = E(u, χ) for some χ ∈ BV (Ω, {0, 1}).

Next we show that for piecewise affine, strictly monotone u there exists
a sequence un with un → u and Wn(un) → E(u, χ). We start with special
cases, then generalise.
Case 1: u′ ≡ a1 > 0, χ ≡ const in Ω:
(a) χ ≡ 1 in Ω: We simply set un := u for all n.
(b) χ ≡ 0 in Ω: For x > 0 choose un such that pni is alternating between 2

3a1

and 4
3a1. Furthermore un satisfies un(x = 0) = u(x = 0).

Case 2: u′ ≡ a1 > 0, χ ≡ 1 for 0 ≤ x ≤ L
2 , χ ≡ 0 for x > L

2 .
The treatment of this case is more difficult. It is not possible to directly

combine the two ansatz functions for un of Case 1 because for one index i this
would mean pni = a1h

n and either pni+1 = 2
3a1h

n or pni+1 = 4
3a1h

n, leading to
limn→∞Wn

1 (un) = ∞.
Therefore we have to introduce a transition layer of width (hn)s between

the two phases, where s > 0 is a small constant to be chosen later. We define

ϕn(x) :=

⎧⎨⎩
a1 for 0 ≤ x ≤ L

2 ,
a1 + a1

3 (hn)−s(x− L
2 ) for L

2 < x ≤ L
2 + (hn)s,

4
3a1 for L

2 + (hn)s < x ≤ L.

We set un such that un(x = 0) = u(x = 0) and

pni :=
{

ϕn(ihn) for ihn ≤ L
2 ,

1
2ϕ

n(ihn), ϕn(ihn) alternating for ihn > L
2 .

With this construction, the proof of convergence to 0 of the pni -terms in
Wn

1 is straightforward. Hence Wn
1 (un) → 0 as n→∞.

For the estimation of the functional Wn
2 (un) we have∣∣∣1− pni+2

pni

∣∣∣2 =
∣∣∣1− 1

2
ϕn((i+ 2)hn)
ϕn(ihn)

∣∣∣2 =
∣∣∣1
2
− 1

2
ϕn(ihn)− ϕn((i+ 2)hn)

ϕn(ihn)

∣∣∣2.
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For I := ϕn(ihn)−ϕn((i+2)hn)
ϕn(ihn) simple computations yield

I =

⎧⎪⎪⎨⎪⎪⎩
0 if (ihn > L

2 ) or ((i+ 1)hn ≤ L
2 )

or (L2 < ihn ≤ L
2 + (hn)s and (i+ 2)hn > L

2 + (hn)s),
−sk(hn)1−s if (ihn > L

2 and (i+ 2)hn ≤ L
2 + (hn)s)

or (ihn ≤ L
2 and L

2 < (i+ 1)hn ≤ L
2 + (hn)s).

and for 0 < s < 1 the convergence of Wn
2 (un) to 1

4 can be assured.
For the estimation of Wn

3 (un), it is clear that outside the strip of width
(hn)s the summands in Wn

3 (un) equal (hn)s
[
χ(a1−α1)2 +(1−χ)(a1−α2)2

]
.

Inside the strip, we have approximately (hn)s−1 summands, where each sum-
mand is of the form (hn)C. Thus, the part inside the strip tends to 0 for
n→∞ as long as s > 0.

Case 3: General χ ∈ BV (Ω; {0, 1}) and piecewise affine, monotone and con-
tinuous u: The construction of un can be done by iteratively applying the
construction given in Case 2.

Case 4: General monotone u ∈ H1,2(Ω):
Let u be a generic monotone function in H1,2(Ω) and let {un} be a se-

quence in An such that un → u in H1,2(Ω). For every n we can apply
Case 3 to find a sequence {wn

l }l such that wn
l → un in L2(Ω) as n → ∞

and lim suplW l(wn
l ) ≤W (un). Then we have

lim sup
n→∞

lim sup
l→∞

W l(wn
l ) ≤ lim sup

n→∞
W (un) = W (u), (2.7)

where (2.7) holds because of the strong convergence of un to u in H1,2(Ω). By
diagonalisation, we find a sequence ũn := wn

l(n) such that ũn → u in L2(Ω)
and lim supn→∞Wn(ũn) ≤W (u, v). *+

3 An atomistic model for phase transitions of elastically
stressed solids

In this section we present work planned for the last year of support within
the priority program. We start with the following Hamiltonian that has been
proposed by S. Luckhaus,

H({xi}i∈I) :=
∫
Ω

ψ(x, {xi}i∈I)dx,

with

ψ(x, {xi}i∈I) = inf
A,τ,α

[∑
i∈I

ψ
(x− xi

λ

)
Wα(Axi + τ) + F (A)

]
. (3.1)
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Here, I is a finite index set, {xi}i∈I denotes the positions of the atoms, Wα

is a periodic, non-negative potential whose zeros are on the unstrained lattice
Λα corresponding to phase α; F plays the role of an elastic energy, and ψ is
a cutoff function, λ ∈ R+ a scaling parameter. For a spatial point x ∈ Ω,
the infimum in (3.1) is taken with respect to deformations A = Ax ∈ GL(n),
translations τ = τx ∈ Rn and phase α.

In a suitable way, Wα can be interpreted as a mean field Hamiltonian that
is acting on the ’one-particle density’.

This Hamiltonian gives a reasonable description for states which have a
lower and upper density close to that of a sheared lattice. One way to in-
corporate this restriction on the level of the Hamiltonian itself could be to
define

ψ̃(x, {xi}i∈I) = inf
A,τ,α

(∑
i∈I

ψ
(x− xi

λ

)
Wα(Axi + τ) + F (A)

+
∫
Ω

ψ
(x− y

λ

)[
δ −Wα(Ay + τ)−

∑
i∈I

ϕ(y − xi)
]
+
dy

)
and to set

h̃({xi}i∈I) :=
∫
Ω

ψ̃(x, {xi}i∈I) +
∑
i�=j

ϕ(xi − xj).

In the last line, ϕ may have compact support or can be a hard core potential,
the positive part [z]+ of z is [z]+ := z for z ≥ 0 and [z]+ := 0 for z < 0.

If λ is large it makes sense to speak of the open connected sets where

ψ̃(x, {xi}i∈I) < o(λn)

as the domains of one elastic phase.
For x in these phase domains we conjecture that the minimal Ax, τx, αx

satisfy that (Ax, τx) is unique modulo the affine isotropy group of the lattice,
and αx is constant in each domain.

A precise (and hopefully not too restrictive) estimate when this is the case
is currently work in progress.

If one assumes the uniqueness of Ax, τx and the constancy of αx in a
simply connected subdomain Ω̃, then one may construct an elastic deforma-
tion Φ such that the projection of Φ−1(x) is τx and such that ∇(Φ−1)x has a
projection close to Ax.

Without assuming simple connectedness of Ω̃ there may be an obstruction
to the existence of Φ. Topologically speaking this obstruction is a homomor-
phism

B : π1(Ω̃) → Λα

from the group of affine mappings into the lattice corresponding to phase α.
If the linear component is the identity, B coincides with the Burgers vector.
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Since the functional – in terms of A – is automatically invariant under the
lattice group, it does not make sense to investigate energy minimisers. It is
well-known that energy minima do not sustain shear, [FT89].

So, the question is to characterise metastable states. This is completely
open at this time.
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