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Abstract:

A mathematical model for chalcopyrite disease
within sphalerite is developed. As one main result,
by analysing the system enthalpy, correct expres-
sions for the reaction terms in a sytem undergoing
phase transitions are worked out. For the resulting
equations, the thermodynamical validity is shown
and the existence of a unique solution is proved.

1



1 Introduction

In the present work we are concerned with diffusion-induced segregation
(DIS) phenomena. This class is characterised by segregation processes that
can only take place after a sufficient amount of a diffusor has penetrated the
crystal. We will exemplary study the so-called chalcopyrite disease within
sphalerite, which is a well-known and extensively-discussed problem arising
in geology and a particular example of DIS, but the techniques developed
here apply as well for other DIS phenomena.

In [3], a first model for chalcopyrite disease has been developed, [3]
also provides references to the mineralogical experiments and illuminates
the physical background. But as a deeper thermodynamical analysis in this
article reveals, the reaction terms chosen in this first model are only approxi-
mately true and will in general depend on the phase parameter (the function
χ introduced later on). The principles worked out are quite general and will
apply whenever reactions and phase transitions take place simultaneously.
The presentation is completed by showing existence and uniqueness of the
solutions.

2 Derivation of the revised model

Let us consider the following reaction diffusion equations

∂tci = div(Ji) + ri =

(∑

l

∂

∂xl

Ji,l

)
+ ri, i = 1, . . . , 4. (1)

In (1), ci = ci(x, t) denotes the relative number of species i, i = 1, . . . , 4
per available lattice point at time t and space point x ∈ Ω, Ω a (time-
independent) domain in RD, 1 ≤ D ≤ 3. By T0 > 0 we denote a stop time
and by ΩT0 := Ω× (0, T0) a cylinder in space-time.

We introduce the notations

c1 ≈ Fe3+, c2 ≈ Fe2+, c3 ≈ Cu+, c4 ≈ Zn2+, c5 ≈ vacancies.

c1 satisfies c1 =
N3+

Fe

NMe
, where NFe3+ is the number of Fe3+ atoms and NMe is

the number of metal ion sites. Similar relationships hold for c2, c3 and c4. It
is an essential property of this formulation that there is no equation for c5,
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but the vacancy concentration is obtained implicitly by the conservation of
mass

c5 = 1−
4∑

i=1

ci.

In (1), ri denote the reaction terms and Ji the fluxes of metal ions of
species i. The reaction terms model the jumps of the electrons. A first
ansatz is r = (r1,−r1, 0, 0) and (see (22) below for explanation)

r1 = k(c2
2 − κc1ce),

where k > 0 and kκ > 0 are the reaction rates and ce denotes the electron
concentration. If we assume that all sulphur places are occupied by S2−, by
the condition of electric neutrality we can compute

ce = 2− 3c1 − 2c2 − c3 − 2c4

= 2− 2(c1 + c2 + c3 + c4)− c1 + c3

= 2c5 − c1 + c3. (2)

In the presence of phase transitions the reaction rates may not be chosen to
be constants, as we shall see below.

Onsager’s postulate, [11], [12] states that each thermodynamic flux is
linearly related to every thermodynamic force. Since in our case the thermo-
dynamic forces are the negative chemical potential gradients, we obtain the
phenomenological equations, see [10], p.137,

Ji =
4∑

j=1

Lij∇µj, 1 ≤ i ≤ 4, (3)

with a constant mobility matrix L. The Onsager reciprocity law, [11], [12],
[10] states that L has to be symmetric which we assume in the following. To
simplify the existence theory we will further assume in the sequel that L is
positive definite. By

µj =
∂f

∂cj

we denote the chemical potential.
In this work the temperature T is held constant reflecting the situation

of the mineralogical experiments. Let f denote the Helmholtz free energy
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density of the system, which is the convex hull of the free energy density of
f1, f2 with f1 for chalcopyrite, f2 for sphalerite. Hence, the two different
phases or lattice orders are characterised by two different free energies, and
f is the convex hull of f1 and f2.

For order-disorder phase transitions, we make the first ansatz

fl = fl(c) = kBT

5∑
i=1

βl
ici ln ci +

3∑
i=1

Eici +

(
4∑

i=1

αici

)2

, l = 1, 2. (4)

The elastic coefficients αi do not change for both phases, only the βl
i differ.

The convex terms ci ln ci are motivated by considerations from statistical
mechanics on the system entropy by counting the different configurations.
The term

∑3
i=1 Eici refers to the system enthalpy and is a consequence of

the presence of the Fe-reaction. It will be discussed in the subsequent section.
The expression (

∑4
i=1 αici)

2 is a consequence of Hooke’s law. The con-
stants αi correspond to the ion radii and measure the volume response when
replacing Zn2+ by other metal ions. In (4), the β1

i , β2
i are positive constants

and kB is the Boltzmann constant.
Eq. (4) is a very reasonable term for a numerical computation, since (4)

implies infinite slope of Dfl if one component cj approaches 0 or 1. This
guarantees, see [13],

cj ∈ (0, 1) in Ω, t > 0 (5)

and cj has physical meaning. As there is no maximum principle for systems
of equations, without the logarithmic terms in (4), Condition (5) may be
violated even if cj ∈ (0, 1) holds for t = 0.

At this stage, a control mechanism for the segregation process is intro-
duced. The following principle is well known. Let χ = χ(x, t) ∈ [0, 1] be
a function that measures the volume fraction of the chalcopyrite phase; e.g.
χ(x0, t0) = 0 means that for t = t0 in x0 ∈ Ω only the sphalerite phase is
present, χ(x0, t0) = 1

2
that the system is in x0 in an intermediate state with

no dominant phase.
Let γ > 0 be a small constant, denoting the square of the thickness of the

interface between sphalerite and chalcopyrite phase. We define the density
of the mixing entropy sM by

sM(χ) = W (χ) +
γ

2
|∇χ|2, (6)
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with the double-well potential

W (χ) := χ ln χ + (1− χ) ln(1− χ). (7)

Since f := conv(f1, f2), we will consider f as the convex combination of f1

and f2. Because sM is subtracted from the entropy density s, the thermody-
namic relation f = e− Ts thus implies

f(c, χ) := χf1(c) + (1− χ)f2(c) + TsM(χ). (8)

The phase parameter χ is governed by the modified Allen-Cahn equation

τ∂tχ = −∂χ

(
f

T

)
= γ4χ− ω(c, χ), (9)

where γ4χ comes from the first variation of − ∫
Ω

γ
2
|∇χ|2 w.r.t. χ and τ is a

scaling parameter to adjust the different time scales between mass diffusion
and growing of the chalcopyrite phase. The driving force ω in (9) is given by

ω(c, χ) := ln

(
χ

1− χ

)
+ m(c). (10)

The value m(c) accounts for the growing of chalcopyrite in copper rich regions
and is gained implicitly by τ∂tχ = −∂χ(f/T ). Since so far the final formula
for f has not been derived, we will postpone the discussion of this term and
of the mechanism responsible for the growing of chalcopyrite in copper rich
regions. The final definition of ω is given in (29).

3 An enthalpy principle for a purely reactive

system

We want to incorporate the electron jumps by including reaction terms in the
model. The reactions are represented in the free energy by enthalpic terms.
To understand the nature of these enthalpic terms, we consider a purely
reactive system without diffusion and derive general properties of reactive
systems.

Let the domain Ω comprise of substances A, B, C and D subject to the
reactions

A + B
r+→ C + D,

A + B
r−← C + D.
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Let c̃1, c̃2, c̃3 and c̃4 denote the concentration of substances A, B, C and D
where we assume

4∑
i=1

c̃i = 1. (11)

In the language of partial differential equations, these reactions can be writ-
ten as, see [8],

∂tc̃1 = ∂tc̃2 = −r+c̃1c̃2 + r−c̃3c̃4,

∂tc̃3 = ∂tc̃4 = +r+c̃1c̃2 − r−c̃3c̃4. (12)

From statistical mechanics we infer

r+ = exp
(Ẽ1 + Ẽ2 − ẼS

kBT

)
,

r− = exp
(Ẽ3 + Ẽ4 − ẼS

kBT

)
, (13)

where Ẽ1+Ẽ2 is the energy level before the reaction A+B → C+D, Ẽ3+Ẽ4

the energy level after the reaction. ẼS is the activation energy or sattle point
energy that has to be exceeded to start the reaction.

For the free energy we make the ansatz

F̃ (c̃) =

∫

Ω

kBT

4∑
i=1

c̃i

(
ln c̃i +

Ẽi

kBT

)
. (14)

Now we will show the following properties of F̃ :

∂tF̃ (c̃(t)) = 0 iff ∂tc̃i = 0, 1 ≤ i ≤ 4, (15)

∂tF̃ (c̃(t)) ≤ 0, (16)

F̃ (c̃(t)) is critical iff ∂tc̃(t) = 0. (17)

In order to show (15), (16), after setting

R := −r+c̃1c̃2 + r−c̃3c̃4 = ∂tc̃1 = ∂tc̃2 = −∂tc̃3 = −∂tc̃4,

elementary computations yield

∂tF̃ (c̃) =

∫

Ω

kBT R
[
ln

( c̃1c̃2

c̃3c̃4

)
+

Ẽ1 + Ẽ2 − ẼS

kBT
− Ẽ3 + Ẽ4 − ẼS

kBT

]

=

∫

Ω

kBT R ln
[( c̃1c̃2

c̃3c̃4

)(r+

r−

)]
. (18)
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We observe

ln
( c̃1c̃2 r+

c̃3c̃4 r−

)
= 0 iff c̃1c̃2 r+ = c̃3c̃4 r−

and together with (18) we find (15). Eq. (18) directly implies the free energy
inequality (16). To see this, let us consider the two mutual exclusive cases:

(A) R ≥ 0 ⇐⇒ c̃3c̃4r− ≥ c̃1c̃2r+ ⇐⇒ ln
( c̃1c̃2 r+

c̃3c̃4 r−

)
≤ 0,

(B) R < 0 ⇐⇒ c̃3c̃4r− < c̃1c̃2r+ ⇐⇒ ln
( c̃1c̃2 r+

c̃3c̃4 r−

)
> 0.

This discussion reveals the natural structure of the problem,

((ln(c̃1c̃2 r+)− ln(c̃3c̃4 r−))(c̃3c̃4 r− − c̃1c̃2 r+) ≤ 0, (19)

from which we unconditionally infer ∂tF̃ (c̃(t)) ≤ 0. We see that the canonical
structure of the problem goes along with the ansatz of the free energy.

A critical point c̃ of F̃ is characterised by

ln c̃l +
Ẽl

kBT
+ 1 = 0 for 1 ≤ l ≤ 4. (20)

This implies ∂tc̃i = 0, 1 ≤ i ≤ 4 because from (20) it follows with (13)

ln(c̃1c̃2r+) = −2,

ln(c̃3c̃4r−) = −2

and when subtracting the last two identities we find

ln
( c̃1c̃2 r+

c̃3c̃4 r−

)
= 0.

This implies at once ∂tc̃i = 0, 1 ≤ i ≤ 4. The other implication in (17) is
shown similarly.

4 Derivation of the complete model

Eq. (19) reveals the underlying structure of reaction-diffusion equations
which allows to discuss the reaction terms and give a complete description
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of the model. The swift jumps of the electrons are integrated into the model
by two reactions

Fe2+ k→ Fe3+ + e−,

Fe2+ κk← Fe3+ + e−. (21)

Here, e− is a free lattice electron and k, κk are reaction rates. A formula for
ce has already been found with (2).

The standard approach to model Reactions (21) analogous to Eq. (12) is

r1 = k(c2
2 − κc1ce) (22)

The principles leading to (22) are carefully explained in [8]. But as we will
show, (22) is wrong in our case as the rates will depend on χ! With the
knowledge of (19) we can obtain a consistent formulation of r that generalises
(22). In this generalisation, the rates will depend on χ.

To perfectly adjust the model, we first remind that the oxidation of Fe is
caused by swift shifts of the electrons and occurs thus much faster than any
other process, i.e. faster than diffusion. Hence, it is reasonable to assume
that this oxidation is instantaneous. Thus we will replace the equation for
c1 by a stationary elliptic equation.

Secondly, due to electric neutrality, we postulate

c5 =
1

2
c1. (23)

This condition was found experimentally in [2] long before a mathematical
model had been developed. Eq. (23) is the key to finding a consistent formu-
lation for the reaction term. There is one difficulty here because (23) tells
us that the movement of the vacancies is on the same fast time scale as the
movement of the free electrons. We will bypass this problem by demanding
∂tc5 = 0 in the derivation of the reaction term in (27). All crystallographic
measurements verify Relation (23), but the quick electron jumps are beyond
the resolution horizon of todays methods.

As main consequence of (2) and (23) we find

ce = c3. (24)

To end up with the reaction terms having the structure of (19), the logarithms
have to have the same factors. Hence we assume

βl
1 +

βl
5

2
= βl

2 = βl
3 = βl

4 =: bl, l = 1, 2.
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The final form of the free energy (4) is thus

fl(c) = kBTbl

4∑
i=1

ci ln ci +
3∑

i=1

ciEi +
( 4∑

i=1

αici

)2

, l = 1, 2. (25)

Combined, (8) and (25) define the free energy.

F (c, χ) =

∫

Ω

f(c, χ)=

∫

Ω

[
kBTbχ

( 4∑
i=1

ci ln ci

)
+

3∑
i=1

ciEi+
( 4∑

i=1

αici

)2

+
γT

2
|∇χ|2 + TW (χ)

]
. (26)

Here we introduced the abbreviation bχ := χb1 + (1− χ)b2. The rates fulfil

r+ = kκ = exp
(E1 + E3 − ES

kBT

)
, r− = k = exp

(2E2 − ES

kBT

)
.

We can give a quick motivation for the correct reaction term by considering
again a purely reactive system, this time with phase changes. If we consider
the oxidation process alone (without diffusion!) we have

∂tc4 = ∂tc5 = 0 (27)

and from ∂tc1 = ∂tc3 and
∑5

i=1 ci = 1 we infer ∂tc2 = −2∂tc1. With these
constraints we compute ∂tF (c(t), χ(t)) for the free energy (26), where we can
drop (

∑4
i=1 αici)

2 (the estimation of this term is possible as in Section 5).
We find

∂tF (c(t), χ(t)) =

∫

Ω

[
kBT bχ∂tc1 ln

(c1c3

c2
2

)

+
E1 + E3 − ES

kBT
− 2E2 − ES

kBT
− (∂tχ)2

]

=

∫

Ω

[
kBT bχ∂tc1 ln

(c1c3(r+)1/bχ

c2
2(r−)1/bχ

)
− (∂tχ)2

]
.

The consistent form of the reaction term that replaces (22) is hence

r1 = r3 = −1

2
r2 = (k)1/bχ

(
c2
2 − κ1/bχc1c3

)
, r4 = 0. (28)
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b1 and b2 should be in the magnitude of 1 and for b1 = b2 there would be no
χ dependence. For b1 = b2 = 1 we fall back to standard formulas of r.

It remains to discuss the control mechanism for the chalcopyrite phase.
(26) together with τ∂tχ = −∂χ(f/T ) = γ4χ− ω(c, χ) gives rise to setting

ω(c, χ) = W ′(χ) + kB(b2 − b1)
( 4∑

i=1

ci ln ci + α
)
. (29)

Here, α > 0 is a temperature-dependent constant. Additive constants occur
in (26) because one can only measure the change δF of F when varying a
quantity q, commonly temperature or volume, within some interval (q0, q1),
finding the expression

∫ q1

q0
δF for F . Frequently, we will set α := ln 3.

To understand the principle of the control mechanism, we first freeze c1,
c2 and c4 and consider for constants α > 0, β > 0, see Fig. 1,

ω(c3, χ) = W ′(χ) + m(c3),

m(c3) = βc3 ln c3 + α.

The mechanism thus obtained is similar to the one commonly used in phase
field models, where c3 plays the role of temperature. From convexity of m(c3)
and from the magnitude of α and β, we get the existence of x1, x2 ∈ (0, 1),
x1 < x2 with m(c3) > 0 for c3 ∈ (0, x1) ∪ (x2, 1) and m(c3) < 0 for c3 ∈
(x1, x2). Consequently for c3 < x1, the sphalerite phase is preferred, whereas
for x1 < c3 < x2, chalcopyrite can form. In practice, the branch c3 > x2

is never reached, and the chalcopyrite phase once it has formed does not
destabilise at a later time.

Expression (29) is symmetric w.r.t. the variables c1, . . . , c4 and so the
mechanism just explained also applies for the other variables. Yet there is
unsymmetry which comes from the initial values for c. If we consider Fig. 1
again, this time imagining it as a function of c1, then due to c1(t = 0) one
will stay in the part (0, x1). Hence, the reason why c3 is mainly responsable
for controling the chalcopyrite disease is caused by the size of initial values
c(t = 0). Now, the derivation of the model is complete.

Find for t ≥ 0 the vector (c1, c2, c3, c4), χ such that in Ω ⊂ RD for t > 0

0 = div

(
4∑

j=1

L1j∇µj

)
+ k1/bχ(c2

2 − (κ)1/bχc1c3),
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∂tci = div

(
4∑

j=1

Lij∇µj

)
+ ri(c, χ), i = 2, 3, 4,

µi =
∂f

∂ci

(c, χ), 1 ≤ i ≤ 4,

τ∂tχ = γ4χ− ω(c, χ)

and for t = 0, x ∈ Ω

ci(x, 0) = c0i(x), i = 2, 3, 4

χ(x, 0) = χ0(x)

and for t > 0, x ∈ ∂Ω

ci = gi, 1 ≤ i ≤ 4,

µi = hi, 1 ≤ i ≤ 4 (30)

with given Dirichlet data g = (g1, . . . , g4) and h = (h1, . . . , h4) defined on ∂Ω.

5 The free energy inequality

We will show the thermodynamical correctness of System (30) under isother-
mal conditions, where the approximating elliptic equation is replaced by the
original time-dependent formulation. It is suitable to reformulate (30).

∂tc + div(J) = r, (31)

τ∂tχ = −∂f

∂χ
, (32)

where
J = −L∇µ

and r is defined by (28). An application of the chain rule yields

d

dt
f(c, χ) =

4∑
j=1

∂f

∂cj

∂tcj +
∂f

∂χ
∂tχ. (33)

From (33) we learn that we have to test the equation for ci with ∂f
∂ci

= µi,

1 ≤ i ≤ 4 and Eq. (32) with ∂f
∂χ

. After integrating over Ω, one integration by
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parts we obtain

d

dt

∫

Ω

f(c, χ)−
∫

Ω

( 4∑
j=1

µjrj+
4∑

j=1

∇µj ·Jj+
∂f

∂χ
∂tχ

)
+

∫

∂Ω

4∑
j=1

µjJj ·~ν = 0. (34)

This is the constitutive equality for the Helmholtz free energy density f .
To recast (34) as an inequality, we have as the matrix L is positive definite

4∑
j=1

∇µj · Jj = −L∇µ : ∇µ ≤ 0. (35)

Additionally, by (32), we have ∂f
∂χ

∂tχ = −τ(∂tχ)2 ≤ 0. It remains to show

∫

Ω

4∑
j=1

µjrj ≤ 0. (36)

We exploit the particular form of r and f and Structure (19). Let Q(c) :=∑4
i=1 αici. Since r1 = r3 = −1

2
r2, r4 = 0 we have

∫

Ω

4∑
j=1

µjrj =

∫

Ω

(µ1 − 2µ2 + µ3)r1

=

∫

Ω

[
kBT bχ

(
ln

(c1c3

c2
2

)
+

E1 + E3 − ES

kBT bχ

− 2E2 − ES

kBT bχ

)

+2(α1 − 2α2 + α3)Q(c)

]
r1

=

∫

Ω

[
kBT bχ ln

(c1c3(r+)1/bχ

c2
2(r−)1/bχ

)
+ 2(α1 − α2 + α3)Q(c)

]
r1.

The first term can be estimated analogous to (19):

∫

Ω

kBTbχ ln
(c1c3(r+)1/bχ

c2
2(r−)1/bχ

)
r1 ≤ 0 (37)

but to estimate
∫
Ω

2(α1− 2α2 + α3)Q(c)r1 additional considerations are nec-
essary. The logarithmic form (26) of the free energy guarantees ci > 0 in
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ΩT0 for t > 0 if this is true for t = 0. In Section 6 a rigorous proof of this
statement will be given. Hence we obtain Q(c) > 0 in ΩT0 . Let

σ1 := sup
x∈Ω

c1(x, 0), σ2 := inf
x∈Ω

c02(x), σ3 := sup
x∈Ω

c03(x), (38)

where σ1, σ2, σ3 are positive constants. By the parabolic maximum principle,
[13], as for fixed c2, c3, χ the mapping c1 7→ r1(c, χ) decreases as c1 increases,
and (now for fixed c1, c3, χ) c2 7→ r1(c, χ) increases and finally c3 7→ r1(c, χ)
decreases, we have σ1 = supΩT0

c1, σ2 = infΩT0
c2 and σ3 = supΩT0

c3.

Now a sufficient condition for r1 > 0 in ΩT0 is

κ1/bχ <
σ2

2

σ1σ3

. (39)

We remark that in the crystallographic measurements, the ratio constant κ
never exceeded a value of 0.07 (otherwise the matrix becomes unstable). For
an estimate of the volume term we require

α1 − 2α2 + α3 < 0. (40)

This is a condition on the ion radii of Fe3+, Fe2+ and Cu+ and fulfiled in
nature, see Table 1.

Together with r1 > 0 and the above estimate this shows
∫
Ω

2(α1 − 2α2 +
α3)Q(c)r1 < 0. Hence, (36) is proved and we have shown the constitutive
free energy inequality

d

dt

∫

Ω

f(c(t), χ(t)) +

∫

∂Ω

4∑
j=1

µjJj · ~ν ≤ 0. (41)

In a thermodynamically closed system the fluxes on ∂Ω disappear. Hence we
impose as condition on the Dirichlet data

hi = 0, 1 ≤ i ≤ 4.

Instead we could impose the Neumann boundary conditions ∂νµj = 0, 1 ≤
j ≤ 4 on ∂Ω.
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6 Existence of weak solutions for polynomial

free energy

The rest of the article is devoted to the proof of global existence and unique-
ness of a solution to the sharp interface model (30) with classical Dirichlet
boundary conditions, i.e. g = h = 0, and with the elliptic equation in (30)
replaced by the original parabolic equation. The proof of existence is done
in three steps. An additional (and artificial) surface energy term

∫
Ω

λ
2
|∇c|2

is added to the free energy functional leading to a diffuse interface model.
This term is necessary to guarantee the existence of a minimiser (Lemma 1).
The first part is contained in sections 7-13 and discusses the case of poly-
nomial free energies for this diffuse interface model. Then we generalise to
logarithmic free energies and finally the limit λ ↘ 0 is carried out. Some of
the techniques used in the following sections were developed for the Cahn-
Hilliard model, we mainly refer to [5], [6], [1] and in particular [7].

7 Preliminaries

In what follows, f = f(c, χ) denotes the free energy density without the
surface energy terms γ

2
|∇χ|2 + λ

2
|∇c|2. C will denote generic constants that

can change from estimate to estimate. With the additional surface term the
model is
Find for t ≥ 0 the vector (c, µ, χ) such that in ΩT0 := Ω× (0, T0)

∂tc = div(L∇µ) + r(c, χ),

µ(c, χ) =
∂f

∂c
(c, χ)− λ4c,

τ∂tχ = γ4χ− ω(c, χ)

and for t = 0 in Ω

c(·, 0) = c0(·), χ(·, 0) = χ0(·)

and for t > 0 in ∂Ω

ci = µi = 0, 1 ≤ i ≤ 4. (42)

T0 > 0 denotes the stop time, ω = ∂χf , and r(c, χ) is given by (28).
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Now, let us collect general properties of the model and some necessary
tools that will be needed in the sequel. As a consequence of the assumed
relation (23) the concentration vector c lies in the simplex

c ∈ Σ :=
{

d = (d1, . . . , d4) ∈ R4
∣∣∣ 3

2
d1 + d2 + d3 + d4 = 1

}
. (43)

We do not propose 0 ≤ ci ≤ 1 in Ω because for the polynomial free energies
considered here this is simply not true. This is one of the reasons why
logarithmic free energies are introduced later on. Let

X1 :=
{

c ∈ H1,2
0 (Ω;R4)

∥∥∥ c ∈ Σ almost everywhere
}

,

X2 := H1,2(Ω;R).

Since we have (classical) Dirichlet boundary conditions for the equations of
conservation of mass, we consider the space of test functions

Y := H1,2
0 (Ω;R4)

and its dual
D := (H1,2

0 (Ω;R4))′ = H−1,2(Ω;R4).

Let us now consider the mapping L(µ) : Y → D corresponding to µ 7→
−div(L∇µ) with Dirichlet boundary conditions, defined by

L(µ)(ζ) :=

∫

Ω

L∇µ : ∇ζ.

To simplify the argumentation later we will need the inverse G of L. The
existence of G is derived from the Poincaré inequality and the Lax-Milgram
theorem, since L is positive definite. From this we find that G is positive
definite, self-adjoint, injective and compact. Hence we have

(L∇Gv,∇ζ)L2 = (ζ, v) for all ζ ∈ Y and v ∈ D.

We define for v1, v2 ∈ D the L scalar product by

(v1, v2)L := (L∇Gv1,∇Gv2)L2

with the corresponding norm

‖v‖L :=
√

(v, v)L.
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Functions v ∈ Y canonically define an element in Y and consequently, (·, ·)L

and ‖ · ‖L are as well defined for elements in Y .
With the help of Young’s inequality we find for δ > 0 and all d ∈ Y

‖d‖L2 = (L∇Gd,∇d)L2

≤ ‖L 1
2∇Gd‖L2‖L 1

2∇d‖L2

≤ CL

δ
‖d‖2

L + δ‖∇d‖2
L2 , (44)

where CL is a positive constant depending on L.
The Green’s function G allows to rewrite the conservation of mass equa-

tions as

G(∂tc− r(c, χ)) = µ :=
( ∂f

∂cj

)
1≤j≤4

. (45)

8 The weak formulation of the problem

We call a triple (c, µ, χ) ∈ L2(0, T0; H1,2
0 (Ω;R4)) × L2(0, T0; H1,2

0 (Ω;R4)) ×
L2(0, T0; H1,2(Ω;R)) with r(c, χ), ω(c, χ) ∈ L1(ΩT0) a weak solution of (42) if

−
∫

ΩT0

∂tξ · (c− c0) +

∫

ΩT0

L∇µ : ∇ξ −
∫

ΩT0

r(c, χ)ξ = 0 (46)

for all ξ ∈ L2(0, T0; H1
0 (Ω;R4)) with ∂tξ ∈ L2(ΩT0), ξ(T0) = 0, and

∫

ΩT0

µ · η =

∫

ΩT0

(∂f

∂c
(c) · η + λ∇c · ∇η

)
(47)

for all η ∈ L2(0, T0; H1
0 (Ω;R4)) ∩ L∞(ΩT0 ;R4), and

−
∫

ΩT0

τ∂tζ(χ− χ0) +

∫

ΩT0

γ∇χ · ∇ζ −
∫

ΩT0

ω(c, χ)ζ = 0 (48)

for all ζ ∈ L2(0, T0; H1(Ω;R)) with ∂tζ ∈ L2(ΩT0), ζ(T0) = 0.
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9 A semi-implicit time discretisation

We fix an M ∈ N and set h := T0

M
. For m ≥ 1 and given (cm−1, µm−1, χm−1) ∈

H1,2
0 (Ω;R4)×H1,2

0 (Ω,R4)×H1,2(Ω;R),

cm − cm−1

h
= div(L∇µm) + r(cm−1, χm−1),

µm =
∂f

∂c
(cm, χm)− λ4cm,

τ
χm − χm−1

h
= γ4χm + ω(cm, χm) (49)

defines the implicit time discretisation of System (42) except for the reaction
term r that has been treated explicitly. Therefore, we call the resulting
scheme semi-implicit. In (49), ω(c, χ) = ∂χf(c, χ) and for the subsequent
sections, let rm−1 := r(cm−1, χm−1).

10 Structural Assumptions

In order to be able to establish the existence of weak solutions in the sense
of Section 8, the following assumptions are made:
(A1) Ω ⊂ RD is a bounded domain with Lipschitz boundary.
(A2) The free energy density f can be written as

f(c, χ) = f 1(c, χ) + f 2(c, χ) for all c ∈ R4, χ ∈ R
with f 1, f 2 ∈ C1(R4 × R;R) and f 1(·, χ) convex for every χ ∈ R, f 1(c, ·)
convex for every c ∈ R4. Furthermore,
(A2.1) f 1 ≥ 0.
(A2.2) There exists a constant C1 > 0 such that

|∂cf
2(c, χ)| ≤ C1(|c|+ 1) for all c ∈ Σ, χ ∈ R,

|∂χf 2(c, χ)| ≤ C1(|χ|+ 1) for all c ∈ Σ, χ ∈ R.

(A2.3) For all δ > 0 there exists a constant Cδ > 0 such that

|∂cf
1(c, χ)|+ |∂χf 1(c, χ)| ≤ δf 1(c, χ) + Cδ for all c ∈ Σ, χ ∈ R.

(A3) The initial data (c0, χ0) fulfils

f(c0, χ0) < ∞, ω(c0, χ0) < ∞.
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(A4.1) The diffusion tensor L is symmetric and positive definite.
(A4.2) γ > 0 is a constant, 0 < λ < λ0 where λ0 is a small constant such
that the estimate ∂tF ≤ 0 is valid.
(A5) The reaction term r is chosen in correspondence to f such that∫

Ω

µ · r ≤ 0. (50)

(A6) The coefficients αi > 0 satisfy Condition (40). Furthermore 0 < κ ≤ 1,
k > 0 and 0 < b1, b2 ≤ 1. The initial values c0 of c and κ, b1, b2 fulfil
(compare with (39))

κ1/ max(b1, b2) <
σ2

2

σ1σ3

. (51)

By Assumption (A2) any polynomial growth is allowed for f 1, whereas
exponential growth is not. For the non-convex part, sublinear growth of ∂cf

2

in c and ∂χf 2 in χ is prescribed.
If we approximate a logarithmic free energy function f by a polynomial,

we also have to replace the reaction term by a suitable approximation. This is
the gist of (A5). In Section 15 it is shown how a suitable r can be constructed
for approximations f δ of f .

If one chooses λ > 0 small enough, one can guarantee ∂tF (c(t), χ(t)) ≤ 0
because then the term with the possibly ’wrong’ sign λ4cr1 can be compen-
sated by (α1 − 2α2 + α3)Q(c)r1(c) < 0. From now on we assume without
further stating that the assumptions (A1)-(A6) hold.

11 Existence of solutions to the time discrete

scheme

For the treatment of the diffuse interface model we introduce the energy
functional

F (c, χ) :=

∫

Ω

(
f(c, χ) +

λ

2
|∇c|2 +

γ

2
|∇χ|2

)
. (52)

Additionally, for each time step m in the semi-implicit time discretisation
(49), given step size h > 0 and given (cm−1, χm−1) we define the discrete
energy functional

Fm,h(c, χ) := F (c, χ) +
1

2h
‖c− cm−1 − hrm−1‖2

L +
τ

2h
‖χ− χm−1‖2

L2 . (53)
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Lemma 1 Let (cm−1, χm−1) ∈ X1 × X2 be given. Then for 0 < h <
min{ τ

2C1
, λ

8C2
1CL

} the functional Fm,h possesses a minimiser in X1 ×X2.

Proof: We will show that Fm,h is coercive and weakly lower semicontinuous.
Using Assumptions (A2.1) and (A2.2) we find

Fm,h(c, χ) ≥ λ

2
‖∇c‖2

L2 +
γ

2
‖∇χ‖2

L2 − C1(‖c‖2
L2 + ‖χ‖2

L2)− C

+
1

2h

(
‖c− cm−1 − hrm−1‖2

L + τ‖χ− χm−1‖2
L2

)

≥
(λ

2
− δC1

)
‖∇c‖2

L2 +
( 1

2h
− C1CL

δ

)
‖c− cm−1 − hrm−1‖2

L

+
γ

2
‖∇χ‖2

L2 +
( τ

2h
− C1

)
‖χ− χm−1‖2

L2 − C,

where in the second estimate (44) was used and C = C(cm−1, χm−1, r). Now,
for 0 < h < min{ τ

2C1
, λ

8C2
1CL

} by choosing δ = λ
4C1

, we conclude with the help

of the Poincaré inequality that Fm,h is coercive on X1 ×X2. Let

d := inf{Fm,h(c, χ) | c ∈ X1, χ ∈ X2}, d < ∞.

If we now consider a minimising sequence (cl, χl)l∈N ⊂ X1 × X2 with
Fm,h(cl, χl) → d, the coercivity of Fm,h implies the boundedness of (cl, χl)
uniformly in l. Passing to a subsequence if necessary, by the reflexivity of
X1 ×X2 we may assume

(cl, χl) ⇀ (c, χ) ∈ X1 ×X2 for l →∞

and by Rellich’s theorem or Sobolev’s imbedding theorem,

(cl, χl) → (c, χ) ∈ L2(Ω,R4)× L2(Ω,R) for l →∞

and (cl, χl) → (c, χ) a.e. in Ω.
To verify the weak lower semicontinuity of Fm,h in X1 × X2 we first

remark that this is true for all convex terms. For
∫
Ω

f 1(c, χ) this fol-
lows from Assumption (A2) and for

∫
Ω

f 2(c, χ) from (A2.2) and the dom-
inated convergence theorem of Lebesgue. This implies Fm,h(c, χ) ≤
lim inf l→∞ Fm,h(cl, χl). 2
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Lemma 2 The minimiser (cm, χm) of Fm,h fulfils

∫

Ω

cm − cm−1

h
· ξ +

∫

Ω

L∇µm : ∇ξ =

∫

Ω

rm−1ξ for all ξ ∈ Y, (54)

∫

Ω

(
λ∇cm · ∇η + ∂cf(cm, χm) · η

)
=

∫

Ω

µm · η for η ∈ Y ∩ L∞(Ω;R4),(55)

∫

Ω

[
τ
χm − χm−1

h
+ ω(cm, χm)

]
ζ +

∫

Ω

γ∇χm · ∇ζ = 0 for ζ ∈ H1(Ω). (56)

Here, µm = G
(

cm−cm−1

h
− rm−1

)
.

Proof: We choose directions ξ ∈ Y ∩ L∞(Ω;R4), ζ ∈ X2 ∩ L∞(Ω;R) and
determine the variations of Fm,h(c, χ) with respect to c and χ for ξ, ζ. We
start with the variation w.r.t. c, i.e.

lim
s→0

(
(Fm,h(cm + sξ, χm)− Fm,h(cm, χm))s−1

)
. (57)

Since f 1 is convex in c, we have

f 1(cm, χm) ≥ f 1(cm + sξ, χm)− s∂cf
1(cm + sξ, χm) · ξ.

This implies

f 1(cm + sξ, χm) ≤ f 1(cm, χm) + |s∂cf
1(cm + sξ, χm)| ‖ξ‖L∞

≤ f 1(cm, χm) + |s| f 1(cm + sξ, χm) ‖ξ‖L∞ + C|s|.

The last is by Assumption (A2.3) with δ = 1. Hence, for s small enough,

∣∣∣f
1(cm + sξ, χm)− f 1(cm, χm)

s

∣∣∣ ≤ C(f 1(cm, χm) + 1).

Assumption (A2.2) and Lebesgue’s dominated convergence theorem imply

lim
s→0

1

s

( ∫

Ω

f(cm + sξ, χm)− f(cm, χm)
)

=

∫

Ω

∂cf(cm, χm) · ξ.
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The variation of the quadratic form c 7→ 1
2h
‖cm − cm−1 − hrm−1‖2

L yields

lim
s→0

(
s−1(2h)−1 (‖cm + sξ − cm−1 − hrm−1‖2

L − ‖cm − cm−1 − hrm−1‖2
L)

)

=
(cm − cm−1 − hrm−1

h
, ξ

)
L
=

(
G
(cm − cm−1

h
− rm−1

)
, ξ

)
L2

=
(
µm, ξ

)
L2

and finally

λ

2
lim
s→0

{
s−1

[
(∇(c + sξ),∇(c + sξ))L2 − (∇c,∇c)L2

]}
= λ(∇c,∇ξ)L2

= −λ(4c, ξ)L2 .

Hence we obtain (54). The equality (55) follows because (cm, χm) is a min-
imiser and thus the variation in (57) is 0. To derive (56), we consider the
variation of Fm,h(cm, χm) w.r.t. χ. As before,

lim
s→0

(
τs−1(2h)−1 (‖χm + sζ − χm−1‖2

L2 − ‖χm − χm−1‖2
L2)

)

=
(
τ
χm − χm−1

h
, ζ

)
L2

.

It remains to prove

lim
s→0

∫

Ω

(
f(cm, χm + sζ)− f(cm, χm)

)
=

∫

Ω

∂χf(cm, χm)ζ.

This limit can be justified in the same way as (57) and Identity (56)
follows. 2

12 Uniform estimates

In the preceding sections we proved the existence of a discrete solution
(cm, µm, χm) for 1 ≤ m ≤ M and arbitrary M ∈ N. We define the piecewise
constant extension (cM , µM , χM) of (cm, µm, χm)1≤m≤M by

(cM(t), µM(t), χM(t)) := (cm
M , µm

M , χm
M) := (cm, µm, χm) for t ∈ ((m−1)h,mh]

and cM(0) = c0, χM(0) = χ0, µM(0) obtained from Eq. (55).
The piecewise linear extension (cM , µM , χM) for t = (βm+(1−β)(m−1))h

with appropriate β ∈ [0, 1] is given by the interpolation

(cM , µM , χM)(t) := β(cm
M , µm

M , χm
M) + (1− β)(cm−1

M , µm−1
M , χm−1

M ).
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Lemma 3 For sufficiently small h the following a-priori estimates are valid.
(a) For all M ∈ N and all t ∈ [0, T0] we have the dissipation inequality

F (cM , χM)(t) +
1

2

∫

Ωt

(L∇µM : ∇µM + |∂tχM |2) ≤ F (c0, χ0).

(b) There exists a constant C > 0 such that

sup
0≤t≤T0

{
‖cM(t)‖H1 + ‖χM(t)‖H1

}
≤ C, (58)

sup
0≤t≤T0

∫

Ω

f 1(cM(t), χM(t)) + ‖∇µM‖L2(ΩT0
) + ‖∂tχM‖L2(ΩT0

) ≤ C. (59)

Proof: The idea of the proof is to use the decay of t 7→ F (c(t), χ(t)). Here,
a modification of the standard proof becomes necessary which reveals that
the treatment of the reaction term in (49) is natural.

As (cm, χm) is a minimiser of Fm,h,

F (cm, χm) +
1

2h
‖cm − cm−1 − hrm−1‖2

L +
τ

2h
‖χm − χm−1‖2

L2

≤ F (cm−1 + hrm−1, χm−1). (60)

A direct calculation yields

1

2h
‖cm − cm−1 − hrm−1‖2

L =
h

2
(∇µm, L∇µm)L2 .

To bring the right hand side of (60) in a form suitable for recursion, we
remark that for sufficiently small h

F (cm−1 + hrm−1, χm−1) ≤ F (cm−1, χm−1).

This is equivalent to

F (cm−1 + hrm−1, χm−1)− F (cm−1, χm−1)

h
≤ 0 for all h > 0.

By Lebesgue’s dominated convergence theorem, a sufficient condition for the
last inequality is ∂cF (cm−1, χm−1) · rm−1 ≤ 0 which holds due to (A5).

22



By iterating (60) with the estimated right hand side, we find

F (cm
M , χm

M) +
1

2

mh∫

0

(
(∇µm

M , L∇µm
M)L2 + (∂tχ

m
M , ∂tχ

m
M)L2

)
dt ≤ F (c0, χ0).

Using the assumptions and with the help of the Poincaré inequality this
proves the lemma. 2

We extend cM by the initial value c0 of c for t ∈ (−h, 0]. Now, for
the linear interpolation cM of cm

M , the Euler-Lagrange equation (54) can be
rewritten as∫

Ω

∂tcM(t)·ξ+

∫

Ω

L∇µM(t) : ∇ξ =

∫

Ω

r(cM(t−h), χM(t−h))·ξ for all ξ ∈ Y

(61)
which holds for almost all t ∈ (0, T0). Together with the uniform estimates
of Lemma 3, (61) allows to show compactness in time.

Lemma 4 There exists a constant C > 0 such that for all t1, t2 ∈ [0, T0]

‖cM(t2)− cM(t1)‖L2 ≤ C|t2 − t1| 14 .
Furthermore, there is a subsequence (cM)M∈N and a subsequence (µM)M∈N
with N ⊂ N and there are c ∈ L∞(0, T0; Y ), µ ∈ L2(0, T0; Y ) such that

(i) cM→ c in C0,α([0, T0]; L2(Ω;R4)) for all α ∈ (0, 1
4
),

(ii) cM→ c in L∞(0, T0; L2(Ω;R4)),
(iii) cM→ c almost everywhere in ΩT0,

(iv) cM
∗
⇀ c in L∞(0, T0; H1

0 (Ω;R4)),
(v) µM⇀ µ in L2(0, T0; H1

0 (Ω;R4))

as M ∈ N tends to infinity.

Proof: We test Eq. (61) with ξ := cM(t2)−cM(t1), where t1, t2 ∈ [0, T0] with
t1 < t2. After integration in time from t1 to t2, we obtain

‖cM(t2)− cM(t1)‖2
L2 +

t2∫

t1

∫

Ω

L∇µM(t) : ∇(cM(t2)− cM(t1)) dt

=

t2∫

t1

∫

Ω

r(cM(t− h), χM(t− h))(cM(t2)− cM(t1)) dt.
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The cm
M are uniformly bounded in Y , therefore the linear interpolants cM are

uniformly bounded in L∞(0, T0; Y ). Thus we obtain

‖cM(t2)− cM(t1)‖2
L2

≤ C‖cM‖L∞(H1)

t2∫

t1

(
‖∇µM(t)‖L2 + ‖r(cM(t− h), χM(t− h))‖L2

)
dt

≤ C‖cM‖L∞(H1)

[
(t2 − t1)

1
2‖∇µ‖L2(ΩT0

) + (t2 − t1)‖r(cM , χM)‖L∞(L2)

]
.

Employing the a-priori estimates (58) and (59) we have shown

‖cM(t2)− cM(t1)‖L2 ≤ C|t2 − t1| 14 for all t1, t2 ∈ [0, T0]

for a positive constant C. This is the equicontinuity of (cM)M∈N. The
boundedness of (cM) in L∞(0, T0; H1,2

0 (Ω)) and the fact that H1 is compactly
imbedded in L2 yields (i) as a consequence of the Arzelà-Ascoli theorem.
The claims (ii),(iii) and (iv) follow exactly as in [7]. We choose for t ∈ [0, T0]
values m ∈ {1, . . . ,M} and β ∈ [0, 1] such that t = (βm + (1− β)(m− 1))h.
From the definition of c we get at once

‖cM(t)− cM(t)‖L2 = ‖βcm
M + (1− β)cm−1

M − cm
M‖L2

= (1− β)‖cm
M − cm−1

M ‖L2

≤ Ch
1
4 .

This tends to zero as M becomes infinite. With the help of (i), this proves
(ii). Since for a subsequence we have convergence almost everywhere, (iii) is
proved, too. Claim (iv) is a direct consequence of Estimate (58) which gives
the boundedness of cM in L∞(0, T0; Y ).

For the proof of (v) we notice that due to Estimate (59), the (∇µM)
are uniformly bounded in L2(ΩT0). By the Poincaré inequality the (µM) are
uniformly bounded in L2(0, T0; H1

0 (Ω)). With the Banach-Alaoglu theorem
(v) follows. 2

Lemma 5 For a suitable subsequence N ⊂ N, we have

(i) χM → χ in C0,α([0, T0]; L2(Ω)) for all α ∈ (0, 1
2
),

(ii) χM → χ in L∞(0, T0; L2(Ω)),
(iii) χM → χ almost everywhere in ΩT0,
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(iv) χM
∗
⇀ χ in L∞(0, T0; H1(Ω)),

(v) ∂cf(cM , χM) → ∂cf(c, χ) in L1(ΩT0),
(vi) ∂χf(cM , χM) → ∂χf(c, χ) in L1(ΩT0)

as M ∈ N tends to infinity.

Proof: Similar to Eq. (61) we can reformulate Identity (56) to

τ

∫

Ω

∂tχM(t)ζ+

∫

Ω

γ∇χM(t)·∇ζ+

∫

Ω

ω(cM(t), χM(t))ζ = 0 for all ζ ∈ H1(Ω)

(62)
which holds for almost all t ∈ [0, T0].

We test (62) with ζ := χM(t2) − χM(t1), where t1, t2 ∈ [0, T0], t2 > t1.
After integration in time from t1 to t2 we get

τ‖χM(t2)− χM(t1)‖2
L2 +

t2∫

t1

∫

Ω

γ∇χM(t) · ∇(χM(t2)− χM(t1)) dt

+

t2∫

t1

ω(cM(t), χM(t)) (χM(t2)− χM(t1)) dt = 0.

From the uniform boundedness of χM in L∞(0, T0; H1(Ω)) and in L∞(ΩT0)
we obtain:

t2∫

t1

∫

Ω

γ∇χM(t) · ∇(χM(t2)− χM(t1)) dt ≤ c‖χM‖L∞(H1)

t2∫

t1

‖∇χM(t)‖L2 dt,

t2∫

t1

ω(cM(t), χM(t)) (χM(t2)−χM(t1)) dt ≤ c‖χM‖L∞(ΩT0
)

t2∫

t1

ω(cM(t), χM(t))dt.

With the continuity of ω, these estimates imply

‖χM(t2)− χM(t1)‖L2 ≤ C|t2 − t1| 12 for all t1, t2 ∈ [0, T0]

and exactly as in Lemma 4 this yields statements (i)-(iv).
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In order to prove (v) and (vi), we first notice that by Assumption (A2),
∂cf and ∂χf are continuous functions. Hence, by (iii) and Lemma 4(iii),

∂cf(cM , χM) → ∂cf(c, χ) almost everywhere in ΩT0 ,

∂χf(cM , χM) → ∂χf(c, χ) almost everywhere in ΩT0 .

The growth condition of Assumption (A2.3) on f 1 now yields that for arbi-
trary δ > 0 and all measurable E ⊂ Ω

∫

E

|∂cf
1(cM , χM)| ≤ δ

∫

E

f 1(cM , χM) + Cδ|E| ≤ δC + Cδ|E|.

Therefore,
∫
E

|∂cf
1(cM , χM)| → 0 as |E| → 0 uniformly in M and by Vitali’s

theorem, f 1(cM , χM) → f 1(c, χ) in L1(ΩT0) as M ∈ N tends to infinity. The
same result for f 2 follows directly from (A2.2) and the dominated convergence
theorem of Lebesgue. The proof of ∂χf(cM , χM) → ∂χf(c, χ) exploiting
(A2.3) and (A2.2) is similar. 2

13 Global existence of solutions for polyno-

mial free energy

We are now in the position to state one of the main results.

Theorem 1 Let the assumptions of Section 10 hold. Then, there exists a
weak solution (c, µ, χ) of the diffuse interface equations in the sense of (46)-
(48) such that

(i) c ∈ C0, 1
4 ([0, T0]; L2(Ω;R4)),

(ii) ∂tc ∈ L2(0, T0; (H1
0 (Ω;R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L2(Ω)),

(iv) ∂tχ ∈ L2(0, T0; (H1
0 (Ω))′).

Proof: We are going to prove that (c, µ, χ) introduced in Lemmata 4 and 5
is the desired weak solution in the sense of (46)-(48). From Eq. (61) we learn

−
∫

ΩT0

∂tξ(cM − c0) +

∫

ΩT0

L∇µM : ∇ξ +

∫

ΩT0

r(cM , χM) = 0
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for all ξ ∈ L2(0, T0; Y ) with ∂tξ ∈ L2(ΩT0) and ξ(T0) = 0. Passing to the
limit M →∞ together with Lemma 4 this implies (46). Now we show (47).
From (55) we see∫

Ω

λ∇cM · ∇η + ∂cf(cM , χM) · η =

∫

Ω

µM · η for all η ∈ Y ∩ L∞(Ω;R4).

The convergence of ∫

Ω

λcM · ∇η →
∫

Ω

λc · ∇η

as M →∞ is clear by linearity and the convergence∫

Ω

∂cf(cM , χM) · η →
∫

Ω

∂cf(c, χ) · η

is again evident by Vitali’s theorem similar to the proof of Lemma 5 by
using the almost everywhere convergence of cM and χM , the growth condition
(A2.3), Estimate (59) on f 1 and the boundedness of η.

In the same way, we obtain (48) from (62). 2

14 Uniqueness of the diffuse interface model

To show uniqueness of (42), we use an integration in time method. The proof
requires the validity of the free energy inequality and the validity of (A6).

Theorem 2 The solution (c, µ, χ) of the diffuse interface equations obtained
in Theorem 1 is unique in the spaces stated in this theorem.

Proof: Assume that (ci, χi, µi), i = 1, 2 are two solutions of System (42).
Now, let c := c2−c1, χ := χ2−χ1, µ := µ2−µ1, r := r(c2, χ2)−r(c1, χ1), ω :=
∂χf(c2, χ2)−∂χf(c1, χ1). The difference (c, χ, µ) solves the weak formulation

−
∫

ΩT0

∂tξ · c +

∫

ΩT0

L∇µ : ∇ξ −
∫

ΩT0

r · ξ = 0, (63)

∫

ΩT0

[
(∂cf(c2, χ2)− ∂cf(c1, χ1)) · η + λ∇c · ∇η

]
=

∫

ΩT0

µ · η, (64)

−
∫

ΩT0

τ∂tζχ +

∫

ΩT0

γ∇χ · ∇ζ −
∫

ΩT0

ω · ζ = 0. (65)

27



For given η ∈ L2(0, T0; H1
0 (Ω,R4)) and t0 ∈ (0, T0) we define

ξ(·, t) :=





t0∫
t

η(·, s)ds if t ≤ t0,

0 if t > t0.

(66)

Using this test function in (63) we find after integration by parts in time

0 =

∫

Ωt0

c · η +

∫

Ωt0

L∇µ : ∇
( t0∫

t

η(s)ds
)
−

∫

Ωt0

r ·
( t0∫

t

η(s) ds
)

=

∫

Ωt0

c · η +

∫

Ωt0

L∇
( t∫

0

µ(s)ds
)

: ∇η −
∫

Ωt0

( t∫

0

r(s)ds
)
· η. (67)

This implies

G
(
c−

t∫

0

r(s)ds
)

= −
t∫

0

µ(s) ds and ∂tG
(
c−

t∫

0

r(s)ds
)

= −µ.

By choosing η := µ in (67) we obtain

0 =

∫

Ωt0

c · µ +

∫

Ωt0

L∇
(
G
( t∫

0

r(s)ds− c
))

: ∇
(
∂tG

( t∫

0

r(s)ds− c
))

−
∫

Ωt0

( t∫

0

r(s)ds
)
· µ

and consequently

0 =

∫

Ωt0

c · µ +

∫

Ω

L∇G
( t0∫

0

r(s)ds− c(t0)
)

: ∇G
( t0∫

0

r(s)ds− c(t0)
)

−
∫

Ωt0

( t∫

0

r(s)ds
)
· µ. (68)
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In Eq. (64) we test with η := X[0,t0]c. Hence we have
∫

Ωt0

c · µ =

∫

Ωt0

λ|∇c|2 + (∂cf(c2, χ2)− ∂cf(c1, χ1)) · c. (69)

From (68) and (69) we learn

∥∥∥
( t0∫

0

r
)
− c(t0)

∥∥∥
2

L
+

∫

Ωt0

λ|∇c|2 −
∫

Ωt0

(

t∫

0

r(s)ds) · µ

= −
∫

Ωt0

(∂cf(c2, χ2)− ∂cf(c1, χ1)) · c. (70)

From the free energy estimate we infer that if conditions (40), (51) and (A4.2)
hold (i.e. if λ < λ0), then

∫

Ωt0

( t∫

0

r(s)ds
)
· µ ≤ 0. (71)

This holds because r(t) · µ(t) = r1(t)(µ1(t) − 2µ2(t) + µ3(t)) and (µ1(t) −
2µ2(t) + µ3(t)) < 0,

∫ L

0
r(s)ds ≥ r1(t) > 0 for almost every t ∈ ΩT0 , see

Section 5. Therefore we obtain as a consequence of (70)

λ

∫

Ωt0

|∇c|2 ≤ −
∫

Ωt0

(∂cf(c2, χ2)− ∂cf(c1, χ1)) · c. (72)

In (65) we choose the test function X[0,t0]χ analoguos to (66). This leads to

τ

γ

∫

Ωt0

χη +

∫

Ωt0

∇
( t∫

0

χ(s) ds
)

: ∇η(t)− 1

γ

∫

Ωt0

η(t)

t∫

0

ω(s) ds = 0. (73)

This implies because of χ(0) = 0

(−4)−1
(τ

γ
χ− 1

γ

t∫

0

ω(s) ds
)

= −
t∫

0

χ(s) ds,

∂t(−4)−1
(τ

γ
χ− 1

γ

t∫

0

ω(s) ds
)

= −χ(t).
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We set η := χ in (73). As in the treatment of Eq. (63) this yields

0 = γτ

∫

Ωt0

|χ|2 +
∥∥∥τχ(t0)−

( t0∫

0

ω(s)
)∥∥∥

2

L2
− γ

∫

Ωt0

χ(t)

t∫

0

ω(s) ds

and consequently with Young’s inequality

τ

∫

Ωt0

|χ|2 ≤ δ

∫

Ωt0

|χ|2 +
C

δ

∫

Ωt0

( t∫

0

ω(s) ds
)2

. (74)

Now we add (72) and (74) and find

λ

∫

Ωt0

|∇c|2 + τ

∫

Ωt0

|χ|2 ≤ δC

∫

Ωt0

(|c|2 + |χ|2
)

+
C

δ

∫

Ωt0

( t∫

0

ω(s) ds
)2

+|∂cf(c2, χ2)− ∂cf(c1, χ1)|2.
For δ small the first integral on the right hand side can be absorbed on the
left. As

|∂cf(c2, χ2)− ∂cf(c1, χ1)|2 + |∂χf(c2, χ2)− ∂χf(c1, χ1)|2 ≤ C0 (|c|2 + |χ|2)
where C0 depends on the Lipschitz constant of ∂cf and ∂χf , we find at last
by exploiting the Poincaré inequality

∫

Ωt0

(|∇c|2 + |χ|2) ≤ C

∫

Ωt0

(|∇c|2 + |χ|2) +

t∫

0

∫

Ωt0

(|∇c|2 + |χ|2).

With Gronwall’s inequality this finally means c = χ = 0 in Ωt0 and with (64)
µ = 0 in Ωt0 . By repeating the argument, as t0 > 0, this holds in the whole
of ΩT0 . 2

15 Logarithmic free energy

In the following four sections we are going to extend Theorem 1 to logarithmic
free energies. The results will in particular be taylor made for the free energy
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functional considered in Def. (8)

f(c, χ)=χb1

4∑
j=1

cj ln cj+(1−χ)b2

4∑
j=1

cj ln cj+
3∑

i=1

ciEi+
( 4∑

j=1

αjcj

)2

+TW (χ).

(75)
We will use the statements proved for polynomial free energies that can be
regarded as a Taylor expansion.

For the proof of 0 < cj < 1, 1 ≤ j ≤ 4, we approximate f for δ > 0 by
some f δ that fulfils the requirements of Section 10 and find suitable a-priori
estimates that put us in the position to pass to the limit δ → 0.

The logarithmic form of the free energy guarantees that the concentration
vector c lies inside the transformed Gibbs simplex

G := Σ ∩ {c ∈ R4 | cj ≥ 0 for 1 ≤ j ≤ 4}
and that χ ∈ (0, 1). Therefore (c, χ) is physically meaningful.
The Assumptions (A2) and (A3) of Section 10 are replaced by
(A2’) f is of the form (75) with constants αj > 0, b1 > 0, b2 > 0, T > 0.
(A3’) The initial values c0 ∈ X1, χ0 ∈ X2 fulfil c0 ∈ G, χ ∈ [0, 1] almost
everywhere and

∫

Ω

c0l > 0 for 1 ≤ l ≤ 4,

∫

Ω

χ > 0,

∫

Ω

(1− χ) > 0.

(A6’) Additional to the conditions in (A6) we demand

κ1/ max(b1,b2) <
1

e2
. (76)

The assumptions (A1) and (A4) remain unchanged and continue to hold.
To proceed, we define for d > 0 the convex function

ψ(d) := d ln d

and for δ > 0 its regularisation (defined for d ∈ R)

ψδ(d) :=

{
d ln d for d ≥ δ,

d ln δ − δ
2

+ d2

2δ
for d < δ.

The regularised free energy functional is defined such that ψδ ∈ C2 and the
derivative (ψδ)′ is monotone increasing. This ansatz goes back to [5].
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The free energy of the regularised δ-problem is found by replacing∑
i ci ln ci by

∑
i ψ

δ(ci) in (26). Since the convex combination

f̄(c, χ) := χf1(c) + (1− χ)f2(c)

would define a non-convex functional in c if χ /∈ [0, 1], we consider the fol-
lowing penalisation (f δ = f 1,δ + f 2, see Assumption A2)

f 1,δ(c, χ) :=





χb1
∑

j ψδ(cj) + (1− χ)b2
∑

j ψδ(cj) + T [ψδ(χ) + ψδ(1− χ)]

if χ ∈ (0, 1),
+∞ else

f 2(c, χ) :=
( 4∑

j=1

αjcj

)2

.

Due to the expression ψδ(χ)+ψδ(1−χ) in the definition of f δ it is obvious that
every minimiser χ fulfils 0 < χ < 1. This is proved rigorously in Lemma 8.

It can be easily checked that the functional Fm,h of Section 11 still has
a minimiser (cm, χm) for every m and sufficiently small h. For χ ∈ (0, 1),
f 1,δ is still continuously differentiable. Since f 1,δ, f 2 fulfil the assumptions
of Section 10 the earlier existence results can be carried over.

The regularisation f δ of f also implies that ω(cδ, χδ) = ∂χf δ(cδ, χδ) de-
pends on δ and therefore we will replace ω(cm, χm) in the implicit time dis-
cretisation (49) by ωδ(cm, χm) and the weak formulation (48) by

−
∫

ΩT0

τ∂tζ(χδ − χ0) +

∫

ΩT0

γ∇χδ · ∇ζ −
∫

ΩT0

ωδ(cδ, χδ)ζ = 0 (77)

for all ζ ∈ L2(0, T0; H1(Ω;R)) with ∂tζ ∈ L2(ΩT0), ζ(T0) = 0.
Later we will show that ωδ(cδ, χδ) → ω(c, χ) in L1(ΩT0) as δ ↘ 0.

The only assumption that needs further clarification is (A5). In order to
verify (50), we have to construct an approximation rδ = (rδ

1,−rδ
1, r

δ
1, 0) of r

and have to check that
∫

Ω

kBTbχ

[
(ψδ)′(c1)− 2(ψδ)′(c2) + (ψδ)′(c3) +

E1 − 2E2 + E3

kBTbχ

]
rδ
1 ≤ 0.

We claim that a good choice for rδ
1 is

rδ
1(c, χ) := k1/bχ

(
max(c2, δ)

2 − κ1/bχ max(c1, δ) max(c3, δ)
)
. (78)
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To illustrate (78), let us consider three characteristic cases:
Case 1: c1 ≥ δ, c2 ≥ δ, c3 ≥ δ:
Apparantly rδ = r, and (50) follows verbatim as in the proof of the free
energy inequality in Section 5.
Case 2: c1 < δ, c2 ≥ δ, c3 ≥ δ:
From the definition of ψδ we find that we have to estimate

∫

Ω

kBTbχ

[
ln δ +

c1

δ
− 2 ln c2 − 2 + ln c3 + 1 +

E1 + E3 − 2E2

kBTbχ

]
rδ
1

=

∫

Ω

kBTbχ

[
ln

(δc3κ
1/bχ

c2
2

)
+

c1

δ
− 1

]
rδ
1.

The estimate follows now from (ln(δc3κ
1/bχ) − ln(c2

2))r
δ
1 < 0 and because of

c1
δ
− 1 < 0 and rδ

1 = k1/bχ(c2
2 − κ1/bχδc3) > 0 for δ sufficiently small. We

emphasise that we need rδ
1 > 0 in order to have

∫
Ω
(α1−2α2 +α3)Q(cδ)rδ

1 < 0
which allows to compensate the surface energy term for sufficiently small λ.
Case 3: c1 < δ, c2 < δ, c3 < δ:
Here we have to estimate

∫

Ω

kBTbχ

[
ln

(δ2

δ2

)
+

c1

δ
− 2

c2

δ
+

c3

δ
+

E1 − 2E2 + E3

kBTbχ

]
rδ
1.

We observe rδ
1 = k1/bχδ2(1− κ1/bχ) > 0 due to Assumption (A6). Finally

∫

Ω

(E1 − 2E2 + E3

kBTbχ

+
c1 − 2c2 + c3

δ

)
≤

∫

Ω

(ln(κ1/bχ) + 2) < 0

if κ satisfies (76). The remaining cases can be treated similar to Case 2.

16 Uniform estimates

The following lemma was first stated and proved in Elliott and Luckhaus [5]
for logarithmic free energies typical for the Cahn-Hilliard system.

Lemma 6 For δ0 = 1
e

there exists a K > 0 such that for all δ ∈ (0, δ0)

f δ(c, χ) ≥ −K for all c ∈ Σ, χ ∈ [0, 1].
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Proof: For δ0 < 1
e

one has ψδ(d) ≥ −1
e

for all δ < δ0. As bl, T > 0, the proof
is complete. 2

Lemma 7 (a) For δ ∈ (0, δ0) there exists a weak solution (cδ, µδ, χδ) of
(42) with a logarithmic free energy that satisfies (A2’)-(A6’) in the sense of
Section 8 with (48) replaced by (77).
(b) There exists a constant C > 0 independent of δ such that for all δ ∈ (0, δ1)
with some constant δ1 ≤ δ0

sup
t∈[0,T0]

{
‖cδ(t)‖H1 + ‖χδ(t)‖H1

}
≤ C,

sup
t∈[0,T0]

∫

Ω

f 1,δ(cδ(t), χδ(t)) + ‖∇µδ‖L2(ΩT0
) ≤ C

and

‖cδ(t2)− cδ(t1)‖L2 ≤ C|t2 − t1| 14 ,
‖χδ(t2)− χδ(t1)‖L2 ≤ C|t2 − t1| 12

for all t1, t2 ∈ [0, T0].
(c) One can extract subsequences (cδ)δ∈R, (µδ)δ∈R and (χδ)δ∈R where R ⊂
(0, δ1) is a countable set with zero as the only accumulation point such that

(i) cδ→ c in C0,α([0, T0]; L2(Ω;R4)) for all α ∈ (0, 1
4
),

(ii) cδ→ c almost everywhere in ΩT0,

(iii) cδ ∗
⇀ c in L∞(0, T0; H1

0 (Ω;R4)),
(iv) χδ→ χ in C0,α([0, T0]; L2(Ω)) for all α ∈ (0, 1

2
),

(v) χδ→ χ almost everywhere in ΩT0 and 0 ≤ χδ, χ ≤ 1 a.e. in ΩT0,

(vi) χδ ∗⇀ χ in L∞(0, T0; H1(Ω)),
(vii) µδ⇀ µ in L2(0, T0; H1

0 (Ω;R4))

as δ ∈ R tends to zero.

Proof: Using Lemma 6, the regularised problem satisfies the assumptions
of Section 10 and by Theorem 1, a weak solution for fixed δ ∈ (0, δ0) exists.
This proves (a). The estimates in (b) are a direct consequence of Lemma 3
and Lemma 4, where due to Assumption (A4.2) we have to choose δ small
enough for Lemma 3 to hold. From Lemma 3, it follows that F δ(c0, χ0) does
not depend on δ, hence the constant on the right hand side does not depend
on δ. (c) is proved by Lemmata 4 and 5. 2
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17 Higher integrability for the logarithmic

free energy

Since ϕδ := (ψδ)′ will be singular as δ → 0 we introduce for r > 0

ϕδ
r(d) :=

{
ϕδ(d)|ϕδ(d)|r−1 if ϕδ(d) 6= 0,

0 if ϕδ(d) = 0.

By definition, ϕδ
r ∈ C0(R).

For 0 < r < 1, ϕδ
r is not differentiable at the zero point of ϕδ. To overcome

this difficulty, for % > 0 introduce the function ϕδ,%
r with ϕδ,%

r = ϕδ
r in R\ [0, 1]

and define ϕδ,%
r in [0, 1] such that ϕδ,%

r is a C1 function, monotone increasing
and ϕδ,%

r → ϕδ
r in C0(R) as % ↘ 0.

For the approximation of ϕδ(χδ) in the modified Allen-Cahn equation it
is more suitable to introduce the Dirac sequence

ϕδ,ε(x) := (ϕδ ∗ Jε)(x) := ε−D

∫

RD

ϕδ(x)J((x− y)/ε) dy

where the kernal J ∈ C∞(B1(0)) is a positive smooth polynomial (see As-
sumption A2). As is well known, ϕδ,ε ∈ C∞ and ϕδ,ε → ϕδ in Lp(Ω) as ε ↘ 0
for any p ≥ 1.

Even though by construction 0 < χδ < 1 almost everywhere, it might still
happen that for the limit the sets {x ∈ Ω |χ(x) = 0} and {x ∈ Ω |χ(x) = 1}
have non-zero Lebesgue measure and that the entropic terms in the free
energy density become singular. Now we will show that this is not the case.

Lemma 8 There exists a constant C > 0 such that for all δ ∈ (0, δ0)

(i) ‖ϕδ(cδ
l )‖Lq(ΩT0

) ≤ C for a suitable q > 1 and all 1 ≤ l ≤ 4,

(ii) ‖ϕδ(χδ) + ϕδ(1− χδ)‖L2(ΩT0
) ≤ C.

Proof: The weak formulation (47) for the generalised chemical potential is

∫

ΩT0

µδ · η =

∫

ΩT0

{
λ

4∑

l=1

∇cδ
l · ∇ηl + 2

[
αl

4∑
j=1

αjc
δ
j

]
1≤l≤4

· η +
3∑

l=1

Elηl

}

+

∫

ΩT0

(χδb1 + (1− χδ)b2)[ϕδ(cδ
l )]1≤l≤4 · η (79)
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for all η ∈ L2(0, T0; H1(Ω;R4))∩L∞(ΩT0 ,R4). We choose η := [ϕδ,%
r (cδ

l )]1≤l≤4

in (79) which is an admissible test function because of the Sobolev imbedding
theorem and because ϕδ,%

r ∈ C1. We obtain

∫

ΩT0

4∑

l=1

µδ
l ϕ

δ,%
r (cδ

l ) = +

∫

ΩT0

4∑

l=1

ϕδ,%
r (cδ

l )
(
2αl

4∑
j=1

αjc
δ
j + El

)

+

∫

ΩT0

λ

4∑

l=1

∇cδ
l · ∇ϕδ,%

r (cδ
l ) +

∫

ΩT0

4∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδ
l )ϕ

δ,%
r (cδ

l ).

In the last formula we set for simplicity E4 := 0. Due to (ϕδ,%
r )′ ≥ 0 we find

∫

ΩT0

λ

4∑

l=1

∇cδ
l · ∇ϕδ,%

r (cδ
l ) ≥ 0.

This implies
∫

ΩT0

4∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδ
l ))ϕ

δ,%
r (cδ

l )

≤
∫

ΩT0

4∑

l=1

µδ
l ϕ

δ,%
r (cδ

l )−
∫

ΩT0

4∑

l=1

ϕδ,%
r (cδ

l )
(
2αl

4∑
j=1

αjcj + El

)

≤ C max
1≤l≤4

‖ϕδ,%
r (cδ

l )‖L2(ΩT0
)

(
‖µδ‖L2(ΩT0

) + ‖cδ‖L2(ΩT0
)

)

where the constant C in the last line depends on α1, . . . , α4 and on E1, . . . , E3.
For % ↘ 0 employing Lemma 6 and Lemma 7 this proves

∫

ΩT0

4∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδ
l )ϕ

δ
r(c

δ
l ) ≤ C. (80)

A direct computation finally yields
∫

ΩT0

4∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδ
l ))ϕ

δ
r(c

δ
l )

≥
∫

ΩT0

max
1≤l≤4

(χδb1 + (1− χδ)b2)|ϕδ(cδ
l )|r+1 ≥

∫

ΩT0

C max
1≤l≤4

|ϕδ(cδ
l )|r+1
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for a constant C = C(b1, b2). The last is possible because χδb1+(1−χδ)b2 > 0
almost everywhere in ΩT0 . Together with (80) this proves (i).

Next we consider the weak formulation (77)

−
∫

ΩT0

τ∂tζ(χδ − χ0) +

∫

ΩT0

γ∇χδ · ∇ζ −
∫

ΩT0

(b2 − b1)
4∑

j=1

ψδ(cδ
j)ζ

+

∫

ΩT0

T (ϕδ(χδ) + ϕδ(1− χδ))ζ = 0 (81)

of the Allen-Cahn eq. We want to test Eq. (81) with ζ := ϕδ,ε(χ)+ϕδ,ε(1−χ).

Since by Theorem 1 χδ ∈ C0, 1
2 (0, T0; L2(ΩT0)), we can use Fourier theory to

formally shift a half time derivative from ζ to χδ − χ0. After this procedure
we find with Lemma 7

∫

ΩT0

τ∂
1
2
t (ϕδ,ε(χδ) + ϕδ,ε(1− χδ))∂

1
2
t (χδ − χ0) ≤ C.

To estimate the second integral in (81), we notice

∫

ΩT0

γ∇χδ ·∇(ϕδ,ε(χδ)+ϕδ,ε(1−χδ)) =

∫

ΩT0

γ|∇χδ|2 [(ϕδ,ε)′(χδ)−(ϕδ,ε)′(1−χδ)].

By Lemma 7, χδ is bounded in L∞(0, T0; H1(Ω)) which implies the bound-
edness of the integral.

If we choose δ sufficiently small in (i) we find cj ∈ (0, 1) for 1 ≤ j ≤
4, see also the proof of Theorem 3. This guarantees that ψδ(cj) does not
become singular and thus proves the boundedness of the third integral in
(81) independently of δ. Finally, we have

0 ≤
∫

ΩT0

(ϕδ(χδ) + ϕδ(1− χδ))(ϕδ,ε(χδ) + ϕδ,ε(1− χδ))

→ ‖ϕδ(χδ) + ϕδ(1− χδ)‖L2(ΩT0
) as ε ↘ 0.

By combining these results, (ii) follows. 2
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18 Global existence of solutions for logarith-

mic free energies

Theorem 3 Let the assumptions of Section 15 hold. Then there exists a
weak solution (c, µ, χ) in the sense of Section 8 of the diffuse interface equa-
tions (42) with logarithmic free energy such that

(i) c ∈ C0, 1
4 ([0, T0]; L2(Ω;R4)),

(ii) ∂tc ∈ L2(0, T0; (H1
0 (Ω;R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L2(Ω)),

(iv) ∂tχ ∈ L2(0, T0; (H1
0 (Ω))′),

(v) there exists a q > 1 such that ln cj ∈ Lq(ΩT0) for 1 ≤ j ≤ 4,
ln χ, ln(1− χ) ∈ L2(ΩT0) and in particular 0 < χ, cj < 1 a.e.

Proof: We pass to the limit δ ↘ 0 in the weak formulation (46)-(48) with
f defined by (75) and have to show that (c, µ, χ) found in Lemma 7 is a
solution.

For the limit in (47), the argumentation is an extension to [7]. In partic-
ular we must take care of the term

χδb1

4∑
j=1

ϕδ(cδ
j) + (1− χδ)b2

4∑
j=1

ϕδ(cδ
j). (82)

From the almost everywhere convergence of cδ
l to cl, Lemma 8(i) and the

Lemma of Fatou we find
∫

ΩT0

lim inf
δ↘0

|ϕδ(cδ
l )|q ≤ lim inf

δ↘0

∫

ΩT0

|ϕδ(cδ
l )|q ≤ C.

Next we will show that

lim
δ↘0

ϕδ(cδ
l ) =

{
ϕ(cl) if limδ↘0 cδ

l = cl > 0,
∞ if limδ↘0 cδ

l = cl ≤ 0
(83)

almost everywhere in ΩT0 . For a point (x, t) ∈ ΩT0 with limδ↘0 cδ
l (x, t) =

cl(x, t) > 0, we obtain from ϕδ(d) = ϕ(d) for d ≥ δ that ϕδ(cδ(x, t)) →
ϕ(c(x, t)). In the second case of a point (x, t) ∈ ΩT0 with limδ↘0 cδ

l (x, t) =
cl(x, t) ≤ 0, we have for δ small enough

|ϕδ(cδ
l (x, t))| ≥ ϕ(max{δ, cδ

l (x, t)}) →∞ for δ ↘ 0.
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This proves (83). A similar statement holds for ψδ(χδ).
From (83) and Lemma 8(i) we deduce 0 < cl < 1 a.e.,

∫
ΩT0

|ϕ(cl)|q ≤ C

and ϕδ(cδ
l ) → ϕ(cl) a.e. With Vitali’s theorem we find

ϕδ(cδ
l ) → ϕ(cl) in L1(ΩT0).

This allows to pass to the limit in (47).
Let us now consider the limit in (77). The relation 0 < cj < 1 almost ev-

erywhere implies bl
∑4

j=1 ψδ(cδ
j) → bl

∑4
j=1 ψ(cj), l = 1, 2 almost everywhere

in ΩT0 like in the first case of (83). From ϕδ(cδ
j) ∈ Lq(ΩT0), the uniform

boundedness of χδ and Vitali’s theorem we obtain

χδb1

4∑
j=1

ψδ(cδ
j) → χb1

4∑
j=1

ψ(cj), (1− χδ)b2

4∑
j=1

ψδ(cδ
j) → (1− χ)b2

4∑
j=1

ψ(cj)

in L1(ΩT0) such that

ωδ(cδ, χδ) → ω(c, χ) in L1(ΩT0) for δ ↘ 0.

By repeating the argumentation from above for ϕδ(χδ)+ϕδ(1−χδ) we deduce
0 < χ < 1 almost everywhere in ΩT0 which again with the help of Vitali’s
theorem and Lemma 8(ii) yields

ϕδ(χδ) + ϕδ(1− χδ) → ϕ(χ) + ϕ(1− χ) in L1(ΩT0).

So we can also pass to the limit in (77). The limit for (46) can be justified
in the same way as in the proof of Theorem 1 if we additionally show

rδ(cδ, χδ) → r(c, χ) in L1(ΩT0). (84)

From the almost everywhere convergence of cδ
l to cl and cl > 0 almost every-

where in ΩT0 we obtain

max(cδ
l , δ) → cl almost everywhere in ΩT0 , δ ↘ 0, 1 ≤ l ≤ 3.

Since the functions χ 7→ k1/bχ and χ 7→ κ1/bχ are in C1, we find

k1/b
χδ

(
max(cδ

2, δ)
2 − κ1/b

χδ max(c1, δ) max(c3, δ)
)
→ k1/bχ

(
c2
2 − κ1/bχc1c3

)

almost everywhere in ΩT0 as δ ↘ 0. By Lebesgue’s dominated convergence

theorem we find (84), because k1/b
χδ ≤ k1/ min(b1,b2) almost everywhere in ΩT0
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if k ≥ 1 respectively k1/b
χδ ≤ k1/ max(b1,b2) almost everywhere if k < 1 and the

analogous estimate for the κ-term, hence∫

ΩT0

|rδ
1| ≤ C

∫

ΩT0

(
|c2

2|+ |c1c3|
)

for a constant C that depends on κ and k. 2

Uniqueness of the solution to Theorem 3 can be obtained in exactly the
same way as in Theorem 2 if we replace (A6) by (A6’).

19 The sharp interface model

It remains to perform the limit λ → 0. This limit is carried out in the same
way as before by showing a-priori estimates and compactness results.

Lemma 9 (a) For λ ∈ (0, λ0) there exists a weak solution (cλ, µλ, χλ) of
(42) with a logarithmic free energy that satisfies (A2’)-(A6’).
(b) There is a constant C > 0 independent of λ such that for all λ ∈ (0, λ0)

sup
t∈[0,T0]

{
‖cλ(t)‖H1 + ‖χλ(t)‖H1

}
≤ C,

sup
t∈[0,T0]

∫

Ω

f 1(cλ(t), χλ(t)) + ‖∇µλ‖L2(ΩT0
) ≤ C

and for all t1, t2 ∈ [0, T0]

‖cλ(t2)− cλ(t1)‖L2 ≤ C|t2 − t1| 14 ,
‖χλ(t2)− χλ(t1)‖L2 ≤ C|t2 − t1| 12 .

(c) One can extract subsequences (cλ)λ∈R, (µλ)λ∈R and (χλ)λ∈R where R ⊂
(0, λ0) is a countable set with zero as the only accumulation point such that

(i) cλ→ c in C0,α([0, T0]; L2(Ω;R4)) for all α ∈ (0, 1
4
),

(ii) cλ→ c almost everywhere in ΩT0,

(iii) cλ ∗
⇀ c in L∞(0, T0; H1

0 (Ω;R4)),
(iv) χλ→ χ in C0,α([0, T0]; L2(Ω)) for all α ∈ (0, 1

2
),

(v) χλ→ χ almost everywhere in ΩT0 and 0 ≤ χλ, χ ≤ 1 a.e. in ΩT0,

(vi) χλ ∗⇀ χ in L∞(0, T0; H1(Ω)),
(vii) µλ⇀ µ in L2(0, T0; H1

0 (Ω;R4))

as λ ∈ R tends to zero.
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Proof: By Theorem 3, a weak solution for fixed λ ∈ (0, λ0) exists. This
proves (a). The estimates in (b) are a direct consequence of Lemma 7, where
due to Assumption (A4.2) we have to choose λ < λ0 for Lemma 3 to hold.
Since F λ(c0, χ0) can be estimated independently of λ, the constant C on the
right hand side does not depend on λ. (c) is proved by Lemma 7. 2

We make precise what we mean by a weak solution to the sharp
interface model. We call a triple (c, µ, χ) ∈ L2(0, T0; H1,2

0 (Ω;R4)) ×
L2(0, T0; H1,2

0 (Ω;R4)) × L2(0, T0; H1,2(Ω;R)) with r(c, χ), ω(c, χ) ∈ L1(ΩT0)
a weak solution of the sharp interface model (30) if

−
∫

ΩT0

∂tξ · (c− c0) +

∫

ΩT0

L∇µ : ∇ξ −
∫

ΩT0

r(c, χ)ξ = 0 (85)

for all ξ ∈ L2(0, T0; H1
0 (Ω;R4)) with ∂tξ ∈ L2(ΩT0), ξ(T0) = 0, and

∫

ΩT0

µ · η =

∫

ΩT0

∂f

∂c
(c) · η (86)

for all η ∈ L2(0, T0; H1
0 (Ω;R4)) ∩ L∞(ΩT0 ;R4), and

−
∫

ΩT0

τ∂tζ(χ− χ0) +

∫

ΩT0

γ∇χ · ∇ζ −
∫

ΩT0

ω(c, χ)ζ = 0 (87)

for all ζ ∈ L2(0, T0; H1(Ω;R)) with ∂tζ ∈ L2(ΩT0), ζ(T0) = 0.

Theorem 4 Let the assumptions of Section 15 hold. Then, there exists a
weak solution (c, µ, χ) in the sense of (85) of the sharp interface equations
(30) with a logarithmic free energy that satisfies (A2’)-(A6’) such that

(i) c ∈ C0, 1
4 ([0, T0]; L2(Ω;R4)),

(ii) ∂tc ∈ L2(0, T0; (H1
0 (Ω;R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L2(Ω)),

(iv) ∂tχ ∈ L2(0, T0; (H1
0 (Ω))′),

(v) there exists a q > 1 such that ln cj ∈ Lq(ΩT0) for 1 ≤ j ≤ 4,
ln χ, ln(1− χ) ∈ L2(ΩT0) and in particular 0 < χ, cj < 1 a.e.

Proof: We pass to the limit λ ↘ 0 in the weak formulation. In order to
show that the limit (c, µ, χ) found in Lemma 9 is a solution we only have to
observe that in (47) λ4µ → 0 in H1,2

0 (Ω) as λ ↘ 0. 2
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Theorem 5 If ∂cf, ∂χf are Lipschitz continuous, the solution (c, µ, χ) of
the sharp interface equations obtained in Theorem 4 is unique in the spaces
stated in this theorem.

Proof: The proof of Theorem 2 can be reused after sharpening Estimate (71).
We have according to (A4.2)

−
∫

Ωt0

( t∫

0

r(s)ds
)
· µ ≥

∫

Ωt0

r1(t)(µ1(t)− 2µ2(t) + µ3(t))

≥
∫

Ωt0

(α1 − 2α2 + α3)Q(c)r1 ≥ λ

∫

Ωt0

|∇c|2

for an arbitrary constant λ < λ0. Then one can proceed with the proof. 2
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Symbol Species Ion Radius

α1 Fe3+ 0.555Å
α2 Fe2+ 0.660Å
α3 Cu+ 0.635Å
α4 Zn2+ 0.640Å

Table 1: Values of sulfide crystal radii taken from [9]
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Figure 1: Plot of m(c3)
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