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Ce à quoi l’un s’était failli, l’autre est arrivé et ce qui
était inconnu à un siècle, le siècle suivant l’a éclairci, et
les sciences et les arts ne se jettent pas en moule mais
se forment et figurent en les maniant et polissant à
plusieurs fois [...] Ce que ma force ne peut découvrir,
je ne laisse pas de le sonder et essayer et, en retas-
tant et pétrissant cette nouvelle matière, la remuant
et l’eschaufant, j’ouvre à celui qui me suit quelque fa-
cilité et la lui rends plus souple et plus maniable. Au-
tant en fera le second au tiers qui est cause que la
difficulté ne me doit pas désespérer, ni aussi peu mon
impuissance...

Where someone failed, another has succeeded; what
was unknown in one century, the next has discovered;
science and the arts do not grind themselves into uni-
formity, but gain shape and regularity by carving and
polishing repeatedly [...] What my own strength has
not been able to uncover, I cease not from working at
and trying out and, by reshaping and solidifying this
new material, in moulding and heating it, I bequeathe
to him who follows some facility and make it the more
supple and malleable for him. The second will do the
same for the third, which is why difficulty does not
make me despair, nor of my own weakness...

Montaigne, Les Essais

There is a theory that states that whenever someone
will find out what the universe is and why it is here, it
will instantly disappear and be replaced by something
even more bizarre and inexplicable. There is another
that states that this has already happened.

Douglas Adams
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Chapter 1

Introduction

In the present work we are concerned with the so-called chalcopyrite disease
within sphalerite. This is a well-known and extensively-discussed problem arising
in geology. The quantitative description of this process helps to get a precise
understanding of the time scales involved of magma ascending from earth’s core
and might lead to better predictions for earth quakes and volcano eruptions.

Characteristic for chalcopyrite disease is the presence of a mellon-type structure
close to the boundary of a rock sample.

Figure 1.1: Reflecting light image of a rock sample with chalcopyrite disease,
black matrix: sphalerite, white grains: chalcopyrite

The common understanding is that these structures develop during a long time
period in the range of several hundred thousand years. Since no experimentalist
would be so patient, mineralogists studied chalcopyrite disease under altered con-
ditions in the laboratory with increased temperature (kept isothermally between
T = 550◦C and T = 700◦C). The reports of the original experiments are collected
in [12] and [13]. By the increase of T (and sufficiently high sulphur fugacity, see
below) the process is accelerated and the characteristic pattern formation is ob-
served after several weeks (T = 700◦) or months (T = 550◦).

In the crystallographic experiment, the sphalerite sample is surrounded by sul-
phur gas and copper powder is spread at its surface. This setup becomes clear
after understanding how the crystal lattice is rearranged.
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Chalcopyrite disease is caused by gradients of the chemical potential induced by
an increase of external sulphur fugacity. Hereby, the primary Fe2+ is oxidised to
Fe3+ and reacts with copper diffusing into the Fe-containing sphalerite crystal to
chalcopyrite (= CuFeS2). During the process, gas S2− molecules attach to the
crystal surface. Since roughly speaking the formation of chalcopyrite phases can
only take place after a sufficient amount of Cu has diffused into the matrix, the
generic mechanism has been called diffusion induced segregation or shortly DIS.

As oxidation is the key to the formation of the chalcopyrite phase, the Fe atoms
play a central role as antagonist to copper. If the Fe concentration is below
a certain threshold, no DIS will occur. If the sulphur fugacity is weaker, the
experiments produce either a simple diffusion front or end up with an alloy, as
documented in the reports [13] on further experiments on DIS with the related
system ZnS-CuInS2.

Fig. 1.2 shows how the reorganisation of the sphalerite lattice close to the crystal
boundary takes place. A more detailed picture of this process will be available
in Chapter 4, summarised in particular in Fig. 4.1. The migration of Zn is not
displayed in Fig. 1.2. The picture is wrong inasmuch as a perfect structure without
impurities is shown, we will come back to this matter later.
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Legend: O=Fe2+, X=Fe3+, []=vacancy, e=free electron, Cu=Cu+

Figure 1.2: The effect of increased sulphur fugacity on the ZnS lattice

The mathematical analysis of chalcopyrite disease presented in this work is based
on partial differential equations and a thermodynamical description and will try
to understand the physics underlying these examinations with the goal to make
simulations close to the ideal experimental conditions. The model developed will
represent chalcopyrite disease on a medium spatial scale, the microstructure will
not be resolved. The main idea persued in this work is to insert expressions of
the free energy gained from ab initio calculations into (standard) finite element
computations and to compare the results to simulations of a continuum thermo-
dynamical model.
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Beside this main subject, the thermodynamics of reactive systems undergoing
phase changes are studied. Two principal properties of such systems are elab-
orated that allow to find an expression that generalises the classical reaction
formula of systems without phase changes.

The text is organised in the following way. In Chapter 2 the theoretical back-
ground of the mathematical approach is set up. In the first place, the main model
for chalcopyrite disease within sphalerite as a system of partial differential equa-
tions is derived together with a simplified model that corresponds to the level of
approximation when ab-initio computations are used. Additionally a dimension-
ality analysis is performed and the validity of the second law of thermodynamics
is shown, also for a generalised non-isothermal model.

Chapter 3 is devoted to an uniqueness and global existence result. The analysis
is based on an implicit time discretisation (except for the reaction term that
is treated explicitly) and applies direct methods in the calculus of variations.
Uniform estimates allow to pass to the limit of the continuous model.

Chapter 4 is an assembly of computation techniques and explains in particular the
harmonic approximation, molecular dynamics simulations and finally quantum
mechanical computations to get estimated values of the Helmholtz free energy of
the real segregation process. Furthermore it shortly summarises the general finite
element approach and numerical solution techniques.

The results of several numerical experiments together with some program valida-
tions and an analysis of the algorithm are presented in Chapter 5. We finish with
a critical evaluation of the results and an outlook.

Acknowledgments:
At this point it is my great pleasure to express my thanks to Prof. S. Luckhaus for
several fruitful discussions and to Prof. M. Dove for his support without whom
the simulations presented in this work would not have been possible. Furthermore
I would like to thank Dr. M. Calleja for his fast help with a particular computer
problem.
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Chapter 2

Derivation of the Model

2.1 The general mathematical approach

We aim in this chapter at the discussion of reaction-diffusion equations for a
system that simultaneously undergoes phase changes. A simple introduction to
reactive systems (without phase changes) can be found in [41], a collection of
mathematical models for phase change problems (without reactions) is the excel-
lent text book [71]. In [51], a general theory is developed, but the thermodynamic
quantities do not depend on an inner phase parameter χ.

The starting point of the mathematical discussion are the reaction-diffusion equa-
tions in the general form

∂tci = div(Ji) + ri =

(

∑

l

∂

∂xl
Ji,l

)

+ ri, i = 1, . . . , 4. (2.1)

Here, ci = ci(x, t) denotes the relative number of species i, i = 1, . . . , 4 per
available lattice point at time t and space point x ∈ Ω, Ω a (time-independent)
domain in R

D, 1 ≤ D ≤ 3. By 0 < T0 < ∞ we denote a stop time and by
ΩT0 := Ω× (0, T0) a cylinder in space-time.

We introduce the notations

c1 ≈ Fe3+, c2 ≈ Fe2+, c3 ≈ Cu+, c4 ≈ Zn2+, c5 ≈ vacancies.

c1 satisfies c1 =
N3+

Fe
NMe

, where NFe3+ is the number of Fe3+ atoms and NMe is the
number of metal ion sites. Similar relationships hold for c2, c3 and c4. We will
not model the attachment of S molecules at the lattice surface and assume that
the concentration of S is identically 0.5. Sometimes, we will denote this constant
by cS . It is an essential property of this formulation that there is no equation for
c5, but the vacancy concentration is obtained implicitly by the conservation of
mass: c5 = 1−∑4

i=1 ci − cS = 1
2 −

∑4
i=1 ci.

In Eq. (2.1), ri denote the reaction terms and Ji the fluxes of metal ions of
species i. The reaction terms model the jumps of the electrons, see the reaction
scheme (2.20). A first ansatz is r = (r1,−r1, 0, 0) and

r1 = k(c22 − κc1ce),

5



where k > 0 and kκ > 0 are the reaction rates and ce denotes the electron density.
If we assume that all sulphur positions are occupied by S2−, by the condition of
electric neutrality we can compute

ce = 2cS − 3c1 − 2c2 − c3 − 2c4

= 1− 2(c1 + c2 + c3 + c4)− c1 + c3

= 2c5 − c1 + c3. (2.2)

In the presence of phase transitions the rates may not be chosen to be constants.
This will be the topic of later sections.

The constitutive relation for the mass fluxes is assumed to be of the isotropic
Onsager form

Ji =
4
∑

j=1

Lij∇µj , 1 ≤ i ≤ 4, (2.3)

where L, the mobility, is a symmetric positive semi-definite 4× 4 tensor and

µj =
∂f

∂cj

denotes the chemical potential. To simplify the existence theory of Chapter 3 we
will assume in the sequel that L is positive definite.

For most of this work, we will consider the case where the temperature T is
held constant. This reflects the conditions established in the mineralogical exper-
iments as explained in the introduction. A short discussion of the non-isothermal
situation is collected in Section 2.7.

Let f denote the Helmholtz free energy density of the system, consisting of f1, f2

with f1 for chalcopyrite, f2 for sphalerite. Hence, the two different phases or
lattice orders are characterised by two different free energies, and f is the convex
hull of f1 and f2.

For order-disorder phase transitions, we make the first ansatz

fl = fl(c) = kBT
5
∑

i=1

βl
ici ln ci +

3
∑

i=1

Eici +

(

4
∑

i=1

αici

)2

, l = 1, 2. (2.4)

The elastic coefficients αi do not change for both phases, only the βl
i differ. The

convex terms ci ln ci are motivated by considerations from statistical mechanics
on the system entropy by counting the different configurations. The expression
∑3

i=1Eici is an enthalpic term and a consequence of the presence of the Fe-
reaction. This is thoroughly discussed in the subsequent section.

The expression (
∑4

i=1 αici)
2 is a consequence of Hooke’s law. The constants αi

correspond to the ion radii and measure the volume response when replacing
Zn2+ by other metal ions. In (2.4), the β1

i , β
2
i are positive constants and kB is

the Boltzmann constant.

The ansatz
∑5

i=1 ci ln ci of Formula (2.4) is well known in the material sciences.
It is true whenever the transitions are random pairwise interactions. For the
crystallographic experiments, this has been confirmed for the high temperature
transitions of chalcopyrite, [12]. Furthermore Eq. (2.4) is a very reasonable term
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for a numerical computation, since (2.4) implies infinite slope of Dfl if one com-
ponent cj approaches 0 or 1. This guarantees, see [59],

cj ∈ (0, 1) in Ω, t > 0 (2.5)

and cj has physical meaning. As there is no maximum principle for systems of
equations, without the logarithmic terms in (2.4), the condition (2.5) may be
violated even if cj ∈ (0, 1) holds for t = 0.

At this stage, a control mechanism for the segregation process is added. The
following principle is well known. We introduce a function χ = χ(x, t) ∈ [0, 1],
in the following called ’phase parameter’, that measures the volume fraction of
the chalcopyrite phase; e.g. χ(x0, t0) = 0 means that for t = t0 in x0 ∈ Ω only
the sphalerite phase is present, χ(x0, t0) = 1

2 that the system is in x0 in an
intermediate state with no dominant phase.

Let γ > 0 be a small constant, denoting the square of the thickness of the interface
between sphalerite and chalcopyrite phase. We define the density of the mixing
entropy sM as

sM (χ) = W (χ) +
γ

2
|∇χ|2, (2.6)

with
W (χ) := χ lnχ+ (1− χ) ln(1− χ). (2.7)

Since f := conv(f1, f2), we will consider f as the convex combination of f1 and
f2. Because sM is subtracted from the entropy density s, the thermodynamic
relation f = e− Ts thus implies

f(c, χ) := χf1(c) + (1− χ)f2(c) + TsM (χ). (2.8)

The phase parameter χ is governed by the modified Allen-Cahn equation

τ∂tχ = −∂χ

(

f

T

)

= γ△χ− ω(c, χ), (2.9)

where γ△χ comes from the first variation of −
∫

Ω
γ
2 |∇χ|2 w.r.t. χ and τ is a

scaling parameter to adjust the different time scales between mass diffusion and
growing of the chalcopyrite phase, see also Eq. (2.39).

The driving force ω in (2.9) is given by

ω(c, χ) := ln

(

χ

1− χ

)

+m(c). (2.10)

The value m(c) accounts for the growing of chalcopyrite in copper rich regions
and is gained implicitly by τ∂tχ = −∂χ(f/T ). Since so far the final formula for
f has not been derived, we will postpone the discussion of this term and of the
mechanism responsible for the growing of chalcopyrite in copper rich regions. The
final definition of ω is given in (2.28).

We want to incorporate the electron jumps by including reaction terms in the
model. Particular care must be taken because the reactions are represented in
the free energy by enthalpic terms which in turn modify the chemical potentials.
Especially there is an intrinsic connection between the form of the reaction terms,
the ansatz for the free energy and the second law of thermodynamics, which
simplifies for isothermal systems to showing that ∂tF ≤ 0, where F =

∫

Ω f .

All this will become clear after the discussion of the following toy problem.
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2.2 A purely reactive system

We consider a purely reactive system without diffusion.

Let the domain Ω comprise of substances A, B, C and D subject to the reactions

A+B
r+→ C +D,

A+B
r−← C +D

with positive rates r+, r−. Let c̃1, c̃2, c̃3 and c̃4 denote the concentration of
substances A, B, C and D where we assume

4
∑

i=1

c̃i = 1. (2.11)

In the language of partial differential equations, as carefully explained in the text
book [41], the above reactions can be rewritten in the form

∂tc̃1 = ∂tc̃2 = −r+c̃1c̃2 + r−c̃3c̃4, (2.12a)

∂tc̃3 = ∂tc̃4 = +r+c̃1c̃2 − r−c̃3c̃4. (2.12b)

From statistical mechanics we infer

r+ = exp
(Ẽ1 + Ẽ2 − ẼS

kBT

)

, (2.13a)

r− = exp
(Ẽ3 + Ẽ4 − ẼS

kBT

)

, (2.13b)

where Ẽ1 +Ẽ2 is the energy level before the reaction A+B → C+D, Ẽ3 +Ẽ4 the
energy level after the reaction. ẼS is the activation energy or sattle point energy
that has to be exceeded to start the reaction.

For the free energy we make the ansatz

F̃ (c̃) =

∫

Ω

kBT
4
∑

i=1

c̃i

(

ln c̃i +
Ẽi

kBT

)

(2.14)

where the last term defines the system enthalpy, see for instance [35].

Now we will show the following properties of F̃ :

∂tF̃ (c̃(t)) = 0 iff ∂tc̃i = 0, 1 ≤ i ≤ 4, (2.15a)

∂tF̃ (c̃(t)) ≤ 0, (2.15b)

F̃ (c̃(t)) is critical iff ∂tc̃(t) = 0. (2.15c)

In order to show (2.15a), (2.15b), after setting

R := −r+c̃1c̃2 + r−c̃3c̃4 = ∂tc̃1 = ∂tc̃2 = −∂tc̃3 = −∂tc̃4,

elementary computations yield

∂tF̃ (c̃) =

∫

Ω

kBT R
[

ln
( c̃1c̃2
c̃3c̃4

)

+
Ẽ1 + Ẽ2 − ẼS

kBT
− Ẽ3 + Ẽ4 − ẼS

kBT

]

=

∫

Ω

kBT R ln
[( c̃1c̃2
c̃3c̃4

)(r+
r−

)]

. (2.16)
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We observe

ln
( c̃1c̃2 r+
c̃3c̃4 r−

)

= 0 iff c̃1c̃2 r+ = c̃3c̃4 r−

and together with (2.16) we find (2.15a).

Eq. (2.16) directly implies the free energy inequality (2.15b). To see this, let us
consider the two mutual exclusive cases:

(A) R ≥ 0 ⇐⇒ c̃3c̃4r− ≥ c̃1c̃2r+ ⇐⇒ ln
( c̃1c̃2 r+
c̃3c̃4 r−

)

≤ 0,

(B) R < 0 ⇐⇒ c̃3c̃4r− < c̃1c̃2r+ ⇐⇒ ln
( c̃1c̃2 r+
c̃3c̃4 r−

)

> 0.

This discussion reveals the natural structure of the problem,

((ln(c̃1c̃2 r+)− ln(c̃3c̃4 r−))(c̃3c̃4 r− − c̃1c̃2 r+) ≤ 0, (2.17)

from which we unconditionally infer ∂tF̃ (c̃(t)) ≤ 0.

Of course, this canonical structure of the problem goes along with Ansatz (2.14)
for the free energy. Hence, the definition of the free energy, the definition of the
reaction terms and the estimate of ∂tF̃ have to be discussed as a whole!

A critical point c̃ of F̃ is characterised by

ln c̃l +
Ẽl

kBT
+ 1 = 0 for 1 ≤ l ≤ 4. (2.18)

This implies ∂tc̃i = 0, 1 ≤ i ≤ 4 because from (2.18) it follows with (2.13)

ln(c̃1c̃2r+) = −2, (2.19a)

ln(c̃3c̃4r−) = −2 (2.19b)

and when subtracting (2.19b) from (2.19a) we find

ln
( c̃1c̃2 r+
c̃3c̃4 r−

)

= 0.

The last identity implies at once ∂tc̃i = 0, 1 ≤ i ≤ 4. The other implication in
(2.15c) is shown similarly.

2.3 The model for chalcopyrite disease

Eq. (2.17) reveals the underlying structure of reaction-diffusion equations and
we are now in the position to discuss the reaction terms and give a complete
description of the model. The swift jumps of the electrons are integrated into the
model by two reactions which are

Fe2+ k→ Fe3+ + e−, (2.20a)

Fe2+ κk← Fe3+ + e−. (2.20b)

Here, e− is a free lattice electron and k, κk are reaction rates. A formula for ce
has already been found with (2.2).
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If we follow another time the standard approach to model the reactions (2.20)
analogous to Eq. (2.12), we end up with

r1 = k(c22 − κc1ce). (2.21)

Unfortunately, this is wrong in our case! For the vindication of the inventors of
this formula it should be said that (2.21) was not stated for reactive systems
that simultaneously undergo phase changes. With the knowledge of the general
structure (2.17) we can obtain a consistent formulation of r that generalises (2.21).
In this generalisation, the rates will also depend on χ.

Before we can find the final reaction formula, two further modifications of the
model are in place. First we remind that the oxidation of Fe is caused by swift
shifts of the electrons and occurs thus much faster than any other process, i.e.
faster than diffusion. Hence, it is reasonable to assume that this oxidation is
instantaneous. The best way to mathematically formulate the reaction term is by
introducing a fast variable

d1 = c1

that for fixed c1 + c2 describes the free electrons, introducing the slow variables

d2 = c1 + c2, d3 = c3, d4 = c4

and by splitting System (2.1) assymetrically into one stationary elliptic equation
for d1 and three time dependent parabolic equations for d2, d3 and d4.

Even though the formulation in d variables is the most natural one for the reac-
tion term, we will not use it here because it is somewhat clumsy for the other
expressions, in particular with regard to (d2 − d1) ln(d2 − d1) in the definition of
f . At least we will replace the equation for c1 by a stationary elliptic equation.

Secondly, due to electric neutrality, we postulate

c5 =
1

2
c1. (2.22)

This condition was found experimentally in [14] long before a mathematical model
had been developed. Eq. (2.22) is the key to finding a consistent formulation for
the reaction term. There is one difficulty here because (2.22) tells us that the
movement of the vacancies is on the same fast time scale as the movement of
the free electrons. We will bypass this problem by demanding ∂tc5 = 0 in the
derivation of the reaction term in (2.26). All crystallographic measurements verify
Relation (2.22), but the quick electron jumps are beyond the resolution horizon
of todays methods.

As main consequence of (2.2) and (2.22) we find

ce = c3. (2.23)

To end up with the reaction terms having the same structure as in (2.17), the
logarithms have to have the same factors. Hence we assume

βl
1 +

βl
5

2
= βl

2 = βl
3 = βl

4 =: bl, l = 1, 2.
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The final form of the free energy (2.4) is thus

fl(c) = kBTb
l

4
∑

i=1

ci ln ci +
3
∑

i=1

ciEi +
(

4
∑

i=1

αici

)2
, l = 1, 2. (2.24)

Combined, (2.8) and (2.24) define the free energy F .

F (c, χ) =

∫

Ω

f(c, χ)

=

∫

Ω

[

kBTbχ

(

4
∑

i=1

ci ln ci

)

+

3
∑

i=1

ciEi +
(

4
∑

i=1

αici

)2

+
γT

2
|∇χ|2 + TW (χ)

]

. (2.25)

Here and henceforth we use the abbreviation bχ := χb1 + (1− χ)b2.

The rates fulfill

r+ = kκ = exp
(E1 + E3 − ES

kBT

)

,

r− = k = exp
(2E2 − ES

kBT

)

.

By a handwaving argument, we can give a quick motivation for the correct re-
action term by considering again a purely reactive system, this time with phase
changes. If we consider the oxidation process alone (without diffusion!) we have

∂tc4 = ∂tc5 = 0 (2.26)

and from ∂tc1 = ∂tc3 and
∑5

i=1 ci = 1 we infer ∂tc2 = −2∂tc1. It is emphasised
that ∂tc5 = 0 tells us about the different time scales of oxidation and movement of
vacancies. With these constraints we compute ∂tF (c(t), χ(t)) for the free energy
(2.25), where we can drop (

∑4
i=1 αici)

2 (the estimation of this term is possible in
the same way as in Section 2.6 under the natural assumption (2.50)) on the ion
radii.

We find

∂tF (c(t), χ(t)) =

∫

Ω

[

kBT bχ∂tc1 ln
(c1c3
c22

)

+
E1 + E3 − ES

kBT
− 2E2 − ES

kBT
− (∂tχ)2

]

=

∫

Ω

[

kBT bχ∂tc1 ln
(c1c3(r+)1/bχ

c22(r−)1/bχ

)

− (∂tχ)2
]

.

The consistent form of the reaction term that replaces (2.21) is hence

r1 = r3 = −1

2
r2 = (k)1/bχ

(

c22 − κ1/bχc1c3

)

, r4 = 0. (2.27)

b1 and b2 should be in the magnitude of 1 and for b1 = b2 there would be no χ
dependence. For b1 = b2 = 1 we fall back to standard formulas of the reaction
term.

A precise justification of (2.27) will be given in Section 2.6.
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It remains to discuss the control mechanism for the chalcopyrite phase. Definition
(2.25) together with τ∂tχ = −∂χ(f/T ) = γ△χ− ω(c, χ) gives rise to the setting

ω(c, χ) = W ′(χ) + kB(b2 − b1)
(

4
∑

i=1

ci ln ci + α
)

. (2.28)

Here, α > 0 is a temperature-dependent constant. Additive constants occur in
(2.25) because one can only measure the change δF of F when varying a quantity
q, commonly temperature or volume, within some interval (q0, q1), finding the
expression

∫ q1

q0
δF for F .

x1 x2 c3

m

α

Figure 2.1: Plot of m(c3)

To understand the principle of the control mechanism, we first freeze c1, c2 and
c4 and consider

ω(c3, χ) = W ′(χ) +m(c3)

with

m(c3) = βc3 ln c3 + α

for constants α > 0, β > 0, see Fig. 2.1.

The mechanism thus obtained is similar to the one commonly used in phase field
models, see [46], where c3 plays the role of temperature. From convexity of m(c3)
and from the magnitude of α and β, we get the existence of x1, x2 ∈ (0, 1),
x1 < x2 with m(c3) > 0 for c3 ∈ (0, x1) ∪ (x2, 1) and m(c3) < 0 for c3 ∈ (x1, x2).
Consequently for c3 < x1, the sphalerite phase is preferred, whereas for x1 < c3 <
x2, chalcopyrite can form. In practice, the branch c3 > x2 is never reached, and
the chalcopyrite phase once it has formed does not destabilise at a later time.

The expression (2.28) is symmetric w.r.t. the variables c1, . . . , c4 and so the
mechanism just explained also applies to the other variables. Yet there is un-
symmetry here which comes from the initial values for c and from the constraint
3
2c1+c2+c3+c4 = 1

2 . The penetration of c3 into the crystal causes for suitable α a
change of sign of

∑

i ci ln ci−α and consequently the chalcopyrite phase becomes
preferable.

We will quickly determine possible values for α. We have to solve

4
∑

i=1

ci ln ci → max /min

12



subject to
3

2
c1 + c2 + c3 + c4 =

1

2
.

We introduce a Lagrange multiplier λ ∈ R, define

h(c, λ) :=
4
∑

i=1

ci ln ci + λ
(3

2
c1 + c2 + c3 + c4 −

1

2

)

,

and search for the unconstrained extremals of h in R
5. We find at once that

every extremal point (c1, c2, c3, c4, λ) satisfies c2 = c3 = c4 =: ĉ and c1 + 2ĉ = 1
3 .

Additionally, a short computation yields that h attains its extremal values on the
boundary of the set of feasible (c1, ĉ),

{

(c1, ĉ)
∣

∣

∣

3

2
c1 + 3ĉ =

1

2
, c1 + 2ĉ =

1

3

}

.

Therefore, h(cmax, λmax) = − ln(3)
3 ≈ −0.366 and h(cmin, λmin) = − ln(6)

2 ≈ −0.896,
where cmax = (1

3 , 0, 0, 0) and cmin := (0, 1
6 ,

1
6 ,

1
6) are the extremals of h. A reason-

able parameter range for α is hence α ∈ ( ln 3
3 , ln 6

2 ). The final value of α for the
numerical computations will be chosen dependent on the initial values. The sign
of b2−b1 determines which of the two phases is preferable for small concentrations
of c3. Here only the positive sign is physical.

At this point the derivation of the model is complete.

Find for t ≥ 0 the vector c = (c1, c2, c3, c4) and χ such that in Ω ⊂ R
D for t > 0

0 = div





4
∑

j=1

L1j∇µj



+ k1/bχ(c22 − (κ)1/bχc1c3), (2.29a)

∂tci = div





4
∑

j=1

Lij∇µj



+ ri(c, χ), i = 2, 3, 4, (2.29b)

µi =
∂f

∂ci
(c, χ), 1 ≤ i ≤ 4, (2.29c)

τ∂tχ = γ△χ− ω(c, χ) (2.29d)

and for t = 0, x ∈ Ω

ci(x, 0) = c0i(x), i = 2, 3, 4 (2.29e)

χ(x, 0) = χ0(x) (2.29f)

and for t > 0, x ∈ ∂Ω

∂νχ = 0, (2.29g)

ci = gi, 1 ≤ i ≤ 4, (2.29h)

µi = hi, 1 ≤ i ≤ 4 (2.29i)

with given Dirichlet data g = (g1, . . . , g4) and h = (h1, . . . , h4) defined on ∂Ω.

As stated before, f is defined as the integrand of (2.25), ri by (2.27) and ω by
(2.28). Sometimes, in the sequel we will refer to (2.29) as Model I.
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Instead of condition (2.29i) we could impose

∂νJi = 0 on ∂Ω, 1 ≤ i ≤ 4, (2.30)

the natural boundary conditions associated to the minimisation problem of the
free energy functional, where the fluxes Ji are defined according to (2.3). Condi-
tion (2.29g) may be replaced by a Dirichlet boundary condition.

Relation (2.22) and, as a consequence, the condition 3
2c1 + c2 + c3 + c4 = 1

2 allows
to drop the equation for c4 for the numerical treatment of (2.29).

2.4 Two further models for simulations relying on

data bases of the free energy

In later parts of this work we want to apply extensively the harmonic approxima-
tion and to some extend molecular dynamics (MD) simulations to get estimated
values for the free energy of the real physical system. Both methods have in
common that they can only compute equilibrium states of the free energy and
that they will not be able to resolve free lattice electrons and vacancies (but the
methods will predict shifts of certain lattice atoms on the atomistic scale). This
implies several modifications to Model (2.29) that will be presented now.

Since the electronic potentials cannot be resolved, there will be no reaction term.
To remain as compatible with the notations of Model I as possible we suppress
the first index c1 of c and introduce as variables

c2 ≈ Fe, c3 ≈ Cu, c4 ≈ Zn, χ ≈ volume fraction of chalcopyrite phase.

The conservation of mass reads now
∑4

i=2 ci ≡ 1
2 or equivalently

c = (c2, c3, c4) ∈ Σ :=
{

c2 + c3 + c4 ≡
1

2

}

.

We will use the same notations, c for the concentration vector and Σ for the
simplex, as in Model I even though they have now a different meaning. From the
context it will always be clear which definition has to be chosen.

For the theoretical free energy density of phase l we get according to (2.24) with
appropriate αi, b

l

fl(c) = fl(c2, c3, c4) = bl
4
∑

i=2

ci ln ci +
(

4
∑

i=2

αici

)2
, l = 1, 2

but typically for this model, f is not given by a formula but is obtained from
ab-initio computations. The results of these computations are stored in huge
data bases. To distinguish between a theoretical formula, the free energy density
of phase l gained from the harmonic approximation or MD simulations will be
denoted by f l.

The existence and uniqueness results of Chapter 3 will be formulated for Model I,
but simplifications of the proofs for Model I yield the corresponding existence and
uniqueness results for Model II.
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The Allen-Cahn equation is replaced by

τ∂tχ = −∂χ(f/T ) =
f2(c)− f1(c)

T
+ γ△χ+ ln(χ/(1− χ)).

The logarithmic expression ln(χ/(1−χ)) is needed in order to guarantee 0 < χ < 1
and makes sure that χ has physical meaning.

With the above changes we arrive at the following model which we later on refer
to as Model II.

Find for t ≥ 0 the concentration vector c = (c2, c3, c4) and χ such that in Ω ⊂ R
D

for t > 0

∂tci = div





4
∑

j=2

Lij∇µj



 , i = 2, 3, 4, (2.31a)

µi = χ
∂f1

∂ci
(c) + (1− χ)

∂f2

∂ci
(c), i = 2, 3, 4, (2.31b)

τ∂tχ = γ△χ+
f2(c)− f1(c)

T
+ ln(χ/(1− χ)), (2.31c)

and for t = 0, x ∈ Ω

ci(x, 0) = c0i(x), i = 2, 3, 4; χ(x, 0) = χ0(x) (2.31d)

and for t > 0, x ∈ ∂Ω

∂νχ = 0, (2.31e)

ci = gi, 2 ≤ i ≤ 4, (2.31f)

µi = hi, 2 ≤ i ≤ 4. (2.31g)

In Section 4.2, especially with Eq. (4.7), it will be explained how the derivatives
∂f l

∂ci
(c) are computed.

The major theoretical results, in particular the free energy inequality as well as
the proof of existence and uniqueness in Chapter 3 will be formulated and proved
for Model I, but with very obvious modifications these statements and proofs will
also hold for Model II.

Model II still has two disadvantages. Firstly, as a consequence of the Allen-Cahn
equation, mushy regions occur. This means there are points in Ω that cannot be
clearly related to one of the two phases. Secondly, in Eq. (2.31c) any term of the
form α ln(χ/(1− χ)) with positive α may be chosen.

A different formulation that avoids these difficulties is available within the frame-
work of functions of bounded variation BV (Ω), see [76], [34], [68], and consists
in replacing (2.31c) by the minimisation ansatz

F (c, χ) = min
χ̃∈V

F (c, χ̃) (2.32)

where
V := {χ̃ ∈ BV (Ω) | χ̃(1− χ̃) = 0 a.e. in Ω} (2.33)

and

F (c, χ̃) :=

∫

Ω

γ|∇χ̃|+
∫

Ω

(χ̃f1(c) + (1− χ̃)f2(c)). (2.34)
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The general formalism of this model for a crystal subject to possibly non-linear
deformations is introduced in [1]. A restriction of the model in [1] to the special
case of linear elasticity is analysed numerically in [17] and the existence theory
is treated in [74].

The system (2.31) with (2.31c) replaced by (2.32) and the condition χ ∈ H1,2(Ω)
replaced by χ ∈ V is later on called Model III.

2.5 Dimensionality analysis

In this section it is explained how the dimensional physical equations are trans-
formed to a non-dimensional form. This can be done elementary. We carry out
this transformation for three space dimensions and Model I, the changes for other
dimensions and the other models are straightforward.

One refers a physical parameter (in the sequel marked with a ′) to a reference
value (marked with a subscript 0) and obtains the dimensionless data. For the
space coordinate x we have for instance

x =
x′

x0
.

The dimensionless value x refers here to the scale x0 (which is the reference value
in this case), the characteristic length of the geometry.

In particular we set

x = x′

x0
, y = y′

x0
, z = z′

x0
, t = t′

t0
, T = T ′

T0
,

c = c′

c0
, L = L′

L0
, κ = κ′

κ0
, k = k′

k0
, γ = γ′

γ0
,

E = E′

E0
, F = F ′

F0
, f = f ′

f0
, e = e′

e0
, s = s′

s0
.

We use SI-units and write the physical dimensions in brackets [. . .]. We need the
relationships

F0 = [kg ·m · s−2], (2.35)

E0 = [kg ·m2 · s−2]. (2.36)

(2.35) follows from Newton’s equation F = ma stating the force needed to apply
an acceleration a to an object with mass m and (2.36) follows from E = Fd
describing the work done by a force F acting along a direction d. Furthermore
(2.35) implies for f

f0 = [J ] = [kg ·m−2 · s−2].

The chain rule implies ∂t′c(t
′) = 1

t0
∂tc(t) and hence

∂t′c
′(x′, y′, z′, t′) =

c0
t0
∂tc(x, y, z, t),

∂x′c′(x′, y′, z′, t′) =
c0
x0

∂xc(x, y, z, t),

where c0 = [kg · m−3]. Analogous formulas hold for the first derivatives of the
other variables.
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For the second derivative one has accordingly

∂2
x′c′(x′, t′) =

c0
x2

0

∂2
xc(x, y, t).

We insert the found relationships into (2.29). Starting with (2.29b) we find

∂t′c
′
i + div′

(

∑

j

L′
ij∇

∂f ′

∂c′j

)

= c0t
−1
0 ∂tci + x−2

0 L0c
−1
0 f0 div

(

∑

j

Lij∇
∂f

∂cj

)

= [s−1 · kg ·m−3] ∂tci − [m−1 · s−2]L0 div
(

∑

j

Lij∇
∂f

∂cj

)

= [s−1 · kg ·m−3]
(

∂tci − div
(

∑

j

Lij∇
∂f

∂cj

))

(2.37b)

with L0 := [kg ·m−2 · s].
χ ∈ [0, 1] is a non-dimensional parameter, it can be regarded as the ratio of two
densities. Hence, χ0 = 1 or χ = χ′ and consequently

∂t′χ =
1

t0
∂tχ(x, y, z, t).

Now we treat the reaction term in (2.29a). By evident transformations we have

(k′)1/bχ((c′2)
2 − (κ′)1/bχ(c′1c

′
3)) = k0c

2
0k

1/bχ−1
0 k1/bχ(c22 − κ

1/bχ

0 κ1/bχ(c1c3)).

With the setting

k0 := c−1
0 t−1

0 ,

κ0 := 1

we obtain for (2.29a)

div′
(

∑

j

L′
ij∇

∂f ′

∂c′j

)

+ (k′)1/bχ((c′2)
2 − (κ′)1/bχc′1c

′
3) (2.37a)

= [s−1 · kg ·m−3]
(

div
(

∑

j

Lij∇
∂f

∂cj

)

+ k
1/bχ−1
0 k1/bχ(c22 − κ1/bχc1c3)

)

.

Finally we discuss the equation for the phase parameter χ. In the modified Allen-
Cahn equation the expression − 1

T ∂χf =
∑

i[si − 1
T (ei)] and W (χ) due to (2.6)

have the dimension of an entropy. The same is true for the entropic term

kB(b2 − b1)
(

4
∑

i=1

ci ln ci + α
)

and these are referred to scale s0.

Furthermore

γ′

2
|∇′χ|2 = γ0

γ

2

(

(∂x′χ)2 + (∂y′χ)2 + (∂z′χ)2
)

=

[

γ0

x2
0

]

(γ

2
|∇χ|2

)

.
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Comparing the dimensions, we find with (2.6) γ0

x2
0

= s0 or

γ0 = s0x
2
0. (2.38)

Using (2.38) this yields:

γ′ △′χ = γ′ (∂2
x′χ(x′, y′, z′, t′) + ∂2

y′χ(x′, y′, z′, t′) + ∂2
z′χ(x′, y′, z′, t′))

=
γ0

x2
0

(γ△χ) = s0 γ△χ.

As a consequence, (2.29d) is rewritten as

τt−1
0 (∂tχ) = s0

(

γ△χ+ ω(c, χ)
)

. (2.37c)

Hence we choose
τ := s0t0. (2.39)

System (2.29) is transformed to the new formulation (2.37). The diffusion equa-

tions are unchanged except the additional term k
1/bχ−1
0 that has to be accounted

for. This conversion factor becomes part of the numerical routines.

According to the definition of χ as the ratio of two concentrations, the modified
Allen-Cahn equation is dimensionless. In order to adapt the size of ∂tχ, the scaling
parameter τ has been introduced.

It is of course well understood that the computed numerical results hold in all
cases where the dimensional factors in brackets have identical values.

Finally, we want to briefly discuss how the estimated free energy values that
we will gain later by ab-initio computations are used numerically. The value of
132 eV ≈ 2.11 ·10−17J (GULP value) for sphalerite represents the free energy of a
homogeneous sphalerite crystal occupying its cubic unit cell with edge length a ≈
5.41Å (again GULP data). Setting the volume V = (5.41Å)3 ≈ 158.34 · 10−30m3

of the unit cell of cubic ZnS into a relation with the volume of Ω (as chosen
for the computations of Sections 5.3, 5.4 and 5.5) we can for instance calculate
the free energy of a homogeneous sphalerite crystal contained within one fixed
finite element of a given regular triangulation of Ω with N elements to 2.66·109J

N .
Together with the diffusivities that are in the range of 10−4ms−1 to 10−7ms−1

and the conversion from seconds to days we obtain reasonable results.

These diffusivity constants for Cu, Zn and Fe were taken from measurements,
[55], but it must be pointed out that the physical units [m2s−1] of this data had
to be changed to [kg m2 s] in order to fit into our formulation.

2.6 Free energy inequality for the isothermal system

We will show the thermodynamical correctness of the three presented models un-
der isothermal conditions and with the approximating elliptic equation replaced
by the original time-dependent formulation.

We start with System (2.29) and reformulate it:

∂tc+ div(J) = r, (2.40)

τ∂tχ = −∂f
∂χ

, (2.41)
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where
J = −L∇µ

and r is defined by (2.27).

An application of the chain rule yields

d

dt
f(c, χ) =

4
∑

j=1

∂f

∂cj
∂tcj +

∂f

∂χ
∂tχ. (2.42)

From this identity we learn that we have to test the equation for ci with ∂f
∂ci

,

1 ≤ i ≤ 4 and Eq. (2.41) with ∂f
∂χ . After integrating over Ω, one integration by

parts and with ∂f
∂cj

= µj we obtain:

d

dt

∫

Ω

f(c, χ)−
∫

Ω

(

4
∑

j=1

µjrj +
4
∑

j=1

∇µj ·Jj +
∂f

∂χ
∂tχ
)

+

∫

∂Ω

4
∑

j=1

µjJj ·~ν = 0. (2.43)

This is the constitutive equality for the Helmholtz free energy density f .

To recast (2.43) as an inequality, we notice that as the matrix L is positive
definite,

4
∑

j=1

∇µj · Jj = −L∇µ : ∇µ ≤ 0. (2.44)

Additionally, by (2.41), we have ∂f
∂χ∂tχ = −τ(∂tχ)2 ≤ 0.

It remains to show that
∫

Ω

4
∑

j=1

µjrj ≤ 0. (2.45)

We exploit the particular form of r and f and Structure (2.17). Let

Q(c) :=
4
∑

i=1

αici.

Since r1 = r3 = −1
2r2, r4 = 0 we have

∫

Ω

4
∑

j=1

µjrj =

∫

Ω

(µ1 − 2µ2 + µ3)r1 (2.46)

=

∫

Ω

[

kBT bχ

(

ln
(c1c3
c22

)

+
E1 + E3 − ES

kBT bχ
− 2E2 − ES

kBT bχ

)

+2(α1 − 2α2 + α3)Q(c)

]

r1

=

∫

Ω

[

kBT bχ ln
(c1c3(r+)1/bχ

c22(r−)1/bχ

)

+ 2(α1 − α2 + α3)Q(c)
]

r1.

The first term can be estimated analogous to (2.17):

∫

Ω

kBTbχ ln
(c1c3(r+)1/bχ

c22(r−)1/bχ

)

r1 ≤ 0 (2.47)
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but additional considerations are necessary to estimate
∫

Ω 2(α1−2α2+α3)Q(c)r1.

The logarithmic form (2.25) of the free energy guarantees ci > 0 in ΩT0 for t > 0
if this is true for t = 0. In Chapter 3 a rigorous proof of this statement will be
given. From this fact we obtain Q(c) > 0 in ΩT0 .

Let
σ1 := sup

x∈Ω

c01(x, 0), σ2 := inf
x∈Ω

c20(x), σ3 := sup
x∈Ω

c30(x), (2.48)

where σ1, σ2, σ3 are positive constants. By the parabolic maximum principle,
[59], as for fixed c2, c3, χ the mapping c1 7→ r1(c, χ) decreases as c1 increases,
and (now for fixed c1, c3, χ) c2 7→ r1(c, χ) increases and finally c3 7→ r1(c, χ)
decreases, we have σ1 = supΩT0

c1, σ2 = infΩT0
c2 and σ3 = supΩT0

c3.

Now a sufficient condition for r1 > 0 in ΩT0 is

κ1/bχ <
σ2

2

σ1σ3
. (2.49)

We remark that in the crystallographic measurements, the ratio constant κ never
exceeded a value of 0.07 (otherwise the matrix becomes unstable).

Of course, one can replace (2.49) by conditions independent of χ. In Chapter 3
we will show that 0 < χ < 1 in ΩT0 if this is true for the initial values χ0. If we
assume κ ≤ 1 and b1, b2 ≤ 1, a sufficient condition for (2.49) is

κ1/ max(b1,b2) <
σ2

2

σ1σ3
.

For an estimate of the volume term we require

α1 − 2α2 + α3 < 0. (2.50)

This is a condition on the ion radii of Fe3+, Fe2+ and Cu+ and fulfilled in nature
with α1− 2α2 +α3 = −0.13Å, see Table 2.1. Together with r1 > 0 and the above
estimate this shows that

∫

Ω 2(α1 − 2α2 + α3)Q(c)r1 < 0.

Symbol Species Ion Radius

α1 Fe3+ 0.555Å

α2 Fe2+ 0.660Å

α3 Cu+ 0.635Å

α4 Zn2+ 0.640Å

Table 2.1: Values of sulfide crystal radii taken from [44]

Hence, (2.45) is proved and we have shown the constitutive free energy inequality

d

dt

∫

Ω

f(c(t), χ(t)) +

∫

∂Ω

4
∑

j=1

µjJj · ~ν ≤ 0. (2.51)

In a thermodynamically closed system the fluxes on ∂Ω disappear. This is in
particular fulfilled if we impose that the Dirichlet data does not vary along ∂Ω:

hi ≡ consti, 1 ≤ i ≤ 4.
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A different way to guarantee that the boundary fluxes vanish in (2.51) is to impose

∂νµj = 0 on ∂Ω, 1 ≤ j ≤ 4,

the natural boundary conditions associated to the minimum problem of the free
energy integral.

To summarise, if the equilibrium constant κ fulfills (2.49) and under the natural
condition (2.50) on the ion radii, we obtain

∑4
j=1 µjrj < 0 in ΩT0 and hence

d

dt

∫

Ω

f(c(t), χ(t)) ≤ 0

for a thermodynamically closed system.

From now on we shall assume that (2.49) and (2.50) are fulfilled.

The results just shown immediately imply the thermodynamical validity of
Model II if the free energy obeys the relationship

f(c, χ) = χf1(c) + (1− χ)f2(c) +
γT

2
|∇χ|2 + TW (χ)

(we remind that f l(c) denotes the free energy density of phase l, l = 1, 2 stored
in data bases). This follows from (2.43) with rj = 0 and the functional derivative

µj = ∂f
∂cj

is defined by interpolation, see Section 4.2, Eq. (4.7).

For the thermodynamical validation of Model III we observe that ∂f
∂χ∂tχ =

−τ(∂tχ)2 ≤ 0 is replaced by F (c, χ) = minχ̃∈V F (c, χ̃) which ensures that F
is non-increasing in χ for all times t > 0.

2.7 The non-isothermal case

The justification of the reactive term (2.27) depends on (2.17) and the estima-
tion of the free energy. It is interesting to clarify the question if r changes for
the non-isothermal case. To answer this question we quickly develop the exten-
sion to (2.29) if the temperature T is not a constant but can vary with time.
We validate the extended model by an entropy estimate and prove that the sec-
ond law of thermodynamics holds. Modifications to the other two models are
straightforward.

We add to (2.40), (2.41) the energy balance equation

∂te+ div(J5) = 0 (2.52)

and assume that there are no heat sources (the second law of thermodynamics
holds for a thermodynamically closed system). If we considered a model where
the reactions absorb heat, the ansatz (2.52) would have to be modified.

The fluxes in the non-isothermal setting are defined by

Ji =
4
∑

j=1

Lij∇
(µj

T

)

, 1 ≤ i ≤ 4, J5 = −λ∇T.
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Here, λ = λ(·, T,∇T ) > 0 denotes the heat conductivity. The alteration of the
fluxes J1, . . . , J4 and the new relation (2.52) are all the changes necessary to
adjust the model to the non-isothermal setting.

From Gibbs relation f = e− Ts it follows:

∫

Ω

∂ts =

∫

Ω

∂t

( 1

T
e− 1

T
f
)

=

∫

Ω

[

1

T
∂te−

1

T
∂tf −

s

T
∂tT

]

. (2.53)

A variation of f = f(c, χ, T ) similar to (2.42) reveals

∫

Ω

1

T
∂tf(c, χ, T ) =

∫

Ω

[ 1

T

4
∑

j=1

µj∂tcj +
1

T

∂f

∂χ
∂tχ−

s

T
∂tT
]

.

By inserting this formula in (2.53), the ∂tT term drops out and we obtain

∫

Ω

∂ts =

∫

Ω

1

T

(

∂te−
4
∑

j=1

µj∂tcj −
∂f

∂χ
∂tχ
)

.

So we test the equations for ci with µi

T , Eq. (2.41) with − 1
T

∂f
∂χ and (2.52) with 1

T .

The treatment of the first four equations is done as in the last section. An inte-
gration of the last identity (2.52) yields

∫

Ω

1

T
∂te =

∫

Ω

λ

T 2
|∇T |2 +

∫

∂Ω

λ

T
∇T · ~ν.

So we find

d

dt

∫

Ω

s −
∫

Ω

(

λ
|∇T |2
T 2

+ L∇
(µ

T

)

: ∇
(µ

T

)

−
4
∑

j=1

µj

T
rj +

1

T

(∂χf)2

τ

)

(2.54)

+

∫

∂Ω

(

4
∑

j=1

µj

T
Jj −

λ∇T
T

)

· ~ν = 0.

The proof of
∑4

j=1
µj

T rj ≤ 0 is done verbatim as in the last section. In the crucial
estimate, the factor T still present in the isothermal free energy estimate cancels
out. This proves that (2.27) defines the reaction terms of the non-isothermal
model, too, and that these rates are independent of T .

From the positive definiteness of L and from λ > 0 we get the entropy inequality

d

dt

∫

Ω

s+

∫

∂Ω

( 1

T

4
∑

j=1

µjJj − λ∇T
)

· ~ν ≥ 0. (2.55)

Formally, assuming the boundedness of s from below and letting λ tend to +∞,
we recover the constitutive free energy inequality (2.51) (scaled by factor 1

T ). This
can be done as explained in [5].
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2.8 More general forms of the surface energy

The formula
∫

Ω
γ
2 |∇χ|2 in the definition of the free energy (2.25) represents a

surface energy depending on χ only. In general, different concentration vectors c
will imply different microscale geometries close to the transition layer, hence the
interfacial energy will depend on c.

In this section we will assume that this interfacial energy is a function of ∇c.
Firstly, we will consider that

∫

Ω
γ
2 |∇χ|2 be replaced by

∫

Ω

1

2

(

Λ∇c : ∇c+ γ|∇χ|2
)

(2.56)

where Λ ∈ R
4×D denotes as usual a positive definite symmetric tensor. We will

show that this common ansatz leads here to a wrong model. Secondly we will
discuss a possible correction of (2.56) with Λ = Λ(c, χ). The philosophy of this
section is to analyse which forms of the surface energy lead to a mathematically
consistent model. We will not try at this point to compute the correct physical
surface energy by considering sphalerite-chalcopyrite ensembles for different c
vectors.

The additional term 1
2Λ∇c : ∇c in (2.56) leads to modified chemical potentials

µj = ∂f
∂cj

. In order to validate the free energy inequality for the resulting model,

it is enough to verify
∫

Ω

(µ1 − 2µ2 + µ3)r1 ≤ 0, (2.57)

as shown in Eq. (2.46) (the same discussion applies with an additional factor 1/T
to the non-isothermal case, see (2.54)).

The claim is that such an estimate is not possible for constant Λ, γ. To this end
it is enough to restrict to the special case

(Λik)ik = diag(λi)

such that Λ has only non-zero entries on the diagonal. Furthermore let χ ≡ const
and c4 ≡ const (initial and boundary data chosen appropriately). The free energy
estimate must also hold for this special case. Exploiting Estimate (2.47), we then
have to ensure that

∫

Ω

△(−λ1c1 + 2λ2c2 − λ3c3)k̃(c
2
2 − κ̃c1c3) ≤ 0.

This inequality does not hold in general. Also, it does not seem possible to find a
correction to r1 such that (2.57) holds. Consequently, (2.56) cannot be justified.

We will now drop the postulate of constant coefficients in the surface energy and
will allow Λ to depend on c, χ. The gist of the following construction is the simple
observation
∫

Ω

△(k1/bχ(c22−κ1/bχc1c3))(k
1/bχ(c22−κ1/bχc1c3)) =

∫

Ω

(△r1)r1 =

∫

Ω

−|∇r1|2 ≤ 0.

Here we integrated by parts and assumed ci ≡ consti at ∂Ω or ∂νci = 0 and
∂νχ = 0 at ∂Ω which must be fulfilled for a thermodynamically closed system.
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For convenience we introduce only for this section the notation c5 := χ and
transform Λ to a 5×D-tensor Λ̃. This means for the surface energy

∫

Ω

1

2
Λ̃∇c : ∇c =

∫

Ω

1

2

5
∑

i=1

3
∑

j=1

3
∑

m=1

Λ̃im
∂cj
∂xm

∂ci
∂xj

.

Following the outline just explained we construct a tensor Λ̃ = Λ̃ij(c, χ) such that

−
∫

Ω

(△r1)r1 =

∫

Ω

( ∂

∂c1
− 2

∂

∂c2
+

∂

∂c3

)(1

2
Λ̃∇c : ∇c

)

r1.

By simple (but quite lengthy) computations we find

∇r1 = k1/bχ ln(k)
b2 − b1
(bχ)2

(c22 − κ1/bχc1c3 ln(κ))∇χ

+2k1/bχc2∇c2 − (κk)1/bχ(c1∇c3 + c3∇c1)

and similarly

△r1 = ln(k)κ1/bχ
(b2−b1)2

b4χ

[

(ln(κ)+2)(c22 − c1c3κ1/bχκ)+(ln(κ))2κ1/bχc1c3

]

|∇χ|2

−2(κk)1/bχ∇c1 · ∇c3 − (κk)1/bχ ln(κ) ln(k)
b2 − b1
b2χ

(

c1∇c3 · ∇χ+ c3∇c1 · ∇χ
)

+2k1/bχc2△c2 − (κk)1/bχc1△c3 + 4 ln(k)k1/bχ
b2 − b1
b2χ

c2∇c2 · ∇χ+ 2k1/bχ |∇c2|2

+ ln(k)κ1/bχ
b2 − b1
b2χ

(c22 − κ1/bχc1c3κ)△χ− (κk)1/bχc3△c1. (2.58)

Now we compute for l = 1, 2, 3

∂

∂xl

∫

Ω

1

2
Λ̃∇c : ∇c

= −1

2

∫

Ω

[

3
∑

j=1

3
∑

m=1

∂

∂xj

(

Λ̃lm
∂cj
∂cj

∂xm

)

+
5
∑

i=1

3
∑

m=1

∂

∂xm

(

Λ̃im
∂ci
∂xl

)]

and obtain

∫

Ω

( ∂

∂c1
−2

∂

∂c2
+

∂

∂c3

)(1

2
Λ̃∇c : ∇c

)

=−1

2

∫

Ω

{

5
∑

i=1

3
∑

m=1

Λ̃im

( ∂ci
∂x1
−2

∂ci
∂x2

+
∂ci
∂x3

)}

3
∑

j=1

3
∑

m=1

∂

∂xj

[(

Λ̃1m − 2Λ̃2m + Λ̃3m

) ∂cj
∂xm

]

. (2.59)

When comparing (2.58) with (2.59) we can read off expressions for Λ̃im which
are not unique and will depend on c1, c2, c3, χ, k and κ. Except the fact that
they have the right sign after integrating by parts, there seems no justification
for these complicated terms.
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Chapter 3

Existence and Uniqueness

Results for the derived Models

This chapter is devoted to the proof of global existence and uniqueness of a
solution to the formulation (2.29) with classical Dirichlet boundary conditions,
i.e. g = h = 0, and Neumann boundary condition ∂νχ = 0 at ∂Ω for χ, and with
the elliptic equation (2.29a) being replaced by the original parabolic equation.
If the general Dirichlet condition c = c on ∂Ω is imposed for a given function
c ∈ H1,2(Ω; R

4), one can formally set c̃ := c − c and gain from the results for c̃
which are provided in this chapter directly the corresponding statements for c.

The results stated in this chapter are also valid for Model II, provided we assume
that the free energy f is smooth. This is made precise in Remark 3.2. Remark 3.3
at the end of this chapter lists the necessary steps to extend the main existence
result to Model III.

The proof of existence is done in three steps. An additional (and artificial) surface
energy term

∫

Ω

λ

2
|∇c|2

for a small constant λ > 0 is added to the free energy functional. This term is
necessary to guarantee the existence of a minimiser (Lemma 3.1). The first part,
found in Sections 3.1 to 3.7, discusses the case of polynomial free energies for the
resulting model. The growth conditions in Section 3.4 are set up accordingly.

The second step, carried out in Sections 3.9 to 3.12, generalises to the same
model with logarithmic free energies. For the proof, a regularised functional is
introduced and the results for the polynomial free energy are exploited.

In the last step, the limit λց 0 is discussed and an existence result is established
for the original model (2.29).

The structure of this chapter follows the argumentation in [38] but several modifi-
cations arise from the presence of a reaction term, from the additional Allen-Cahn
equation and from the free energy functional that requires different growth con-
ditions, approximations and estimates than the Cahn-Hilliard model.

In [38] several older results are used among which the articles [29] and [31] should
be particularly mentioned; the general outline of the approach in [38] is related to
the earlier paper [5]. The principle of showing compactness results for a discrete
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model that allow to pass to the limit of a continuum model is by now classical
and goes back to [50].

3.1 Preliminaries

In this chapter, f = f(c, χ) denotes the free energy density without the surface
energy terms γ

2 |∇χ|2 + λ
2 |∇c|2, see also Definition (3.12) below. C will denote

generic constants that can change from estimate to estimate.

For the purpose of this chapter the formulation (2.29) in c variables is more
practical than a formulation in d variables (introduced on page 10). With the
additional surface term we will consider the formulation (where 0 < T0 <∞ is a
given stop time)

Find for t ≥ 0 the vector (c, µ, χ) with c = (c1, c2, c3, c4) such that in ΩT0 :=
Ω× (0, T0)

∂tc = div(L∇µ) + r(c, χ), (3.1a)

µ(c, χ) =
∂f

∂c
(c, χ)− λ△c, (3.1b)

τ∂tχ = γ△χ− ω(c, χ) (3.1c)

and for t = 0 in Ω

c(·, 0) = c0(·), χ(·, 0) = χ0(·) (3.1d)

and for t > 0 in ∂Ω

ci = µi = ∂νχ = 0, 1 ≤ i ≤ 4. (3.1e)

The matrix L in (3.1) is positive definite, T0 > 0 denotes the stop time, ω =
∂χ(f/T ), and the reaction term is

r1 = r1(c, χ) = k1/bχ(c22 − κ1/bχc1c3), r(c, χ) = (r1,−
1

2
r1, r1, 0). (3.2)

Now, let us collect general properties of the model and some necessary tools that
will be needed in the sequel.

As a consequence of the assumed relation (2.22) and the sulphur concentration
cS that is kept constant, the concentration vector c lies inside the simplex Σ,

c ∈ Σ :=
{

d = (d1, . . . , d4) ∈ R
4
∣

∣

∣

3

2
d1 + d2 + d3 + d4 =

1

2

}

. (3.3)

We do not propose 0 ≤ ci ≤ 1 in Ω because for the polynomial free energies
considered here this is simply not true. This is one of the reasons why logarithmic
free energies are introduced later on. Let

X1 :=
{

c ∈ H1,2
0 (Ω; R4)

∣

∣

∣
c ∈ Σ almost everywhere

}

,

X2 := H1,2
E (Ω; R) := {χ̃ ∈ H1,2(Ω; R) | ∂νχ̃ = 0 at ∂Ω}.

Since we have (classical) Dirichlet boundary conditions for the equations of con-
servation of mass, we consider the space of test functions

Y := H1,2
0 (Ω; R4)
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and its dual
D := (H1,2

0 (Ω; R4))′ = H−1,2(Ω; R4).

Now we consider the mapping L(µ) : Y → D corresponding to µ 7→ −div(L∇µ)
with Dirichlet boundary conditions, defined by

L(µ)(ζ) :=

∫

Ω

L∇µ : ∇ζ.

Instead of Dirichlet data one could also consider Neumann boundary conditions.
Due to the presence of r, this will not imply conservation of mass for the compo-
nents ci of c.

By definition of Y it is clear that L(µ) ∈ D. To simplify the argumentation later
we will need the inverse G of L. The existence of G is derived from the Poincaré
inequality and the Lax-Milgram theorem, since L is positive definite. From this
we find that G is positive definite, self-adjoint, injective and compact.

Hence we have

(L∇Gv,∇ζ)L2 = (ζ, v) for all ζ ∈ Y and v ∈ D.

We define for v1, v2 ∈ D the L scalar product by

(v1, v2)L := (L∇Gv1,∇Gv2)L2

with the corresponding norm

‖v‖L :=
√

(v, v)L.

Functions v ∈ Y canonically define an element in D and consequently, (·, ·)L and
‖ · ‖L are as well defined for functions in Y .

With the help of Young’s inequality we find for δ > 0 and all d ∈ Y the estimate

‖d‖L2 = (L∇Gd,∇d)L2

≤ ‖L 1
2∇Gd‖L2‖L 1

2∇d‖L2

≤ CL

δ
‖d‖2L + δ‖∇d‖2L2 , (3.4)

where CL is a positive constant depending on L.

The Green’s function G allows to rewrite the conservation of mass equations as

G(∂tc− r(c, χ)) = µ :=
( ∂f

∂cj

)

1≤j≤4
. (3.5)

3.2 The weak formulation of the problem

(c, µ, χ) ∈ L2(0, T0; H
1,2
0 (Ω; R4))× L2(0, T0; H

1,2
0 (Ω; R4))× L2(0, T0; H

1,2(Ω; R))
with r(c, χ), ω(c, χ) ∈ L1(ΩT0) is called a weak solution of (3.1) if

−
∫

ΩT0

∂tξ · (c− c0) +

∫

ΩT0

L∇µ : ∇ξ −
∫

ΩT0

r(c, χ)ξ = 0 (3.6a)
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for all ξ ∈ L2(0, T0; H
1
0 (Ω; R4)) with ∂tξ ∈ L2(ΩT0), ξ(T0) = 0, and
∫

ΩT0

µ · η =

∫

ΩT0

(∂f

∂c
(c) · η + λ∇c · ∇η

)

(3.6b)

for all η ∈ L2(0, T0; H
1
0 (Ω; R4)) ∩ L∞(ΩT0 ; R

4), and

−
∫

ΩT0

τ∂tζ(χ− χ0) +

∫

ΩT0

γ∇χ · ∇ζ −
∫

ΩT0

ω(c, χ)ζ = 0 (3.6c)

for all ζ ∈ L2(0, T0; H
1(Ω; R)) with ∂tζ ∈ L2(ΩT0), ζ(T0) = 0. Here we set

ω(c, χ) := ∂χ(f(c, χ)/T ).

In (3.6b) we demand η ∈ L∞(ΩT0 ; R
4) in order to be able to generalise to a

model with elasticity. More about this is found in Section 5.4.

3.3 A semi-implicit time discretisation

We fix an M ∈ N and set h := T0
M . For m ≥ 1 and given (cm−1, µm−1, χm−1),

consider

cm − cm−1

h
= div(L∇µm) + r(cm−1, χm−1), (3.7a)

µm =
∂f

∂c
(cm, χm)− λ△cm, (3.7b)

τ
χm − χm−1

h
= γ△χm + ω(cm, χm). (3.7c)

For the subsequent sections we introduce as abbreviation rm−1 := r(cm−1, χm−1).

(3.7) is apparently the implicit time discretisation of System (3.1) except for the
reaction term r that has been treated explicitly. Therefore, we call the resulting
scheme semi-implicit.

3.4 Structural Assumptions

In order to be able to establish the existence of weak solutions in the sense of
Section 3.2, the following assumptions are made:

(A1) Ω ⊂ R
D is a bounded domain with Lipschitz boundary.

(A2) The free energy density f can be written as

f(c, χ) = f1(c, χ) + f2(c, χ) for all c ∈ R
4, χ ∈ R (3.8)

with f1, f2 ∈ C2(R4 × R; R) and f1(·, χ) convex for every χ ∈ R, f1(c, ·) convex
for every c ∈ R

4. Furthermore,

(A2.1) f1 ≥ 0.

(A2.2) There exists a constant C1 > 0 such that

|∂cf
2(c, χ)| ≤ C1(|c|+ 1) for all c ∈ Σ, χ ∈ R,

|∂χf
2(c, χ)| ≤ C1(|χ|+ 1) for all c ∈ Σ, χ ∈ R. (3.9)
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(A2.3) For all δ > 0 there exists a constant Cδ > 0 such that

|∂cf
1(c, χ)|+ |∂χf

1(c, χ)| ≤ δf1(c, χ) + Cδ for all c ∈ Σ, χ ∈ R.

(A3) The initial data (c0, χ0) fulfill

f(c0, χ0) <∞, ω(c0, χ0) <∞.

(A4.1) The diffusion tensor L is symmetric and positive definite.

(A4.2) γ > 0 is a constant; 0 < λ < λ0 where λ0 is a small constant such that
the estimate ∂tF ≤ 0 is valid.

(A5) r(c, χ) is a continuous function in both variables. Additionally, the reaction
term r is chosen in accordance to f such that

∫

Ω

µ · r ≤ 0. (3.10)

(A6) The coefficients αi > 0 satisfy Condition (2.50). Furthermore 0 < κ < 1,
k > 0 and 0 < b1, b2 ≤ 1. The initial values c0 of c and κ, b1, b2 fulfill (2.49)

κ1/ max(b1, b2) <
σ2

2

σ1σ3
. (3.11)

By Assumption (A2.3) any polynomial growth is allowed for f1, whereas expo-
nential growth is not. For the non-convex part, sublinear growth of ∂cf

2 in c and
∂χf

2 in χ is prescribed. (A6) will guarantee r1 > 0.

If we approximate a logarithmic free energy function f by a polynomial function,
we also have to replace the reaction term by a suitable approximation. This is
the gist of (A5). (A5) is needed only for the a-priori estimate in Lemma 3.3. In
Section 3.9 it is shown how a suitable r can be constructed for approximations
f δ of f .

If one chooses λ > 0 small enough, one can guarantee ∂tF (c(t), χ(t)) ≤ 0 because
in this case the term with the possibly ’wrong’ sign λ△cr1 can be compensated
by (α1 − 2α2 + α3)Q(c)r1(c) < 0. Condition (A4.2) is needed only at one point,
namely in Eq. (3.20) in the proof of Lemma 3.3 where the free energy estimate
is exploited to derive a-priori bounds.

From now on we assume without further stating that the assumptions (A1)-(A6)
hold.

3.5 Existence of solutions to the time discrete scheme

For the treatment of Formulation 3.1 it is suitable to introduce the free energy
functional

F (c, χ) :=

∫

Ω

(

f(c, χ) +
λ

2
|∇c|2 +

γ

2
|∇χ|2

)

. (3.12)

Additionally, for each time step m in the semi-implicit time discretisation (3.7),
given step size h > 0 and given (cm−1, χm−1) we define the discrete energy func-
tional

Fm,h(c, χ) := F (c, χ) +
1

2h
‖c− cm−1 − hrm−1‖2L +

τ

2h
‖χ− χm−1‖2L2 . (3.13)
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Lemma 3.1: (Existence of a minimiser)
Let (cm−1, χm−1) ∈ X1 × X2 be given. Then for 0 < h < min{ τ

2C1
, λ

8C2
1CL
} the

functional Fm,h possesses a minimiser in X1 ×X2.

Proof: We will show that Fm,h is coercive and weakly lower semicontinuous.
Using Assumptions (A2.1) and (A2.2) we find

Fm,h(c, χ) ≥ λ

2
‖∇c‖2L2 +

γ

2
‖∇χ‖2L2 − C1(‖c‖2L2 + ‖χ‖2L2)

+
1

2h

(

‖c− cm−1 − hrm−1‖2L + τ‖χ− χm−1‖2L2

)

− C

≥
(λ

2
− δC1

)

‖∇c‖2L2 +
γ

2
‖∇χ‖2L2 +

( τ

2h
− C1

)

‖χ− χm−1‖2L2

+
( 1

2h
− C1CL

δ

)

‖c− cm−1 − hrm−1‖2L − C,

where in the second estimate (3.4) was used and C = C(cm−1, χm−1, r). Now, for
0 < h < min{ τ

2C1
, λ

8C2
1CL
} by choosing δ = λ

4C1
, we conclude with the help of the

Poincaré inequality that Fm,h is coercive on X1 ×X2. Let

d := inf{Fm,h(c, χ) | c ∈ X1, χ ∈ X2}, d > −∞.

If we consider a minimising sequence (cl, χl)l∈N ⊂ X1×X2 with Fm,h(cl, χl)→ d,
the coercivity of Fm,h implies the boundedness of (cl, χl) uniformly in l. Passing
to a subsequence if necessary, by the reflexivity of X1 ×X2 we may assume

(cl, χl) ⇀ (c, χ) ∈ X1 ×X2 for l→∞

and by Rellich’s theorem or Sobolev’s embedding theorem,

(cl, χl)→ (c, χ) ∈ L2(Ω,R4)× L2(Ω,R) for l→∞

and (cl, χl)→ (c, χ) a.e. in Ω.

To verify the weak lower semicontinuity of Fm,h in X1 × X2 we first remark
that this is true for all convex terms. For

∫

Ω f
1(c, χ) this follows from Assump-

tion (A2) and for
∫

Ω f
2(c, χ) from (A2.2) and the dominated convergence theorem

of Lebesgue. This implies

Fm,h(c, χ) ≤ lim inf
l→∞

Fm,h(cl, χl). �

Lemma 3.2: (Euler-Lagrange equations)
The minimiser (cm, χm) of Fm,h fulfills
∫

Ω

cm − cm−1

h
· ξ +

∫

Ω

L∇µm : ∇ξ =

∫

Ω

rm−1ξ for all ξ ∈ Y, (3.14a)

∫

Ω

(

λ∇cm · ∇η + ∂cf(cm, χm) · η
)

=

∫

Ω

µm · η for η ∈ Y ∩ L∞(Ω; R4),(3.14b)

∫

Ω

[

τ
χm − χm−1

h
+ ω(cm, χm)

]

ζ +

∫

Ω

γ∇χm · ∇ζ = 0 for ζ ∈ H1(Ω). (3.14c)

Here, µm = G
(

cm−cm−1

h − rm−1
)

.
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Proof: We choose directions ξ ∈ Y ∩L∞(Ω; R4), ζ ∈ X2∩L∞(Ω; R) and determine
the variations of Fm,h(c, χ) with respect to c and χ for ξ, ζ. We start with the
variation w.r.t. c, i.e.

lim
s→0

(

(Fm,h(cm + sξ, χm)− Fm,h(cm, χm))s−1
)

. (3.15)

Since f1 is convex in c, we have

f1(cm, χm) ≥ f1(cm + sξ, χm)− s∂cf
1(cm + sξ, χm) · ξ.

This implies

f1(cm + sξ, χm) ≤ f1(cm, χm) + |s∂cf
1(cm + sξ, χm)| ‖ξ‖L∞

≤ f1(cm, χm) + |s| f1(cm + sξ, χm) ‖ξ‖L∞ + C|s|.

The last is by Assumption (A2.3) with δ = 1. Hence, for s small enough, we find

∣

∣

∣

f1(cm + sξ, χm)− f1(cm, χm)

s

∣

∣

∣
≤ C(f1(cm, χm) + 1).

Assumption (A2.2) and Lebesgue’s dominated convergence theorem imply

lim
s→0

1

s

(

∫

Ω

f(cm + sξ, χm)− f(cm, χm)
)

=

∫

Ω

∂cf(cm, χm) · ξ.

The variation of the quadratic form c 7→ 1
2h‖cm − cm−1 − hrm−1‖2L yields

lim
s→0

(

s−1(2h)−1
(

‖cm + sξ − cm−1 − hrm−1‖2L − ‖cm − cm−1 − hrm−1‖2L
)

)

=
(cm − cm−1 − hrm−1

h
, ξ
)

L
=
(

G
(cm − cm−1

h
− rm−1

)

, ξ
)

L2
=
(

µm, ξ
)

L2

and finally

λ

2
lim
s→0

{

s−1
[

(∇(c+sξ),∇(c+sξ))L2−(∇c,∇c)L2

]}

= λ(∇c,∇ξ)L2 = −λ(△c, ξ)L2 .

Because (cm, χm) is a minimiser, the variation in (3.15) is 0. Hence we obtain
(3.14a) and (3.14b).

To derive (3.14c), we consider the variation of Fm,h(cm, χm) w.r.t. χ. As before,

lim
s→0

(

τs−1(2h)−1
(

‖χm+sζ−χm−1‖2L2 − ‖χm−χm−1‖2L2

)

)

=
(

τ
χm−χm−1

h
, ζ
)

L2
.

It remains to prove

lim
s→0

∫

Ω

(

f(cm, χm + sζ)− f(cm, χm)
)

=

∫

Ω

∂χf(cm, χm)ζ.

Since this limit can be justified in the same way as (3.15), Identity (3.14c) follows.

�
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3.6 Uniform estimates

In the preceding sections we showed for 1 ≤ m ≤ M and arbitrary M ∈ N the
existence of a discrete solution (cm, µm, χm). We define the piecewise constant
extension (cM , µM , χM ) of (cm, µm, χm)1≤m≤M by

(cM (t), µM (t), χM (t)) := (cmM , µ
m
M , χ

m
M ) := (cm, µm, χm) for t ∈ ((m− 1)h,mh]

and cM (0) = c0, χM (0) = χ0, µM (0) obtained from Eq. (3.14b).

The piecewise linear extension (cM , µM , χM ) for t = (βm+(1−β)(m−1))h with
appropriate β ∈ [0, 1] is given by the interpolation

(cM , µM , χM )(t) := β(cmM , µ
m
M , χ

m
M ) + (1− β)(cm−1

M , µm−1
M , χm−1

M ).

Lemma 3.3: (A-priori estimates)
For sufficiently small h the following a-priori estimates are valid.

(a) For all M ∈ N and all t ∈ [0, T0] we have the dissipation inequality

F (cM , χM )(t) +
1

2

∫

Ωt

(L∇µM : ∇µM + |∂tχM |2) ≤ F (c0, χ0). (3.16)

(b) There exists a constant C > 0 such that

sup
0≤t≤T0

{

‖cM (t)‖H1 + ‖χM (t)‖H1

}

≤ C,(3.17)

sup
0≤t≤T0

∫

Ω

f1(cM (t), χM (t)) + ‖∇µM‖L2(ΩT0
) + ‖∂tχM‖L2(ΩT0

) ≤ C.(3.18)

Proof: The idea of the proof is to use the decay of t 7→ F (c(t), χ(t)). The
original proof in [31] could be reused in all later works on the subject, and it is
instructive to understand in which way for our reactive system, corresponding to
Inequality (2.45), a modification of this proof becomes necessary. Simultaneously
this modification reveals that the explicit treatment of the reaction term in (3.7a)
is the natural formulation.

As (cm, χm) is a minimiser of Fm,h,

F (cm, χm) +
1

2h
‖cm − cm−1 − hrm−1‖2L +

τ

2h
‖χm − χm−1‖2L2

≤ F (cm−1 + hrm−1, χm−1). (3.19)

A direct calculation yields

1

2h
‖cm − cm−1 − hrm−1‖2L =

h

2
(∇µm, L∇µm)L2 .

To bring the right hand side of (3.19) in a form suitable for recursion, we remark
that for sufficiently small h

F (cm−1 + hrm−1, χm−1) ≤ F (cm−1, χm−1).
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This is a consequence of (A5), i.e.
∫

Ω

µm−1 · rm−1 ≤ 0. (3.20)

(

σ(cm−1+hrm−1)=σ(cm−1)+hDσ(cm−1)rm−1+O(h2) with σ(z) :=F (z, χm−1).
)

Estimate (3.20) holds for sufficiently small λ due to Assumption (A4.2) and (A6).

By iterating (3.19) with estimated right hand side, we find

F (cmM , χ
m
M ) +

1

2

mh
∫

0

(

(∇µm
M , L∇µm

M )L2 + (∂h
t χ

m
M , ∂

h
t χ

m
M )L2

)

dt ≤ F (c0, χ0).

Using the assumptions and with the help of the Poincaré inequality this proves
the lemma. �

We extend cM , χM by the initial values c0, χ0 of c, χ for t ∈ (−h, 0]. Now, for
the linear interpolation cM of cmM , the Euler-Lagrange equation (3.14a) can be
rewritten as
∫

Ω

∂tcM (t) · ξ +

∫

Ω

L∇µM (t) : ∇ξ =

∫

Ω

r(cM (t− h), χM (t− h)) · ξ for all ξ ∈ Y

(3.21)
which holds for almost all t ∈ (0, T0). Together with the uniform estimates of
Lemma 3.3, (3.21) allows to show compactness in time.

Lemma 3.4: (Compactness for cM and µM )
There exists a constant C > 0 such that for all t1, t2 ∈ [0, T0]

‖cM (t2)− cM (t1)‖L2 ≤ C|t2 − t1|
1
4 .

Furthermore, there is a subsequence (cM )M∈N and a subsequence (µM )M∈N with
N ⊂ N and there are c ∈ L∞(0, T0; Y ), µ ∈ L2(0, T0; Y ) such that

(i) cM → c in C0,α([0, T0]; L
2(Ω; R4)) for all α ∈ (0, 1

4),
(ii) cM → c in L∞(0, T0; L

2(Ω; R4)),
(iii) cM → c almost everywhere in ΩT0,

(iv) cM
∗
⇀ c in L∞(0, T0; H

1
0 (Ω; R4)),

(v) µM ⇀ µ in L2(0, T0; H
1
0 (Ω; R4))

as M ∈ N tends to infinity.

Proof: We test Eq. (3.21) with ξ := cM (t2) − cM (t1), where t1, t2 ∈ [0, T0] with
t1 < t2. After integration in time from t1 to t2, we obtain

‖cM (t2)− cM (t1)‖2L2 +

t2
∫

t1

∫

Ω

L∇µM (t) : ∇(cM (t2)− cM (t1)) dt

=

t2
∫

t1

∫

Ω

r(cM (t− h), χM (t− h))(cM (t2)− cM (t1)) dt.
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The cmM are uniformly bounded in Y , therefore the linear interpolants cM are
uniformly bounded in L∞(0, T0; Y ). Thus we obtain with the continuity of r

‖cM (t2)− cM (t1)‖2L2

≤ C‖cM‖L∞(H1)

t2
∫

t1

(

‖∇µM (t)‖L2 + ‖r(cM (t− h), χM (t− h))‖L2

)

dt

≤ C‖cM‖L∞(H1)

[

(t2 − t1)
1
2 ‖∇µ‖L2(ΩT0

) + (t2 − t1)‖r(cM , χM )‖L∞(L2)

]

.

Employing the a-priori estimates (3.17) and (3.18) we have shown

‖cM (t2)− cM (t1)‖L2 ≤ C|t2 − t1|
1
4 for all t1, t2 ∈ [0, T0]

for a positive constant C. This is the equicontinuity of (cM )M∈N.

The boundedness of (cM ) in L∞(0, T0; H
1,2
0 (Ω)) and the fact thatH1 is compactly

embedded in L2 yields as a consequence of the Arzelà-Ascoli theorem part (i).

The claims (ii),(iii) and (iv) follow exactly as in [38]. We choose for t ∈ [0, T0]
values m ∈ {1, . . . ,M} and β ∈ [0, 1] such that t = (βm+(1−β)(m−1))h. From
the definition of c we get at once

‖cM (t)− cM (t)‖L2 = ‖βcmM + (1− β)cm−1
M − cmM‖L2

= (1− β)‖cmM − cm−1
M ‖L2

≤ Ch
1
4 .

This tends to zero as M becomes infinite. With the help of (i), this proves (ii).
Since for a subsequence we have convergence almost everywhere, (iii) is proved,
too. Claim (iv) is a direct consequence of Estimate (3.17) which gives the bound-
edness of cM in L∞(0, T0; Y ).

For the proof of (v) we notice that due to Estimate (3.18), the (∇µM ) are uni-
formly bounded in L2(ΩT0). By the Poincaré inequality the (µM ) are in fact
uniformly bounded in L2(0, T0; H

1
0 (Ω)). With the Banach-Alaoglu theorem (v)

follows. �

Lemma 3.5: (Compactness for χM )
For a suitable subsequence N ⊂ N we have

(i) χM → χ in C0,α([0, T0]; L
2(Ω)) for all α ∈ (0, 1

2),
(ii) χM → χ in L∞(0, T0; L

2(Ω)),
(iii) χM → χ almost everywhere in ΩT0,

(iv) χM
∗
⇀ χ in L∞(0, T0; H

1(Ω)),
(v) ∂cf(cM , χM )→ ∂cf(c, χ) in L1(ΩT0),
(vi) ∂χf(cM , χM )→ ∂χf(c, χ) in L1(ΩT0)

as M ∈ N tends to infinity.

Proof: Similar to Eq. (3.21) we can reformulate Identity (3.14c) to

τ

∫

Ω

∂tχM (t)ζ +

∫

Ω

γ∇χM (t) · ∇ζ +

∫

Ω

ω(cM (t), χM (t))ζ = 0 for all ζ ∈ H1(Ω)

(3.22)
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which holds for almost all t ∈ [0, T0].

We test (3.22) with ζ := χM (t2) − χM (t1), where t1, t2 ∈ [0, T0], t2 > t1. After
integration in time from t1 to t2 we get

τ‖χM (t2)− χM (t1)‖2L2 +

t2
∫

t1

∫

Ω

γ∇χM (t) · ∇(χM (t2)− χM (t1)) dt

+

t2
∫

t1

ω(cM (t), χM (t))
(

χM (t2)− χM (t1)
)

dt = 0.

From the uniform boundedness of χM in L∞(0, T0; H
1(Ω)) and in L∞(ΩT0) we

obtain:

t2
∫

t1

∫

Ω

γ∇χM (t) · ∇(χM (t2)−χM (t1))dt ≤ C‖χM‖L∞(H1)

t2
∫

t1

‖∇χM (t)‖L2dt,

t2
∫

t1

ω(cM (t), χM (t))
(

χM (t2)−χM (t1)
)

dt ≤ C‖χM‖L∞(ΩT0
)

t2
∫

t1

ω(cM (t), χM (t))dt.

With the continuity of ω, these estimates imply

‖χM (t2)− χM (t1)‖L2 ≤ C|t2 − t1|
1
2 for all t1, t2 ∈ [0, T0]

and exactly as in Lemma 3.4 this yields statements (i)-(iv).

In order to prove (v) and (vi), we first notice that by Assumption (A2), ∂cf and
∂χf are continuous functions. Hence, by (iii) and Lemma 3.4(iii),

∂cf(cM , χM ) → ∂cf(c, χ) almost everywhere in ΩT0 ,

∂χf(cM , χM ) → ∂χf(c, χ) almost everywhere in ΩT0 .

The growth condition of Assumption (A2.3) on f1 now yields that for arbitrary
δ > 0 and all measurable E ⊂ Ω

∫

E

|∂cf
1(cM , χM )| ≤ δ

∫

E

f1(cM , χM ) + Cδ|E| ≤ δC + Cδ|E|.

Therefore,
∫

E |∂cf
1(cM , χM )| → 0 as |E| → 0 uniformly in M and by Vitali’s

theorem, f1(cM , χM ) → f1(c, χ) in L1(ΩT0) as M ∈ N tends to infinity. The
identical result for f2 follows directly from (A2.2) and the dominated convergence
theorem of Lebesgue.

The proof of ∂χf(cM , χM )→ ∂χf(c, χ) exploiting (A2.3) and (A2.2) is similar.

�

3.7 Global existence of solutions for polynomial free

energy

We are now in the position to state one of the main results.
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Theorem 3.1: (Global existence for System (3.1) with polynomial free energy)
Let the assumptions of Section 3.4 hold. Then, there exists a weak solution (c, µ, χ)
of Formulation (3.1) in the sense of (3.6) such that

(i) c ∈ C0, 1
4 ([0, T0]; L

2(Ω; R4)),
(ii) ∂tc ∈ L2(0, T0; (H1

0 (Ω; R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L

2(Ω)),
(iv) ∂tχ ∈ L2(0, T0; (H1

0 (Ω))′).

Proof: We are going to prove that (c, µ, χ) introduced in Lemmata 3.4 and 3.5
is the desired weak solution in the sense of (3.6).

First we show (3.6b). From (3.14b) we deduce

∫

Ω

λ∇cM · ∇η + ∂cf(cM , χM ) · η =

∫

Ω

µM · η for all η ∈ Y ∩ L∞(Ω; R4).

The convergence of
∫

Ω

λcM · ∇η →
∫

Ω

λc · ∇η

as M →∞ is clear by linearity and the convergence

∫

Ω

∂cf(cM , χM ) · η →
∫

Ω

∂cf(c, χ) · η (3.23)

is again evident by Vitali’s theorem similar to the proof of Lemma 3.5 by using
the almost everywhere convergence of cM and χM , the growth condition (A2.3),
Estimate (3.18) on f1 and the boundedness of η.

In the same way, we obtain (3.6c) from (3.22).

From Eq. (3.21) we learn

−
∫

ΩT0

∂tξ(cM − c0) +

∫

ΩT0

L∇µM : ∇ξ −
∫

ΩT0

r(cM (t− h), χM (t− h)) · ξ = 0

for all ξ ∈ L2(0, T0; Y ) with ∂tξ ∈ L2(ΩT0) and ξ(T0) = 0. Passing to the limit
M → ∞ together with Lemma 3.4 and after applying Vitali’s theorem to the
reaction term similar to (3.23) this implies (3.6a). �

3.8 Uniqueness of the solution

To show uniqueness of problem (3.1), we use an integration in time method. The
proof requires the validity of the free energy inequality and the validity of (A6).

Theorem 3.2: (Uniqueness of the solution to Formulation (3.1))
The solution (c, µ, χ) obtained in Theorem 3.1 is unique in the spaces stated in
this theorem.
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Proof: Assume that (ci, χi, µi), i = 1, 2 are two solutions of System (3.1). Now,
let c := c2 − c1, χ := χ2 − χ1, µ := µ2 − µ1, r := r(c2, χ2) − r(c1, χ1) and
ω := (∂χf(c2, χ2)− ∂χf(c1, χ1))/T .

The difference (c, χ, µ) solves the weak formulation

−
∫

ΩT0

∂tξ · c+

∫

ΩT0

L∇µ : ∇ξ −
∫

ΩT0

r · ξ = 0, (3.24a)

∫

ΩT0

[

(

∂cf(c2, χ2)− ∂cf(c1, χ1)) · η + λ∇c · ∇η
]

=

∫

ΩT0

µ · η, (3.24b)

−
∫

ΩT0

τ∂tζχ+

∫

ΩT0

γ∇χ · ∇ζ −
∫

ΩT0

ω · ζ = 0. (3.24c)

For given η ∈ L2(0, T0; H
1
0 (Ω,R4)) and t0 ∈ (0, T0) we define

ξ(·, t) :=







t0
∫

t

η(·, s)ds if t ≤ t0,
0 if t > t0.

(3.25)

We use this as a test function in (3.24a) and obtain after integration by parts in
time

0 =

∫

Ωt0

c · η +

∫

Ωt0

L∇µ : ∇
(

t0
∫

t

η(·, s)ds
)

−
∫

Ωt0

r ·
(

t0
∫

t

η(·, s) ds
)

=

∫

Ωt0

c · η +

∫

Ωt0

L∇
(

t
∫

0

µ(s)ds
)

: ∇η −
∫

Ωt0

(

t
∫

0

r(s)ds
)

· η. (3.26)

This implies

G
(

c(t)−
t
∫

0

r(s)ds
)

= −
t
∫

0

µ(s) ds and ∂tG
(

c(t)−
t
∫

0

r(s)ds
)

= −µ(t).

By choosing η := µ in (3.26) we obtain

0 =

∫

Ωt0

c·µ+

∫

Ωt0

L∇
(

G
(

t
∫

0

r(s)ds−c
))

:∇
(

∂tG
(

t
∫

0

r(s)ds−c
))

−
∫

Ωt0

(

t
∫

0

r(s)ds
)

·µ

and consequently

0 =

∫

Ωt0

c·µ+

∫

Ω

L∇G
(

t0
∫

0

r(s)ds−c(t0)
)

:∇G
(

t0
∫

0

r(s)ds−c(t0)
)

−
∫

Ωt0

(

t
∫

0

r(s)ds
)

·µ.

(3.27)
In Eq. (3.24b) we test with η := X[0,t0]c. Hence we have

∫

Ωt0

c · µ =

∫

Ωt0

[

λ|∇c|2 +
(

∂cf(c2, χ2)− ∂cf(c1, χ1)
)

· c
]

. (3.28)
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From (3.27) and (3.28) we deduce

∥

∥

∥

(

t0
∫

0

r
)

−c(t0)
∥

∥

∥

2

L
+

∫

Ωt0

λ|∇c|2−
∫

Ωt0

(

t
∫

0

r(s)ds
)

·µ = −
∫

Ωt0

(

∂cf(c2, χ2)−∂cf(c1, χ1)
)

·c.

(3.29)
From the free energy estimate we infer that if conditions (2.50), (3.11) and (A4.2)
hold (i.e. if λ < λ0), then

∫

Ωt0

(

t
∫

0

r(s)ds
)

· µ ≤ 0. (3.30)

Therefore we obtain as a consequence of (3.29)

λ

∫

Ωt0

|∇c|2 ≤ −
∫

Ωt0

(

∂cf(c2, χ2)− ∂cf(c1, χ1)
)

· c. (3.31)

In (3.24c) we choose a test function ζ analogous to (3.25). This leads to

τ

γ

∫

Ωt0

χη +

∫

Ωt0

∇
(

t
∫

0

χ(s) ds
)

: ∇η(t)− 1

γ

∫

Ωt0

η(t)

t
∫

0

ω(s) ds = 0. (3.32)

This implies because of χ(0) = 0

(−△)−1
(τ

γ
χ(t)− 1

γ

t
∫

0

ω(s) ds
)

= −
t
∫

0

χ(s) ds

and

∂t(−△)−1
(τ

γ
χ(t)− 1

γ

t
∫

0

ω(s) ds
)

= −χ(t).

We set η := χ in (3.32). As in the treatment of Eq. (3.24a) this yields

0 = γτ

∫

Ωt0

|χ|2 +
∥

∥

∥τχ(t0)−
(

t0
∫

0

ω(s) ds
)∥

∥

∥

2

L2
− γ

∫

Ωt0

χ(t)

t
∫

0

ω(s) ds

and consequently with Young’s inequality

τ

∫

Ωt0

|χ|2 ≤ δ
∫

Ωt0

|χ|2 +
C

δ

∫

Ωt0

(

t
∫

0

ω(s) ds
)2
. (3.33)

Now we add (3.31) and (3.33) to find

λ

∫

Ωt0

|∇c|2 + τ

∫

Ωt0

|χ|2 ≤

δ

∫

Ωt0

|χ|2 +
C

δ

∫

Ωt0

[(

t
∫

0

ω(s) ds
)2

+
∣

∣∂cf(c2, χ2)− ∂cf(c1, χ1)|2
]

.
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For small δ the first integral on the right hand side can be absorbed on the left.
∂cf and ω are Lipschitz continuous due to Assumption (A2), therefore

(

t
∫

0

ω(s) ds
)2

+ |∂cf(c2, χ2)− ∂cf(c1, χ1)|2 ≤ C0

(

|c|2 + |χ|2
)

with a suitable constant C0. By exploiting the Poincaré inequality we find at last

∫

Ωt0

(

|∇c|2 + |χ|2
)

≤ C
∫

Ωt0

(|∇c|2 + |χ|2) +

t
∫

0

∫

Ωt0

(

|∇c|2 + |χ|2
)

.

With Gronwall’s inequality this finally yields c = χ = 0 in Ωt0 and with (3.24b)
µ = 0 in Ωt0 . By repeating the argument, since t0 > 0, this holds in the whole of
ΩT0 . �

3.9 Logarithmic free energy

In the following four sections we are going to extend Theorem 3.1 to logarithmic
free energies. The results will in particular be tailor made for the free energy
functional considered in Chapter 2,

f(c, χ) = χb1
4
∑

j=1

cj ln cj +(1−χ)b2
4
∑

j=1

cj ln cj +
3
∑

i=1

ciEi +
(

4
∑

j=1

αjcj

)2
+TW (χ)

(3.34)
(in accordance with Definition (2.8) if we agree with the convention of this chapter
that f denotes the free energy density without surface energy terms). Of course it
would be possible to modify the statements to hold for other energy functionals.

It is well known that the logarithmic shape of f has its origin in the system
entropy and a rigorous derivation from statistical thermodynamics is possible if
random pairwise interactions are permitted. We will use the statements in the
first part of this chapter concerning polynomial free energies that can be regarded
as a Taylor expansion.

The well known main difficulty in the mathematical discussion is that f becomes
singular as one of the cj approaches 0. Instead of the very natural idea of dif-
ferentiating the equations with the possibly singular terms with respect to time,
see [29], we use the method presented in [38], because it can be generalised to an
extended model with elasticity, see Section 5.4.

For the proof of 0 < cj < 1, 1 ≤ j ≤ 4 we approximate f for δ > 0 by some f δ

that fulfills the requirements of Section 3.4 and find suitable a-priori estimates
that put us in the position to pass to the limit δ → 0.

The logarithmic form of the free energy guarantees that the concentration vector
c lies inside the transformed Gibbs simplex

G := Σ ∩ {c ∈ R
4 | cj ≥ 0 for 1 ≤ j ≤ 4}

and that χ ∈ (0, 1). Therefore (c, χ) has physical meaning.

The assumptions (A2) and (A3) of Section 3.4 are replaced by the following ones:
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(A2’) f is of the form (3.34) with constants αj > 0, b1 > 0, b2 > 0, T > 0.

(A3’) The initial values c0 ∈ X1, χ0 ∈ X2 fulfill c0 ∈ G, χ ∈ [0, 1] almost
everywhere and

∫

Ω

c0l > 0 for 1 ≤ l ≤ 4,

∫

Ω

χ > 0,

∫

Ω

(1− χ) > 0.

(A6’) Additional to the conditions in (A6) we demand

κ1/ max(b1,b2) ≤ 1

e2
. (3.35)

The assumptions (A1) and (A4) remain unchanged and continue to hold.

To proceed, we define for d > 0 the convex function

ψ(d) := d ln d

and for δ > 0 its regularisation (defined for d ∈ R)

ψδ(d) :=

{

d ln d for d ≥ δ,
d ln δ − δ

2 + d2

2δ for d < δ.

The regularised free energy functional is defined in such a way that ψδ ∈ C2 and
the derivative (ψδ)′ is monotone increasing. This ansatz goes back to [29].

The free energy of the regularised δ-problem is found by replacing
∑

i ci ln ci by
∑

i ψ
δ(ci) in (2.25).

Since the convex combination

f̄(c, χ) := χf1(c) + (1− χ)f2(c)

would define a non-convex functional in c if χ /∈ [0, 1], we consider the following
penalisation (f δ = f1,δ + f2, see Assumption (A2))

f1,δ(c, χ) :=







χb1
∑

j ψ
δ(cj) + (1− χ)b2

∑

j ψ
δ(cj) + T [ψδ(χ) + ψδ(1− χ)]

if χ ∈ (0, 1),
+∞ else

f2(c, χ) :=
(

4
∑

j=1

αjcj

)2
.

Due to the expression ψδ(χ) + ψδ(1 − χ) in the definition of f δ it is obvious
that every minimiser χ fulfills 0 < χ < 1 in ΩT0 . This is proved rigorously in
Lemma 3.8 below.

It can be easily checked that the functional Fm,h of Section 3.1 still has a min-
imiser (cm, χm) for every m and sufficiently small h. For χ ∈ (0, 1), f1,δ is still
continuously differentiable. Since f1,δ, f2 fulfill the assumptions of Section 3.4,
the earlier existence results can be carried over.

The regularisation f δ of f also implies that ω(cδ, χδ) = ∂χ(f δ(cδ, χδ)/T ) depends
on δ and therefore we will replace ω(cm, χm) in the implicit time discretisation
(3.7c) by ωδ(cm, χm) and the weak formulation (3.6c) by

−
∫

ΩT0

τ∂tζ(χ
δ − χ0) +

∫

ΩT0

γ∇χδ · ∇ζ −
∫

ΩT0

ωδ(cδ, χδ)ζ = 0 (3.36)
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for all ζ ∈ L2(0, T0; H
1(Ω; R)) with ∂tζ ∈ L2(ΩT0), ζ(T0) = 0.

Later we will show that ωδ(cδ, χδ)→ ω(c, χ) in L1(ΩT0) as δ ց 0.

The only assumption that needs further clarification is (A5). In order to verify
Condition (3.10), we have to construct an approximation rδ = (rδ

1,−rδ
1, r

δ
1, 0) of

r and have to check that

∫

Ω

kBTbχ

[

(ψδ)′(c1)− 2(ψδ)′(c2) + (ψδ)′(c3) +
E1 − 2E2 + E3

kBTbχ

]

rδ
1 ≤ 0. (3.37)

We claim that a good choice for rδ
1 is

rδ
1(c, χ) := k1/bχ

(

max(c2, δ)
2 − κ1/bχ max(c1, δ)max(c3, δ)

)

.

rδ
1 is a continuous function and we will see below that rδ

1 > 0 is fulfilled. In order
to verify (3.37), we want to consider three characteristic cases:

Case 1: c1 ≥ δ, c2 ≥ δ, c3 ≥ δ:
Apparently rδ = r, and (3.10) follows verbatim as in the proof of the free energy
inequality in Section 2.6.

Case 2: c1 < δ, c2 ≥ δ, c3 ≥ δ:
From the definition of ψδ we find that we have to estimate

∫

Ω

kBTbχ

[

ln δ +
c1
δ
− 2 ln c2 − 2 + ln c3 + 1 +

E1 + E3 − 2E2

kBTbχ

]

rδ
1

=

∫

Ω

kBTbχ

[

ln
(δc3κ

1/bχ

c22

)

+
c1
δ
− 1
]

rδ
1.

Estimate (3.37) follows now from (ln(δc3κ
1/bχ) − ln(c22))r

δ
1 < 0 and because of

c1
δ −1 < 0 and rδ

1 = k1/bχ(c22−κ1/bχδc3) > 0 due to (3.11). We emphasise that we
really need rδ

1 > 0 in order to have
∫

Ω(α1 − 2α2 + α3)Q(cδ)rδ
1 < 0 which allows

to compensate the surface energy term for sufficiently small λ.

Case 3: c1 < δ, c2 < δ, c3 < δ:
Here we have to estimate

∫

Ω

kBTbχ

[

ln
(δ2

δ2

)

+
c1
δ
− 2

c2
δ

+
c3
δ

+
E1 − 2E2 + E3

kBTbχ

]

rδ
1.

We observe rδ
1 = k1/bχδ2(1− κ1/bχ) > 0 because κ < 1 by assumption. Finally

∫

Ω

(E1 − 2E2 + E3

kBTbχ
+
c1 − 2c2 + c3

δ

)

<

∫

Ω

(ln(κ1/bχ) + 2) ≤ 0

if κ satisfies (3.35).

The remaining cases can be treated similar to Case 2. The case c2 < δ is only
possible as long as δ ≥ σ2.
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3.10 Uniform estimates

The following lemma was first stated and proved by Elliott and Luckhaus [29] for
logarithmic free energies typical for the Cahn-Hilliard system.

Lemma 3.6: (Uniform bound from below on f δ)
For δ0 = 1

e there exists a K > 0 such that for all δ ∈ (0, δ0)

f δ(c, χ) ≥ −K for all c ∈ Σ, χ ∈ [0, 1].

Proof: For δ0 <
1
e one has ψδ(d) ≥ −1

e for all δ < δ0. As bl, T > 0, the proof is
complete. �

The following lemma summarises the results for the regularised problem proved
in Sections 3.1 to 3.7.

Lemma 3.7: (A-priori and compactness results for the regularised problem)
(a) For δ ∈ (0, δ0) there exists a weak solution (cδ, µδ, χδ) of (3.1) with a log-
arithmic free energy that satisfies (A2’)-(A6’) in the sense of (3.6) with (3.6c)
replaced by (3.36).

(b) There exists a constant C > 0 independent of δ such that for all δ ∈ (0, δ1)
with some constant δ1 ≤ δ0

sup
t∈[0,T0]

{

‖cδ(t)‖H1 + ‖χδ(t)‖H1

}

≤ C, (3.38)

sup
t∈[0,T0]

∫

Ω

f1,δ(cδ(t), χδ(t)) + ‖∇µδ‖L2(ΩT0
) ≤ C

and

‖cδ(t2)− cδ(t1)‖L2 ≤ C|t2 − t1|
1
4 ,

‖χδ(t2)− χδ(t1)‖L2 ≤ C|t2 − t1|
1
2

for all t1, t2 ∈ [0, T0].

(c) One can extract subsequences (cδ)δ∈R, (µδ)δ∈R and (χδ)δ∈R where R ⊂ (0, δ1)
is a countable set with zero as the only accumulation point such that

(i) cδ→ c in C0,α([0, T0]; L
2(Ω; R4)) for all α ∈ (0, 1

4),
(ii) cδ→ c almost everywhere in ΩT0,

(iii) cδ
∗
⇀ c in L∞(0, T0; H

1
0 (Ω; R4)),

(iv) χδ→ χ in C0,α([0, T0]; L
2(Ω)) for all α ∈ (0, 1

2),
(v) χδ→ χ almost everywhere in ΩT0 and 0 ≤ χδ, χ ≤ 1 a.e. in ΩT0,

(vi) χδ ∗
⇀ χ in L∞(0, T0; H

1(Ω)),
(vii) µδ⇀ µ in L2(0, T0; H

1
0 (Ω; R4))

as δ ∈ R tends to zero.
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Proof: Using Lemma 3.6, the regularised problem satisfies the assumptions of
Section 3.4 and by Theorem 3.1, a weak solution for fixed δ ∈ (0, δ0) exists.
This proves (a). The estimates in (b) are a direct consequence of Lemma 3.3 and
Lemma 3.4, where due to Assumption (A4.2) we have to choose δ small enough
for Lemma 3.3 to hold. From Lemma 3.3, it follows that F δ(c0, χ0) does not
depend on δ, hence the constant on the right hand side does not depend on δ.

(c) is proved by Lemmata 3.4 and 3.5. �

3.11 Higher integrability for the logarithmic free en-

ergy

Since ϕδ := (ψδ)′ will be singular as δ → 0 we introduce for r > 0

ϕδ
r(d) :=

{

ϕδ(d)|ϕδ(d)|r−1 if ϕδ(d) 6= 0,
0 if ϕδ(d) = 0.

By definition, ϕδ
r ∈ C0(R).

For 0 < r < 1, ϕδ
r is not differentiable at the zero point of ϕδ. To overcome this

difficulty, for ̺ > 0 we introduce the function ϕδ,̺
r with ϕδ,̺

r = ϕδ
r in R \ [0, 1]

and define ϕδ,̺
r in [0, 1] such that ϕδ,̺

r is a C1 function, monotone increasing and

ϕδ,̺
r → ϕδ

r in C0(R) as ̺ց 0.

For the approximation of ϕδ(χδ) in the modified Allen-Cahn equation it is more
suitable to introduce the Dirac sequence

ϕδ,ε(x) := (ϕδ ∗ Jε)(x) := ε−D

∫

RD

ϕδ(x)J((x− y)/ε) dy

where the kernel J ∈ C∞(B1(0)) is a positive smooth polynomial (motivated by
Assumption (A2)). As is well known, ϕδ,ε ∈ C∞ and ϕδ,ε → ϕδ in Lp(Ω) as εց 0
for any p ≥ 1, see for instance [4], [19].

Even though by construction 0 < χδ < 1 almost everywhere, it might still happen
that for the limit the sets {x ∈ Ω |χ(x) = 0} and {x ∈ Ω |χ(x) = 1} have non-
zero Lebesgue measure and that the entropic terms in the free energy density
become singular. To show that this is not the case we need the following

Lemma 3.8: (Integrability of the regularised free energy)
There exists a constant C > 0 such that for all δ ∈ (0, δ0)

(i) ‖ϕδ(cδl )‖Lq(ΩT0
) ≤ C for a suitable q > 1 and all 1 ≤ l ≤ 4,

(ii) ‖ϕδ(χδ) + ϕδ(1− χδ)‖L2(ΩT0
) ≤ C.

Proof: The weak formulation (3.6b) for the generalised chemical potential reads

∫

ΩT0

µδ · η =

∫

ΩT0

{

λ

4
∑

l=1

∇cδl · ∇ηl + 2
[

αl

4
∑

j=1

αjc
δ
j

]

1≤l≤4
· η +

3
∑

l=1

Elηl

}

+

∫

ΩT0

(χδb1 + (1− χδ)b2)[ϕδ(cδl )]1≤l≤4 · η (3.39)
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for all η ∈ L2(0, T0; H
1(Ω; R4)) ∩ L∞(ΩT0 ,R

4). We choose η := [ϕδ,̺
r (cδl )]1≤l≤4

in (3.39) which is an admissible test function because of the Sobolev embedding

theorem and because of ϕδ,̺
r ∈ C1. We obtain

∫

ΩT0

4
∑

l=1

µδ
lϕ

δ,̺
r (cδl ) =

∫

ΩT0

λ
4
∑

l=1

∇cδl · ∇ϕδ,̺
r (cδl ) +

∫

ΩT0

4
∑

l=1

ϕδ,̺
r (cδl )

(

2αl

4
∑

j=1

αjc
δ
j +El

)

+

∫

ΩT0

4
∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδl )ϕ
δ,̺
r (cδl ).

In the above formula, we set for simplicity E4 := 0. Due to (ϕδ,̺
r )′ ≥ 0 we find

∫

ΩT0

λ
4
∑

l=1

∇cδl · ∇ϕδ,̺
r (cδl ) ≥ 0.

This implies

∫

ΩT0

4
∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδl ))ϕ
δ,̺
r (cδl )

≤
∫

ΩT0

4
∑

l=1

µδ
lϕ

δ,̺
r (cδl )−

∫

ΩT0

4
∑

l=1

ϕδ,̺
r (cδl )

(

2αl

4
∑

j=1

αjc
δ
j + El

)

≤ C max
1≤l≤4

‖ϕδ,̺
r (cδl )‖L2(ΩT0

)

(

‖µδ‖L2(ΩT0
) + ‖cδ‖L2(ΩT0

)

)

where the constant C in the last line depends on α1, . . . , α4 and on E1, . . . , E3.

For ̺ց 0 employing Lemma 3.6 and Lemma 3.7 this proves

∫

ΩT0

4
∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδl )ϕ
δ
r(c

δ
l ) ≤ C. (3.40)

A direct computation finally yields

∫

ΩT0

4
∑

l=1

(χδb1 + (1− χδ)b2)ϕδ(cδl ))ϕ
δ
r(c

δ
l ) ≥

∫

ΩT0

max
1≤l≤4

(χδb1+(1−χδ)b2)|ϕδ(cδl )|r+1

≥
∫

ΩT0

C max
1≤l≤4

|ϕδ(cδl )|r+1

for a constant C = C(b1, b2). In the last estimate we used χδb1 + (1− χδ)b2 > 0
almost everywhere in ΩT0 . Together with (3.40) this proves (i).

Next we consider the weak formulation (3.36)

−
∫

ΩT0

τ∂tζ(χ
δ − χ0) +

∫

ΩT0

γ∇χδ · ∇ζ −
∫

ΩT0

(b2 − b1)
4
∑

j=1

ψδ(cδj)ζ

+

∫

ΩT0

T (ϕδ(χδ) + ϕδ(1− χδ))ζ = 0 (3.41)
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of the Allen-Cahn equation. We test Eq. (3.41) with ζ := ϕδ,ε(χ) + ϕδ,ε(1 − χ).

Since by Theorem 3.1 χδ ∈ C0, 1
2 (0, T0; L

2(ΩT0)), we can use Fourier theory to
formally shift a half time derivative from ζ to χδ − χ0. After this procedure we
find with Lemma 3.7

∫

ΩT0

τ∂
1
2
t (ϕδ,ε(χδ) + ϕδ,ε(1− χδ))∂

1
2
t (χδ − χ0) ≤ C.

To estimate the second integral in (3.41), we notice
∫

ΩT0

γ∇χδ · ∇(ϕδ,ε(χδ) + ϕδ,ε(1− χδ)) =

∫

ΩT0

γ|∇χδ|2 [(ϕδ,ε)′(χδ)− (ϕδ,ε)′(1− χδ)].

By Lemma 3.7, χδ is bounded in L∞(0, T0; H
1(Ω)) which implies the boundedness

of the integral.

When choosing δ sufficiently small in (i) we find cj ∈ (0, 1) for 1 ≤ j ≤ 4, see also
the proof of Theorem 3.3. This guarantees that ψδ(cj) does not become singular
and thus proves the boundedness of the third integral in (3.41) independently of
δ. Finally, we have

0 ≤
∫

ΩT0

(ϕδ(χδ) + ϕδ(1− χδ))(ϕδ,ε(χδ) + ϕδ,ε(1− χδ))

→ ‖ϕδ(χδ) + ϕδ(1− χδ)‖L2(ΩT0
) as εց 0.

By combining these results, (ii) follows. �

3.12 Global existence of solutions for logarithmic free

energies

Theorem 3.3: (Global existence of solutions of System (3.1))
Let the assumptions of Section 3.9 hold. Then, there exists a weak solution (c, µ, χ)
in the sense of (3.6) of Formulation (3.1) with logarithmic free energy such that

(i) c ∈ C0, 1
4 ([0, T0]; L

2(Ω; R4)),
(ii) ∂tc ∈ L2(0, T0; (H1

0 (Ω; R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L

2(Ω)),
(iv) ∂tχ ∈ L2(0, T0; (H1

0 (Ω))′),
(v) there exists a q > 1 such that ln cj ∈ Lq(ΩT0) for 1 ≤ j ≤ 4,

lnχ, ln(1− χ) ∈ L2(ΩT0) and in particular 0 < cj , χ < 1 a.e.

Proof: We pass to the limit δ ց 0 in the weak formulation (3.6) with f defined
by (3.34) and have to show that (c, µ, χ) found in Lemma 3.7 is a solution.

For the limit in (3.6b), we must take care of the term

χδb1
4
∑

j=1

ϕδ(cδj) + (1− χδ)b2
4
∑

j=1

ϕδ(cδj). (3.42)
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From the almost everywhere convergence of cδl to cl, Lemma 3.8 (i) and the
Lemma of Fatou we find

∫

ΩT0

lim inf
δց0

|ϕδ(cδl )|q ≤ lim inf
δց0

∫

ΩT0

|ϕδ(cδl )|q ≤ C.

Next we will show that

lim
δց0

ϕδ(cδl ) =

{

ϕ(cl) if limδց0 c
δ
l = cl > 0,

∞ if limδց0 c
δ
l = cl ≤ 0

(3.43)

almost everywhere in ΩT0 . For each (x, t) ∈ ΩT0 with limδց0 c
δ
l (x, t) = cl(x, t) > 0,

we obtain from ϕδ(d) = ϕ(d) for d ≥ δ that ϕδ(cδ(x, t)) → ϕ(c(x, t)). In the
second case of a point (x, t) ∈ ΩT0 with limδց0 c

δ
l (x, t) = cl(x, t) ≤ 0, we have for

δ small enough

|ϕδ(cδl (x, t))| ≥ ϕ(max{δ, cδl (x, t)})→∞ for δ ց 0.

This proves (3.43). A similar statement holds for ψδ(χδ).

From Eq. (3.43) and Lemma 3.8 (i) we deduce 0 < cl < 1 almost everywhere,
∫

ΩT0
|ϕ(cl)|q ≤ C and ϕδ(cδl ) → ϕ(cl) almost everywhere. With Vitali’s theorem

we find

ϕδ(cδl )→ ϕ(cl) in L1(ΩT0).

This allows to pass to the limit in (3.6b).

Now we want to consider the limit in (3.36). The relation 0 < cj < 1 almost
everywhere implies bl

∑4
j=1 ψ

δ(cδj)→ bl
∑4

j=1 ψ(cj), l = 1, 2 almost everywhere in

ΩT0 as in the first case of (3.43). From ϕδ(cδj) ∈ Lq(ΩT0), the uniform boundedness

of χδ and Vitali’s theorem we recover for δ ց 0

χδb1
4
∑

j=1

ψδ(cδj) → χb1
4
∑

j=1

ψ(cj) in L1(ΩT0),

(1− χδ)b2
4
∑

j=1

ψδ(cδj) → (1− χ)b2
4
∑

j=1

ψ(cj) in L1(ΩT0)

such that

ωδ(cδ, χδ)→ ω(c, χ) in L1(ΩT0) for δ ց 0.

By repeating the argumentation from above for ϕδ(χδ) + ϕδ(1 − χδ) we deduce
0 < χ < 1 almost everywhere in ΩT0 which again with the help of Vitali’s theorem
and Lemma 3.8 (ii) yields

ϕδ(χδ) + ϕδ(1− χδ)→ ϕ(χ) + ϕ(1− χ) in L1(ΩT0). (3.44)

So we can also pass to the limit in (3.36).

The limit for (3.6a) can be justified in the same way as in the proof of Theorem 3.1
if we additionally show

rδ(cδ, χδ)→ r(c, χ) in L1(ΩT0). (3.45)
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From the almost everywhere convergence of cδl to cl and cl > 0 almost everywhere
in ΩT0 we obtain

max(cδl , δ)→ cl almost everywhere in ΩT0 , δ ց 0, 1 ≤ l ≤ 3.

Since the functions χ 7→ k1/bχ and χ 7→ κ1/bχ are in C1, we find

k
1/b

χδ

(

max(cδ2, δ)
2 − κ1/b

χδ max(c1, δ)max(c3, δ)
)

→ k1/bχ

(

c22 − κ1/bχc1c3

)

almost everywhere in ΩT0 as δ ց 0.

By Lebesgue’s dominated convergence theorem we find (3.45), because k1/b
χδ ≤

k1/ min(b1,b2) almost everywhere in ΩT0 if k ≥ 1 respectively k1/b
χδ ≤ k1/ max(b1,b2)

almost everywhere if k < 1 and the analogous estimate for the κ-term, hence

∫

ΩT0

|rδ
1| ≤ C

∫

ΩT0

(

|c22|+ |c1c3|
)

for a constant C that depends on κ and k. �

Remark 3.1 Uniqueness of the solution to Theorem 3.3 can be obtained in ex-
actly the same way as in Theorem 3.2 if we replace (A6) by (A6’).

3.13 The limit equations

The last step is the limit λ→ 0. This limit can be carried out in much the same
way as before by showing a-priori estimates and compactness results.

Lemma 3.9: (A-priori and compactness results for the λ-problem)
(a) For λ ∈ (0, λ0) there exists a weak solution (cλ, µλ, χλ) of (3.1) with a loga-
rithmic free energy that satisfies (A2’)-(A6’).

(b) There exists a constant C > 0 independent of λ such that for all λ ∈ (0, λ0)

sup
t∈[0,T0]

{

‖cλ(t)‖H1 + ‖χλ(t)‖H1

}

≤ C,

sup
t∈[0,T0]

∫

Ω

f1(cλ(t), χλ(t)) + ‖∇µλ‖L2(ΩT0
) ≤ C

and

‖cλ(t2)− cλ(t1)‖L2 ≤ C|t2 − t1|
1
4 ,

‖χλ(t2)− χλ(t1)‖L2 ≤ C|t2 − t1|
1
2

for all t1, t2 ∈ [0, T0].

(c) One can extract subsequences (cλ)λ∈R, (µλ)λ∈R and (χλ)λ∈R where R ⊂
(0, λ0) is a countable set with zero as the only accumulation point such that
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(i) cλ→ c in C0,α([0, T0]; L
2(Ω; R4)) for all α ∈ (0, 1

4),
(ii) cλ→ c almost everywhere in ΩT0,

(iii) cλ
∗
⇀ c in L∞(0, T0; H

1
0 (Ω; R4)),

(iv) χλ→ χ in C0,α([0, T0]; L
2(Ω)) for all α ∈ (0, 1

2),
(v) χλ→ χ almost everywhere in ΩT0 and 0 ≤ χλ, χ ≤ 1 a.e. in ΩT0,

(vi) χλ ∗
⇀ χ in L∞(0, T0; H

1(Ω)),
(vii) µλ⇀ µ in L2(0, T0; H

1
0 (Ω; R4))

as λ ∈ R tends to zero.

Proof:
By Theorem 3.3, a weak solution for fixed λ ∈ (0, λ0) exists. This proves (a).

The estimates in (b) are a direct consequence of Lemma 3.7, where due to As-
sumption (A4.2) we have to choose λ < λ0 for Lemma 3.3 to hold. Since F λ(c0, χ0)
can be estimated independently of λ, the constant C on the right hand side does
not depend on λ.

(c) is proved by Lemma 3.7. �

We make precise what we mean by a weak solution to Model I.

(c, µ, χ) ∈ L2(0, T0; H
1,2
0 (Ω; R4))× L2(0, T0; H

1,2
0 (Ω; R4))× L2(0, T0; H

1,2(Ω; R))
with r(c, χ), ω(c, χ) ∈ L1(ΩT0) is called a weak solution of Formulation (2.29) if

−
∫

ΩT0

∂tξ · (c− c0) +

∫

ΩT0

L∇µ : ∇ξ −
∫

ΩT0

r(c, χ)ξ = 0 (3.46a)

for all ξ ∈ L2(0, T0; H
1
0 (Ω; R4)) with ∂tξ ∈ L2(ΩT0), ξ(T0) = 0, and

∫

ΩT0

µ · η =

∫

ΩT0

∂f

∂c
(c) · η (3.46b)

for all η ∈ L2(0, T0; H
1
0 (Ω; R4)) ∩ L∞(ΩT0 ; R

4), and

−
∫

ΩT0

τ∂tζ(χ− χ0) +

∫

ΩT0

γ∇χ · ∇ζ −
∫

ΩT0

ω(c, χ)ζ = 0 (3.46c)

for all ζ ∈ L2(0, T0; H
1(Ω; R)) with ∂tζ ∈ L2(ΩT0), ζ(T0) = 0.

Theorem 3.4: (Global existence of solutions for Model I with logarithmic f)
Let the assumptions of Section 3.9 hold. Then, there exists a weak solution (c, µ, χ)
in the sense of (3.46) of Formulation (2.29) with a logarithmic free energy that
satisfies (A2’)-(A6’) such that

(i) c ∈ C0, 1
4 ([0, T0]; L

2(Ω; R4)),
(ii) ∂tc ∈ L2(0, T0; (H1

0 (Ω; R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L

2(Ω)),
(iv) ∂tχ ∈ L2(0, T0; (H1

0 (Ω))′),
(v) there exists a q > 1 such that ln cj ∈ Lq(ΩT0) for 1 ≤ j ≤ 4,

lnχ, ln(1− χ) ∈ L2(ΩT0) and in particular 0 < χ, cj < 1 a.e. in Ω.
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Proof: We pass to the limit λ ց 0 in the weak formulation (3.6). In order to
show that the limit (c, µ, χ) found in Lemma 3.9 is a solution we only have to
observe that in (3.6b) λ△µ→ 0 in H1,2

0 (Ω) as λց 0. �

Theorem 3.5: (Uniqueness of solutions for Model I)
If ∂cf, ∂χf are Lipschitz continuous, the solution (c, µ, χ) of the Model I obtained
in Theorem 3.4 is unique in the spaces stated in this theorem.

Proof: The proof of Theorem 3.2 can be reused after sharpening Estimate (3.30).
We have according to (A4.2)

−
∫

Ωt0

(

t
∫

0

r(s)ds
)

· µ ≥
∫

Ωt0

r1(t)(2µ2(t)− µ1(t)− µ3(t)) ≥ λ
∫

Ωt0

|∇c|2

for an arbitrary constant λ < λ0. Then one can proceed with the proof. �

Remark 3.2 The statements of Theorem 3.4 and Theorem 3.5 hold as well for
Model II, provided we assume that f(c, χ) := χf1(c)+(1−χ)f2(c) is continuously
differentiable and c 7→ f1(c), c 7→ f2(c) are convex functions. Here, f i(c) do not
refer to the decomposition (3.8) in (A2), but rather to (2.31). Due to Eq. (2.31c)
we define

ω(c, χ) :=
f2(c)− f1(c)

T
+ lnχ− ln(1− χ).

In Chapter 4, f1(c) and f2(c) will be computed by ab-initio methods and stored in
huge data bases. Consequently, the resulting functions will be piecewise constant.
The data bases represent approximations of the smooth physical functions. The
proof of existence of solutions to Model II is in many regards simpler as the
existence proof to Model I, as there is no reaction term. Therefore, the assumption
(A5), (A6) and later (A6’) and the construction of rδ are not needed.

3.14 Proof of existence of solutions to Model III

The structure of the existence proof of Theorems 3.1, 3.3 can be maintained for
the proof of existence of solutions to Model III provided several changes are made.
These modifications are discussed in this section.

• There are no reaction terms in Model III. Therefore in the above proofs one
formally sets rm = rm−1 := 0.

• The space X2 is replaced by V , defined in (2.33), the weak formulation
(3.6c) is replaced by Eq. (2.32). Instead of (3.7c) we have

F (cm, χm) = min
χ̃∈V

F (cm, χ̃).

• The structural assumptions of Section 3.4 are changed as follows. In (A2) it
is assumed now that f1(·, χ) is convex for every χ ∈ {0, 1}. Estimate (3.9)
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is dropped (notice that W (χ) is no component of the free energy). The
estimate in Assumption (A2.3) is altered to

|∂cf
1(c, χ)| ≤ δf1(c, χ) + Cδ for all c ∈ Σ, χ ∈ [0, 1].

The assumptions (A5) and (A6) are discarded.

• Definition (3.13) is replaced by

Fm,h(c, χ) := F (c, χ) +
1

2h
‖c− cm−1‖2L.

The term
∫

Ω δ|∇χ| guarantees the coercivity of F w.r.t. χ ∈ V . The
lower semicontinuity of Fm,h w.r.t. χ follows from (2.32) and consequently
Lemma 3.1 holds as before if 0 < h < λ

8C2
1CL

.

• There is no Euler-Lagrange equation for χ, this means Eq. (3.14c) no longer
appears. The other parts of Lemma 3.2 remain unchanged.

• The dissipation inequality (3.16) is replaced by

F (cM , χM )(t) +
1

2

∫

Ωt

(L∇µM : ∇µM ) ≤ F (c0, χ0).

The a-priori estimates (3.17) and (3.18) read now

sup
0≤t≤T0

{

‖cM (t)‖H1 + ‖χM (t)‖BV

}

≤ C,

sup
0≤t≤T0

∫

Ω

f1(cM (t), χM (t)) + ‖∇µM‖L2(ΩT0
) ≤ C

and as there are no reaction terms present, the original proof of [31] can be
re-used for the revised version of Lemma 3.3.

• The statements (i), (iv) and (vi) of Lemma 3.5 no longer hold. (vi) is not
needed any more as there is no term ω = ∂χ(f/T ) in the equations of
Model III. Statements (iii), (v) are valid as before ((v) is proved as before),
(ii) is replaced by

χM → χ in L∞(0, T0; BV (Ω)) with χ(1− χ) = 0 a.e. in Ω

as M ∈ N tends to infinity.

In order to prove Lemma 3.5 (iii), fix t ∈ [0, T0]. The sequence χM (·, t) ⊂
BV (Ω) is uniformly bounded in BV (Ω) and from the compact embedding
BV (Ω) →֒ L1(Ω) we infer the existence of a subsequence N with χN (·, t)→
χ(·, t) in L1(Ω). If ϕ ∈ C∞

0 (Ω), then for 1 ≤ i ≤ n

lim
N→∞

∫

Ω

ϕDiχN (·, t) = − lim
N→∞

∫

Ω

χN (·, t)Diϕ =

∫

Ω

χ(·, t)Diϕ

and furthermore
∣

∣

∣

∫

Ω

χ(·, t)Diϕ
∣

∣

∣
≤ sup

x∈Ω
|ϕ(x)| lim inf

N→∞

∫

Ω

|∇χN (·, t)| <∞.
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Hence, χ(·, t) ∈ BV (Ω) and χN → χ in L∞(0, T0; BV (Ω)). Since in par-
ticular χN → χ in L1(ΩT0), we conclude χN → χ almost everywhere in
ΩT0 for a subsequence N . This proves (iii). From the pointwise limit we get
χ(1− χ) = 0 almost everywhere in Ω, hence Lemma 3.5 (ii).

• Theorem 3.6: (Global existence for Model III with polynomial free energy)
There exists a weak solution (c, µ, χ) of Formulation (2.31) with polynomial
free energy such that

(i) c ∈ C0, 1
4 ([0, T0]; L

2(Ω; R4)),
(ii) ∂tc ∈ L2(0, T0; (H1

0 (Ω; R4))′),
(iii) χ ∈ L∞(0, T0; BV (Ω)) with χ(1− χ) = 0 a.e. in Ω.

• The term TW (χ) is removed from (3.34). (A6’) is dropped. (A3’) reads:

The initial values c0i ∈ X1 fulfill
∫

Ω c0l > 0 for 1 ≤ l ≤ 4.

• The expression T [ψδ(χ) + ψδ(1− χ)] does no longer occur in the definition
of f1,δ.

• In Lemma 3.7, Estimate (3.38) reads now

sup
t∈[0,T0]

{

‖cδ(t)‖H1 + ‖χδ(t)‖BV

}

≤ C.

The statements (c) (iv), (vi) of Lemma 3.7 no longer hold. (v) reads

χδ → χ almost everywhere in ΩT0 and χ(1− χ) = 0 a.e. in ΩT0 .

• Lemma 3.8 (ii) is no longer valid.

• Theorem 3.7: (Global existence of solutions of Model III)
There exists a weak solution (c, µ, χ) of Formulation (2.31) with logarithmic
free energy such that

(i) c ∈ C0, 1
4 ([0, T0]; L

2(Ω; R4)),
(ii) ∂tc ∈ L2(0, T0; (H1

0 (Ω; R4))′),
(iii) χ ∈ L∞(0, T0; V ),
(v) there exists a q > 1 such that ln cj ∈ Lq(ΩT0) for 1 ≤ j ≤ 4,

in particular 0 < cj < 1 a.e.

The proof of this theorem is a simplification of Theorem 3.3 by removing
Eq. (3.44) and Eq. (3.45) together with the proofs of these statements.

Remark 3.3 Simple examples show that uniqueness to Model II cannot be ex-
pected in general due to a possible ambiguity in χ.
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Chapter 4

Computational Methods

This chapter contains all important aspects concerning the numerical implemen-
tation to model diffusion induced segregation. It contains the description of the
solution method to System (2.29) and discusses three ways to find estimates for
the free energy of the sphalerite-chalcopyrite system. As different approximations
and models are used, consequently a collection of very different parts is contained.
Where it seems necessary for the understanding, the theoretical background for
the applied techniques is provided as well.

The first part, enclosed in Section 4.1, describes the general approach to solve
(2.29) with a finite element method. Simultaneously it builds the foundations for
the more advanced simulations in the later part of this chapter when the free
energy functional (2.25) is replaced by computer based calculations of the free
energy of the real physical system. This goes along with a modification of the
Allen-Cahn equation. Section 4.2 explains the main ideas of this ansatz.

Three different methods for computing the Helmholtz free energy have been used.
The most elementary method consists in finding solutions of the harmonic ap-
proximation. These solutions were obtained with the program package GULP. A
description of this ansatz is given in Sections 4.3 and 4.4.

The second method employed are molecular dynamics (MD) computations which
are found in Section 4.5. The two methods represent two different ways to ap-
proximate the entropic part of F : MD computations represent the order-disorder
entropy well, the harmonic approximation the harmonic part of the entropy. Even
though the MD simulations are too time consuming to be used on a large scale,
they may serve to compare with the harmonic approximation for selected con-
centration values. In Chapter 5 we will analyse this further and will find that the
difference of the two predicted free energies is not always negligible.

Additionally, some quantum mechanical computations have been carried out to
allow a comparison with data of higher quality serving as reference. Mainly, quan-
tum mechanical computations are desperately needed to obtain a reasonable es-
timate of the elastic parameters Cij of chalcopyrite. Without this data, no fitting
to the chalcopyrite structure with GULP would be possible. Free energy, lattice
constants and elastic parameters are also computed quantum mechanically for
sphalerite and show very good agreement with the measurements.

The quantum mechanical computations were made in the framework of the well-
known density function theory and use Troullier-Martins pseudopotentials. The
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relevant steps are explained in Section 4.6. It should be pointed out that the quan-
tum mechanical computations have a very high quality and often differ less than
5% from measured data, but are too time consuming to be used systematically
to fill a data base for the finite element approach.

The results of numerical computations corresponding to the methods and models
presented in this chapter are collected in Chapter 5.

One computational technique is not contained in this chapter, which is the min-
imisation process associated to Eq. (2.32). The implementation details to this
minimisation are found in Section 5.6.

4.1 General numerical solution technique

The experience has shown that the numerical computation of reaction-diffusion
equations is frequently a difficult task due to the possible occurence of boundary
layers and stability problems. Several different methods are applicable for solving
System (2.29). The probably simplest ansatz is the use of a predictor-corrector
method, see [69] for a general presentation and a comparison of the different
variants. But because of the ellipticity of Eq. (2.29a), a fixed point for the iterated
solutions (as the proof relies on the contraction principle) of this scheme cannot
be guaranteed and in practice the algorithm is observed to converge rather slowly.

A class of much more efficient algorithms is available with the variety of Newton’s
methods. Since later on we are also going to use operators defined by huge data
bases, the explicit computation of the derivatives needed for the classical New-
ton method would have to use interpolation schemes and is not very practical.
Therefore in the following we make use of a Newton-Krylov method. The method
is for instance discussed in [21], and a less technical presentation is available in
the textbook [45]. In comparison to the formentioned predictor-corrector itera-
tion the Newton-Krylov ansatz made the computations in average about 80 times
faster.

To explain the approach, consider we want to solve a nonlinear equation f(x) = 0
for a known differentiable function f : R

p → R
q. The classical and well known

Newton’s method for solving this equation is:

Given x0 ∈ R
p, solve iteratively for j = 1, 2, . . .

xj := xj−1 − (Df(xj−1))
−1f(xj), (4.1)

which is a linearisation of the original problem inasmuch as in practice one solves

Ajdj = −f(xj−1), (4.2)

together with the update xj := dj + xj−1. The disadvantage of (4.2) is that the
matrix Aj = Df(xj−1) has to be kept in computer memory and must be updated
in every step of the iteration. These draw backs can be partly overcome by using
a Quasi-Newton method that replaces Aj by an approximation of Df(xj−1). The
heart of the Newton-Krylov method is the use of a forward difference, e.g.

Ajz :=
f(xj−1 + ηz)− f(xj−1)

η
(4.3)
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for a fixed small constant η > 0 and persuing the solution of the linear system
(4.2) with the generalised minimal residual method, GMRES, see [61] for details.
For the practical implementation, only a multiplication routine z 7→ Az must be
present and A need not be stored explicitly.

Apparently, this variant is very versatile and is easy to implement. It combines
the fast convergence of Newton’s method with the excellent damping properties
of GMRES. An extensive analysis of the method is present in [21]. In [21] it
is shown that for x0 close to the solution and mild additional assumptions (in
particular f ∈ C1,1), the iteration of the Newton-Krylov method converges to the
desired solution. The proof relies on the fact that the Newton-Krylov algorithm
is essentially the same as applying the regular GMRES method to the perturbed
problem (A+ Id)x = b with A = Df(z) and b = −f(z).

We use the algorithm just presented to solve the weak formulation of (2.29) in
the Sobolev space H1,2(Ω) together with linear finite elements. Since this is fairly
standard, we keep the presentation short.

Let T h be a triangulation of Ω, where h := maxT∈T h diamT . In the Galerkin
approximation, H1,2(Ω) is replaced by

Sh := {ϕ ∈ C0(Ω) | ϕ|T is linear for all T ∈ T h} ⊂ H1,2(Ω)

with basis (ϕi)1≤i≤N , where N denotes the number of notes (xi)1≤i≤N . We use
lumped masses, i.e. approximate the inner product (u, v) :=

∫

Ω uv in L2(Ω) by

(u, v)h :=
N
∑

i=1

Miiu(xi)v(xi).

HereMii :=
∑N

i=1

∫

Ω ϕiϕj . Hence,Mij = δij
∑N

k=1 M̃ik with the ’full’ mass matrix

M̃ and δij is the Kronecker delta.

We find the semi-discrete scheme

(∂tc
h, ξ)h + (L∇µh,∇ξ)− (r(ch, χh), ξ)h = 0 ∀ξ ∈ (Sh)4, (4.4a)

(L∇µh,∇ξ) = (L∇∂f
∂c

(ch, χh),∇ξ) ∀ξ ∈ (Sh)4, (4.4b)

(∂tχ
h, ζ)h + γ(∇χh,∇ζ)− (ω(ch, χh), ζ)h = 0 ∀ζ ∈ Sh, (4.4c)

ch(·, 0) = ch0 ∈ (Sh)4, (4.4d)

χh(·, 0) = χh
0 ∈ Sh. (4.4e)

Finally, an implicit time discretisation is used to resolve ∂tc and ∂tχ.

It is evident that this approach is not particularly fast and optimisations and
speedups are at hand in many ways. One basic improvement consists in a split-
ting of the time discretisation that was originally invented for the Navier-Stokes
equations known as θ-scheme, see [20], [73]. More sophisticated improvements are
regarding a parallelisation of the code by multi-grid methods or domain decom-
position.
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4.2 A table lookup principle for the free energy

One main criticism concerning Model (2.29) is that the fundamental mechanism
to govern the phase parameter χ depends on (2.25) which is a theoretical formula
for F that has no regard to the sphalerite-chalcopyrite-system.

To incorporate free energy expressions more closely related to reality, we are
going to replace the continuum approach of Section 4.1 in the following way. Let
c be a given concentration vector. In a first independent computation step two
approximations f1(c) and f2(c) are computed that simulate the actual free energy
density of the material in the bulk phases, hence represent two local minima of
f . How these approximations can be found is the topic of a later part of this
chapter. For instance in the harmonic approximation with GULP, introduced in
Section 4.3, the values f1(c), f2(c) are obtained from modified chalcopyrite and
sphalerite configurations. Generally, f1(c) and f2(c) are stored beforehand in
huge data bases. Each entry in these data bases references to a small range of
concentration vectors c (approximation of f by a piecewise constant function).

As before there is a surface energy

fS(χ) :=

∫

Ω

γ|∇χ|2

contributing to the free energy density. We use the tangent to the minima f1 and
f2 to substitute into the Allen-Cahn equation:

τ∂tχ = −∂χ

( f

T

)

≈ f2(c)− f1(c)

T
+ γ△χ+ ln(χ/(1− χ)). (4.5)

As in the former ansatz the logarithm ln(χ/(1 − χ)) guarantees 0 < χ < 1 in
ΩT0 and as long as an evolution equation for χ is used it is not possible to avoid
this term. There is freedom in this ansatz as any expression α ln(χ/(1−χ)) with
α > 0 is possible.

For known χ and given tabular values f1(c) and f2(c) the chemical potentials
compute to

µj(c) = χ
∂f1

∂cj
(c) + (1− χ)

∂f2

∂cj
(c), 1 ≤ j ≤ 4. (4.6)

It remains to find approximations for ∂fm

∂cj
. This is done by central differencing of

the tabular entries where possible and by one sided differences at the beginning
and end of the data base. To make this precise, let Mj ∈ N be the dimension of
that data base w.r.t. cj , that is fm(c1, . . . , cj , . . . , c4) is constant for cj ∈ [clj , c

l+1
j )

(clj is a monotone sequence in l) and 1 ≤ l ≤Mj−1. Set for cj ∈ (clj , c
l+1
j ) (where

we suppress the frozen components cn for n 6= j)

∂fm

∂cj
(cj) =



























fm(cl+1
j )−fm(cl−1

j )

cl+1
j −cl−1

j

if 2 ≤ l ≤Mj − 1,

fm(c1j )−fm(c2j )

c1j−c2j
if l = 1,

fm(c
Mj
j )−fm(c

Mj−1

j )

c
Mj
j −c

Mj−1

j

if l = Mj .

(4.7)

For the harmonic approximation and the MD-simulations presented later in this
chapter it is assumed that the lattice is in electric equilibrium. The effect of
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the electric potential cannot be resolved by the method and will be ignored.
Furthermore the c1 variable is dropped leading to Formulation (2.31), with the
chemical potentials defined by (4.6), (4.7).

To estimate the necessary size of the data base, numerical experiments were done
where the data base was filled with data of the theoretical free energy (2.24).
Finally, the parameters M2 = M4 = 30, M3 = 40 were chosen. Larger values
of Mj are desirable because they lead to smaller approximation errors, but the
numerical effort grows enormously, as every entry has to be computed by a costly
averaging process. The theoretical error between the tabular value and the correct
function value for µ ∈ C3 is O(N−2

j ) w.r.t. cj except for the first and the last
entry of the tabular (it is well known that c 7→ fi(c) is a smooth function for
phase i = 1, 2, hence µ ∈ C3 is no severe assumption).

Instead of Eq. (4.5) it is preferable to use the minimum formulation (2.32).

4.3 The harmonic free energy approximation

This section presents the most elementary method to simulate the free energies
of the sphalerite and chalcopyrite structure for given concentration vector c. We
will take advantage of well known methods from lattice dynamics and solid state
physics. As general reference and introduction the two text books [27] and [8] are
recommended.

Let us have a look at the so-called harmonic approximation. This notion corre-
sponds to the splitting

E = Eperf + Evib = Eperf + Eharm + Eanharm

of the internal energy. Here, Eperf denotes the internal energy connected to the
rigid perfect crystal when all atoms are fixed at their perfect lattice positions and
Evib is the energy associated to lattice vibrations. Evib in turn can be split into
the harmonic vibrational energy Eharm and into the anharmonic contributions
Eanharm. The concept of the harmonic approximation is to neglect Eanharm.

The fundamental (and somewhat naive) idea of lattice dynamics to estimate E
is to compute the contributions between all atoms (and shells and atom units)
and summing up. This implies that we neglect quantum mechanical effects and
assume that the lattice has a periodic structure. In the computations the lattice
symmetry is used, theoretically the unit cell being replicated infinitely many
times. As this is of course practically impossible, a cutoff is introduced.

Let ui = (ui1, ui2, ui3) be the displacement vector of the i-th atom. The relation-
ship between Evib and Eanharm is the Taylor expansion

E = Eperf +
1

2!

3
∑

p=1

∑

i,j

∂2E

∂ui,p∂uj,p
ui,puj,p

+
1

3!

3
∑

p=1

∑

i,j,k

∂3E

∂ui,p∂uj,p∂uk,p
ui,puj,puk,p + . . . . (4.8)

The terms with derivatives of order 3 or higher define the anharmonic contribu-
tions Eanharm. In (4.8) there are no first order terms because the lattice is assumed
to be in equilibrium.
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Even though some effects as heat conductivity and thermal expansion can only
be conclusively explained when considering anharmonic effects, as long as the
atomic displacements remain small, we have E ≈ Eperf + Eharm. The energy
Eharm is always bounded from below and solving the harmonic approximation is
relatively simple.

Eperf and Eharm will be computed on the basis of short-range interatomic poten-
tials and long-range electrostatic approximations. For these computations, the
program package GULP, see [37], has been used.

The main advantage of GULP is the low computational effort that allows to
gain results quickly. Hence it is well suited to get an overview and ideal for the
large-scale computations to generate the free energy table. The anharmonicity
could be added later and in simple cases a renormalisation of the frequencies,
see [18] is possible. In more complicated situations (in particular when the dis-
placement u becomes large, i.e. when the crystal is subject to huge temperatures
and pressures) more sophisticated approaches as thermodynamic integration be-
tween carefully chosen reference states, see [3], or even quantum corrections may
become necessary.

The lattice energy Eperf is computed by the formula

Eperf =
1

2

∑

i,j

ϕij(rij). (4.9)

Here, rij is the distance between atoms i and j and ϕij is the energy between the
species i and j. The factor 1

2 in (4.9) accounts for the fact that every pair (i, j)
is counted twice.

As has already been mentioned, for the computation of the short-range inter-
actions, i.e. for the computation of Eperf , interatomic potentials are being used.
Best known are the Lennard-Jones potential

ϕ(r) := −4ε
[(σ

r

)6
−
(σ

r

)12]

(4.10)

and the Buckingham potential

ϕ(r) := −4ε
(σ

r

)6
+B exp

(

− r

̺

)

, (4.11)

but there are many others. In this work, the latter (4.11) will be favorised because
the practical experience has shown it to yield more reliable predictions. In (4.10)
and (4.11), r is the distance between the atoms, σ that particular interatomic
distance where the energy vanishes and ε is the potential energy at equilibrium
separation. The (σ

r )6 term describes the van-der Waals induced dipole moments
whereas (σ

r )12 stands for the repulsive forces. In (4.11) the repulsive term has
been replaced by an exponential expression. The two parameters, B originally
standing for the intensity of the interaction and ̺ for the relative size of the atoms
considered, are in practice merely constants to be fitted against experimental
data.

It is assumed that for the long-range potential the electrostatic or Coulomb in-
teractions

EC :=
1

2

∑

l

∑

i,j

qiqj
4πε0rij(l)
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are dominant, where qi is the charge on the i-th atom, ε0 the dielectric permit-
tivity constant and rij(l) denotes the distance between the i-th atom in the unit
cell (referred to l = 0) and the j-th atom in the l-th unit cell. EC represents
the binding energy in solids and is the counterpart to the short-range repulsive
interactions.

Due to the r−1 term the convergence of EC is critical. A well known and by now
classical way to efficiently compute EC is by means of an Ewald sum technique,
[33], where the Coulomb sum is decomposed in one part in real space and one in
reciprocal space, by virtue of

1

r
=

η
∫

0

exp(−r2̺2) d̺+

√
π

2

erfc(ηr)

r
,

where η is a free parameter (that could be adjusted within GULP) and

erfc(x) :=
2√
π

∫ ∞

x
e−y2

dy

is called the complementary error function. Using the fast decay of erfc(x) for
large x and a theta function transformation, one ends up with

EC =
1

8πε0

{

∑

l

∑

i,j

qiqj erfc(ηrij(l))

rij(l)

+
∑

i,j

4qiqjπ

V

∑

G

exp(−G2/4η2)

G2
exp(iG · (rj − ri))

}

.(4.12)

V denotes here the volume of the unit cell and the sum is taken over all reciprocal
lattice vectors G. The decomposition just described exploits the fact that a slowly
decaying function will drop quickly to zero after the transformation.

The Ewald decomposition is found to be a very effective way to compute EC .
Currently it is discussed if multipole methods can be an alternative.

With EC and Formula (4.12) we have computed the first component of Eharm.
It remains to calculate the energy of the harmonic oscillators, the phonons. A
phonon can be considered as a particle-like vibrational quantum. We assume
that we are in thermodynamical equilibrium and that the number of harmonic
oscillators with energy level El follows Boltzmann’s rule and is proportional to
exp(−El/(kBT )). The energy levels El obey the formula

Ejq = ~ωj(q)
(1

2
+ njq

)

, njq = 0, 1, 2, . . . (4.13)

where ~ is Planck’s constant and q denotes the wave vector, j the dispersion
branch. We suppress the dependence on q and j and write (4.13) in the form

El = ~ω
(1

2
+ l
)

. (4.14)

With the above mentioned relation of the harmonic oscillators due to Boltzmann’s
law the mean energy for frozen (q, j) is computed to

E =

∑∞
l=0El exp

(

− El

kBT

)

∑∞
l=0 exp

(

− El

kBT

) = − d

dβ
ln
(

∞
∑

l=0

exp(−βEl)
)

(4.15)
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with the abbreviation β := (kBT )−1. With the help of (4.14) we obtain

∞
∑

l=0

exp(−βEl) = exp
(

− ~ω

2
β
)

∞
∑

l=0

exp(−~βωl)

=
exp

(

− ~ω
2 β
)

1− exp(−~ωβ)
.

For the mean energy this yields

E = − d

dβ
ln exp

(−~ω

2
β
)

+
d

dβ
ln(1− exp(−~ωβ))

=
~ω

2
+

~ω exp(−~ωβ)

1− exp(−~ωβ)
= ~ω

(1

2
+

1

exp(~ω
β )− 1

)

=: ~ω
(1

2
+ n

)

.

This last identity holds for every (q, j). After relabeling (Ejq → Em, njq → nm)
and with (4.14) we therefore arrive at the Bose-Einstein relation

nm =
1

exp(~ωm/(kBT ))− 1

which is known to hold for all spinless particles.

We define the partition function by

Z :=
∞
∑

m=0

exp
(−Em

kBT

)

.

Using well known results from statistical mechanics by Gibbs and by di Marzio,
we get at once

S = kBT
(∂ lnZ

∂T

)

V
+ kB lnZ,

F = E − TS. (4.16)

In Eq. (4.16), the internal energy is given by

E = Eperf −
1

Z

∂Z

∂β
,

where the term − 1
Z

∂Z
∂β is explained by Identity (4.15); and (4.16) together with

(4.9) completely define the free energy.

For the constrained minimisation of the free energy within GULP, the Broyden,
Fletcher, Goldfarb and Shanno (BFGS) variant of the Newton-Raphson method
were used, see [11]. As is well understood, in general only local minima in the
energy landscape are found by this method.

4.4 Free energy computation with GULP

After the general introduction of the last section we now discuss the details.

60



I Fitting of heuristic potentials

We begin with the fitting to ZnS. We use a shell model, first introduced in [26].
In this model, the rigid atom is split into an inner part comprising of the nucleus
with the tightly bound inner electrons and into an outer part with the loosely
bound shell electrons. This allows to take into account dipole moments caused
by the interactions with neighboring ions. Additionally, a harmonic three body
potential is used to account for the directionality on the S−Zn−S bond according
to the Taylor expansion

W3b(θ) :=
1

2
k2(θ − θ0)2 +

1

6
k3(θ − θ0)3 +

1

12
k4(θ − θ0)4,

where θ0 is the angle of the unstressed three-body system and k2, k3 and k4 deter-
mine the sensibility w.r.t. angular changes. Three body potentials are extensively
discussed in [65].

With GULP it is possible to set up interactions of potentials between shells and
other atoms/shells and these potentials can and should be fitted to give reason-
able results. For sphalerite and chalcopyrite this is a tricky business, probably
because the bondings in sulphides are not purely ionic but may range from ionic
to covalent through to metallic. The fitting is done in the spirit of the work by
Wright and Jackson, [75], in such a way that the calculated numerical data fits
best to the physical constants gained by experiments. Table 4.1 shows this (a
denotes the lattice parameter of the cubic lattice, V the volume of the unit cell
and Cil specify the elastic constants). To find the potential parameters, one starts
with a simple model without shells where for instance the charges of S and Zn
are fixed to −2 and +2. By a least squares optimisation run the parameters for
the spring constant and in case of sphalerite for the S− Zn − S interactions are
fitted. The parameters thus obtained are then used in an extended model that
includes shells and three body terms.

EXP1 EXP2 P1 P2 P3

a/Å 5.41 5.41 5.403 5.403 5.402

V/Å
3

158.29 158.29 157.77 157.77 157.69

C11/GPa 9.42 9.76 8.6 9.37 9.18

C12/GPa 5.68 5.9 6.54 6.16 5.83

C44/GPa 4.36 4.51 3.8 4.03 4.41

εstat 7.9 - 8.565 7.21 7.33

εhf 5.8 - 4.815 4.56 3.64

Table 4.1: Comparison of experimental and calculated data for ZnS

For P1, a Buckingham potential is fitted and a shell is only used for the S ions.
In P2, a three body potential for S − Zn − S is added. In particular this results
in better values for C44, εhf and εst. Finally, in P3 a shell to the Zn is included
as well. The necessary parameters for a complete definition of the potentials are
maintained in Table 4.2 below. For all the Buckingham potentials, the cutoff level
was set to 12̊A.

61



The potentials P1 and P3 correspond to PS1 and PS3 in [75]. Some of the values
in Table 4.1 vary slightly from the figures reported there because all computations
were redone with the newer version GULP 1.3. The data set EXP1 refers to the
experimental results in [54], EXP2 to the recently made measurements in [14] (in
these experiments no measurements of εstat and εhf were made).

P1 P2 P3

POTENTIAL PARAMETERS:

S − S
A/eV 1200.0 1200.0 1200.0

̺/Å 0.149 0.149 0.149

C/eV Å
6

120.0 120.0 120.0

Zn− S
A/eV 613.36 613.36 528.9

̺/Å 0.399 0.399 0.411

C/eV Å
6

0.0 0.0 0.0

SHELL MODEL:

SKS/eV Å
−2

12.7 12.7 16.86

ZnKS/eV Å
−2

0.0 0.0 2.181

THREE BODY TERMS:

S − Zn− S force constant/eV rad−2 0.713 0.713

S − Zn− S bond angle /degrees 109.47 109.47

k2/eV rad−2 3.0 3.0

k3/eV rad−3 3.0 3.0

k4/eV rad−4 5.0 5.0

Table 4.2: Potential parameters for P1, P2 and P3 used for ZnS

As can be seen, the agreement documented in Table 4.1 is suitably well with
an error in the size of uncertainty of the measured parameters. This proves that
GULP can be used to compute fundamental material properties of sulphides. P2
and P3 seem both be very well suited to represent the structure of ZnS.

The fitting procedure to chalcopyrite is similar. For P4, Cu and Fe cores replace
Zn. The S shell is fitted to yield good values for the lattice constants and the
volume of the primitive cell. But there is one bottleneck: up to now it has not
been possible to measure the elastic parameters Cil for chalcopyrite in experiment.
The slanted parameters in Table 4.3 are the result of the quantum mechanical
computations in Section 4.6 and the GULP potential is fitted to these parameters.

To further improve the quality of the results, three body potentials for S−Cu−S
and S − Fe− S are added. Table 4.3 provides the results of the fitting, Table 4.4
the fitting parameters.

The elastic constants C15, C43 and C56 should vanish for tetragonal lattice ge-
ometries, but GULP computes these parameters to be in the range of 10−5 to
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2.7 · 10−4 either due to rounding errors or because the relaxed geometry is not
completely optimal. These values are not listed in Table 4.3.

Exp2/QM P4 P5

a/Å 5.2864 5.601 5.59

b/Å 5.2864 5.601 5.59

c/Å 10.4102 10.71 10.70

V/Å
3

145.46 168.08 167.73

C11/GPa 17.83 18.02 18.12

C12/GPa 5.81 5.67 5.64

C13/GPa 6.27 6.59 6.59

C33/GPa 13.15 14.23 14.25

C44/GPa 13.19 18.86 18.93

C66/GPa 4.93 8.68 8.70

Table 4.3: Comparison of experimental/quantum mechanical and calculated data
for chalcopyrite

We see that there is almost no improvement when using the three body potentials.
The agreement to the quantum mechanical parameters is quite good, except for
the elastic constants C44 and C66.
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P4 P5

POTENTIAL PARAMETERS:

S − S
A/eV 1200.0 1200.0

̺/Å 0.508 0.508

C/eV Å
6

120.0 120.0

Fe− S
A/eV 5694.68 5694.68

̺/Å 0.2748 0.2748

C/eV Å
6

0.0 0.0

Cu− S
A/eV 110.62 100.619

̺/Å 0.327 0.327

C/eV Å
6

0.0 0.0

SHELL MODEL:

SKS/eV Å
−2

12.70 12.70

THREE BODY TERMS:

S − Cu− S force constant/eV rad−2 0.01164

S − Cu− S bond angle /degrees 109.47

k2/eV rad−2 2.5

k3/eV rad−3 2.5

k4/eV rad−4 4.0

S − Fe− S force constant/eV rad−2 0.01169

S − Fe− S bond angle /degrees 109.47

k2/eV rad−2 2.5

k3/eV rad−3 2.5

k4/eV rad−4 4.0

Table 4.4: Potential parameters for P4 and P5 used for chalcopyrite
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II Computation of the free energy as a function of c

A concentration vector c only determines the concentrations of Cu+, Zn2+ and Fe,
but not the position of the atoms within the lattice. Hence, there is a large number
of different configurations representing the same vector c. In order to account for
that issue, a supercell approach has been persued in which all atoms are placed
manually and no lattice symmetry is used a-priori. Consequently, the lattice unit
cell is copied many times and randomly certain atoms are replaced in order to
fulfill the prescribed concentration percentage. The replacement mechanism is
described in more detail below.

The following picture displays the three-dimensional lattice structure of cubic
ZnS (space group F 4̄3m) and of tetragonal chalcopyrite (space group I 4̄2d). In
older work by Groß, the space group of chalcopyrite had wrongly been identified
as P 4̄2m but recent articles, [14] and [48], have it right.

Figure 4.1: The unit cells of sphalerite and chalcopyrite

The fundamental mechanism that determines the predominant lattice structure
is well understood. Decisive is the ratio r+/r−, where r+ denotes the ion radius
of the positive ion (e.g. Zn2+ for ZnS) and r− the radius of the negative ion
(e.g. S2− for ZnS). As long as r+/r− <

√
2 − 1 ≈ 0.414, the larger ions can still

touch leading to a closest cubic packing as in NaCl with coordination number
6. In other cases, the ZnS structure is preferable where any ion of one kind is
surrounded by 4 ions of the other kind. The four anions form the corners of a
tetrahedron that is centered by a cation and vice versa. If we place the corners
of such a tetrahedron in the cubic unit cell with edge length a and assume that
the anion-balls still touch, we find from simple geometric considerations

a
√

2 = 2r− (4.17)

and for the space diagonal

a
√

3 = r− + 2r+ + r−

and hence for the ratio
r+
r−

=

√

3

2
− 1 ≈ 0.225. (4.18)
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With the measured r+ = 0.64Å from Table 2.1 and r− from Eq. (4.17) we find
r+/r− ≈ 0.167 indicating that the anion balls don’t touch in reality. For r+/r− >√

3−1 ≈ 0.732, the CsCl structure with coordination number 8 becomes favorable.

From Fig. 4.1 we can read off the lattice transformation from sphalerite to chal-
copyrite. The Zn atoms at the corners of the unit cell are replaced by Cu, the six
Zn atoms at the centers of every face are replaced by four Fe atoms and two Cu
atoms, where due to symmetry opposing faces are occupied by the same atom
type (Fe or Cu). As the bonding energies change, some S atoms slightly shift
their positions resulting in an overall change of the space group. In direction of
the lattice vector c of the unit cell, this corresponds to an almost doubling of the
lattice constant.

From these considerations we can derive a natural replacement mechanism for
the transformation from sphalerite to chalcopyrite (and vice versa). The posi-
tions where Cu atoms and Fe atoms are found in chalcopyrite determine those
lattice points where Cu and Fe must be placed when altering the structure of
sphalerite. The positions of the sulphur atoms are automatically adjusted during
the minimisation run of GULP.

Choose enumeration (ci)1≤i≤N

for tabular values, set i := 0

?

r

Increment i. Read out ci

from concentration table

?

r

Generate Rl lattice configurations cji
according to selected value of ci

?

r

Create Rl GULP input files
for these Rl configurations

?

r

Run GULP for all Rl input files.

Compute average f l(ci) from results

?

r

���
HHH

HHH
���� no

yes

i < N

6

-

?

r

Stop

Figure 4.2: Flow chart of the file builder for geometry l, l = 1, 2
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As many atomistic states represent the same concentration vector and as be-
forehand it is not clear which of them are preferable, a file builder generates a
certain number Rl of different GULP input files (Rl is chosen dynamically, see
Section 5.2, with 20 ≤ Rl ≤ 50, where (f l(cji ))1≤j≤20 are always computed to
sample the distribution) each with an atomistic configuration cαi , 1 ≤ α ≤ Rl

corresponding to the selected concentration vector ci. For each input file, GULP
is invoked and the free energies f l(cαi ) are computed. Finally, the entry in the
table is defined by the arithmetic mean

f l(ci) :=

∑Rl

α=1 f
l(cαi )

Rl
, l = 1, 2.

The entire procedure is repeated for all ci, 1 ≤ i ≤ N to build the two data bases,
l = 1 for chalcopyrite and l = 2 for sphalerite. Fig. 4.2 above summarises the
essential steps of the algorithm. For fixed c, the found average values represent
the two minima f1(c) and f2(c) that are used to compute the tangent to χ in
the modified Allen-Cahn equation (4.5).

Even though this method works out nicely, it has one disadvantage. Since all
atoms are placed manually in the supercell (set up in accordance to the space
group), GULP cannot use the lattice symmetry to accelerate the computations.
Hence the calculations are time consuming. For the generated data base with
discrete c values with partitions M2 = M4 = 30, M3 = 40, the above calculations
took 6 weeks of computations on a SUN workstation cluster.

We want to comment on the logic of the file builder and on the entire GULP
approach. A supercell as a conglomerate of 3 subdivisions (=the unit cell) in
each space coordinate is generated, hence a collection of 27 unit cells.

The implicitly made assumptions of this GULP ansatz are hence:

• There are no interactions over more than 3 cells.

• The influence of impurities on the free energies are neglected.

• The lattice is in electric equilibrium. Electric potentials in the computation
of the free energy are not taken into account.

• It is assumed that the lattice structure changes from sphalerite to chalcopy-
rite in the way predicted above (i.e. there is no intermediate lattice state
with a different spatial geometry) or where other mechanisms (for instance
’wall pinning’ or polarons) play a role. More on this topic can be found in
the article [62].

• The heuristic potentials reflect the physical situation well enough. Eanharm

and quantum effects are small.

• Only vectors c that are stoichiometric concentrations w.r.t. the supercell
can be represented.

The last restriction is not very severe. There are 216 atoms within the 3× 3× 3
supercell of sphalerite and 648 atoms within the larger supercell of chalcopyrite.
Hence, c1 and c3 can for the supercell of sphalerite be resolved with 1/216 ≈ 0.46%
and with 1/648 ≈ 0.15% for the supercell of chalcopyrite. Finally, the supercell
geometry yields natural bounds for the concentrations, c1, c3 ≤ 54/216 = 1/4
and c4 ≤ 0.5.
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4.5 Molecular dynamics computations of the free en-

ergy

The principle of molecular dynamics (MD) computations is to set up a huge
ensemble of N atoms in a box (commonly a supercell consisting of 5× 5× 5 unit
cells), including start positions (ri(t = 0))1≤i≤N and momenta of all particles
depending on the prescribed temperature (see (4.19) below), defining the atom
interactions in terms of potentials, and then letting the system evolve.

In our application and based upon the analysis with GULP, no four-body poten-
tials are defined nor angle and dihedral contributions. The complete configura-
tional energy of the molecular system is therefore given by the formula

U(r1, . . . , rN ) :=

Nbond
∑

ibond=1

Ubond(ibond, r) +
N−1
∑

i=1

N
∑

j=i+1

Upair(i, j, |ri − rj |)

+
N−2
∑

i=1

N−1
∑

j=i+1

N
∑

l=j+1

U3body(i, j, l, ri, rj , rl) +
N
∑

i=1

Uext(i, ri, vi),

where Ubond is a heuristic potential for the chemical bonding energy, Upair and
U3body are pair- and three body potentials, and Uext represents an external field
(gravitational or magnetic). For the pair- and three body terms the GULP po-
tentials (4.11) and (P2) respectively (P5) are reused.

The new positions and velocities of the molecules are obtained by a simple forward
integration in time using a leap-frog algorithm. The velocities are defined at time
steps t+ 1

2△t and t− 1
2△t and the positions ri at t and t+△t.

The system temperature is defined by the Boltzmann law

T (t) =
N
∑

i=1

miv
2
i (t)

kB d̃
, (4.19)

where (mi)1≤i≤N are the masses of the atoms with velocities (vi)1≤i≤N and d̃
denotes the degrees of freedom, i.e. d̃ = 3N − 3 for the cubic box with periodic
boundary conditions.

In order to provide an isothermal situation, the so-called Berendsen thermostat is
used. Key of this approach is to scale the velocities according to Relation (4.19)
in order to satisfy the correct T . By this formalism, the total momentum is
conserved, but not the energy. Additionally, reflecting boundary conditions are
used at the boundary of the 5× 5× 5 supercell.

After a certain number of iteration steps in which the system evolves towards an
equilibrium, the state of the ensemble is read off. The free energy of the system
is available by summing up the momenta of all atoms in the cell:

F (t) = kBT (t) ln
(

N
∑

i=1

mi(t)vi(t)
)

.

Figure 4.3 illustrates the configuration of the MD-computations.

We can comment on this method. First of all, the number of atoms N of a
computation is restricted by computer capacities and the numerical effort grows
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t = 0 t = 8000 time steps

Figure 4.3: Ensemble of cubic ZnS with 500 S (yellow) and 500 Zn (gray) atoms
contained in a cube with 125 unit cells. Left at t = 0 and right after 8000 time
steps. The right picture also shows that the lattice layers differ slightly with atoms
having different positions and momenta.

exponentially with N . A typical range for N is 103 to 106 atoms. Hence, this
number is very far away from the actual number of atoms which is in the range
of the Avogadro number NA = 1023. Despite this gap the method gives in practice
surprisingly good results as long as T > 100◦K. For low temperatures close to
the zero point, quantum effects give large contributions and it is reasonable why
the method yields wrong results.

Beside the question of valid temperature ranges and the influence of quantum
mechanics there are two other main issues that should be clarified with regard to
MD simulations:

• If more than two atoms collide, there is no way to predict the velocities and
momenta of these atoms AFTER the collision. No reliable estimates are
known for the number of collisions of triples (quadruples, quintuples, . . . )
of atoms.

• Error estimates of the relative error (in particular of the free energy) as
a function of the number of atoms of the numerical computation do not
exist. The asymptotic approximation of the calculated free energy towards
a certain value as the number of atoms increases is only a necessity but of
course no proof of convergence.

4.6 Quantum mechanical computations

In order to approximately solve the Schrödinger equation, we will apply the local-
density approximation within the framework of density function theory, [43], [47],
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[57]. This is a generally applicable black box method and yields sufficiently pre-
cise results. Scattering theory would be an alternative, in particular the coupled
cluster method might ultimately lead to even better results. For the represen-
tation of the electron-atom-interactions the Troullier-Martins pseudopotentials,
[70], will be used. We give here a very brief sketch of the method, the theory
is developed more systematically (but unfortunately nowhere comprehensively!)
within the articles cited above.

We follow the well-known Born-Oppenheimer or adiabatic approximation that
assumes the atoms to have fixed positions (the mass of a nucleus is about 2000
times the mass of an electron) and solve the Schrödinger equation only for the
electrons. Even with this approximation, the task remains delicate.

The Hamiltonian of the Schrödinger equation is given by

H :=
∑

i

(

− ~
2

2m
△i −

∑

l

Zle
2

4πε0

1

|ri −Rl|
)

+
e2

4πε0

∑

ij

1

|ri − rj |

where l runs over all atoms, i over all electrons, Zl is the number of electrons of
atom l, Rl the position vector of atom l, ri the position vector of electron i, m
the electron mass and e the electron charge.

Let ψ = ψ(r, t) denote a wave function and E an energy. Solving the Schrödinger
equation consists in finding a solution to the energy balance equation

Hψ = Eψ

equipped with periodic boundary conditions. This equation can be solved exactly
only for one electron, otherwise the Hartree term causes problems. To find at
least approximate solutions to the Schrödinger equation, the following four main
steps are persued.

A: Density function theory (DFT)

In [47] it is shown that the total energy of an electron gas is uniquely determined
by the electron density. In [47] it is also shown how the multi-electron problem
can be mapped to a self-consistent system of equations for one electron, where all
electrons are non-interacting and moving in the potentials of all other electrons.

After introducing the electron density ̺(r) for electron position r,

∫

R3

̺(r)dr = N,

where N denotes the number of electrons, we have to solve

[

− ~

2m
△+ Vion(r) + VH(̺, r) + VXC(r)− εi

]

ψi(r) = 0. (4.20)

In this formulation, εi denotes the energy or an eigenvalue of the Hamiltonian,

VH(̺, r) := e2
∫

R3

̺(r)

|r − r′| dr
′
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is the electrostatic or Hartree potential, Vion the static electron-ion potential, for
an atom typically

Vion(r) :=

∫

R3

Z

r
̺(r)dr,

and the exchange and correlation energy is given by

VXC :=
δEXC(̺(r))

δ̺(r)
.

(The wave-function of a many-electron system is antisymmetric w.r.t. exchange
of two electrons due to the Pauli exclusion principle. This antisymmetry produces
a spatial separation between electrons with the same spin and thus reduces the
Coulomb energy of the electronic system. This energy reduction is the exchange
and correlation energy.)

It is worth to notice that up to the present day no precise theoretical justification
for the DFT exists. DFT was justified a posteriori by the remarkable computa-
tional results which often are only a few per cent off the measured values.

B: Local density approximation (LDA)

The LDA theory assumes that the exchange and correlation energy per electron
εXC(r) is purely local and equals the exchange and correlation energy per electron
of a homogeneous electron gas with the same density as the electron gas at point
r. Therefore

EXC(̺(r)) =

∫

R3

εXC(r)̺(r)dr

with εXC(r) = εhom
XC (̺(r)).

LDA theory provides one unique and well-defined global minimum of the energy
of a non-spin-polarised system of electrons. This suggests LDA to yield possibly
wrong results whenever more than one global minimum of the electronic energy
is present.

C: Radial symmetry and lattice periodicity

By Bloch’s theorem, [8], [28], the electronic wave functions in a periodic lattice
have the representation

ψi(r) =
∑

G

ci,G exp(i(k +G) · r) (4.21)

where G and k are reciprocal lattice vectors. Bloch’s theorem is nothing but the
solution formula for the wave equation by using Fourier theory and the periodicity
of the functions.

For a radially symmetric solution, the Kohn-Sham equations (4.20) in dimension-
less form become

[

− 1

2

d2

dr2
+
l(l + 1)

2r2
+ V (̺, r)

]

ψnl(r) = 0,

where V (̺, r) := −Z
r + VH(̺, r) + VXC(̺, r) and ψnl is the radially-symmetric

wave function of shell nl.
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By Bloch’s theorem, every electron wave function can be expanded in terms of a
countable family of plane-wave basis functions. By neglecting the wave functions
with kinetic energy above a given truncation level, one can retract to the case of
a finite-dimensional basis of wave functions.

D: Pseudopotentials for electron-ion-interaction

In order to dramatically decrease the needed basis functions and to increase the
order of convergence, pseudopotentials are introduced. The general idea is to
replace the all-electron potential that oscillates very rapidly close to the atom
core due to the strong ionic potential by a pseudopotential that is much weaker
in the core region r ≤ rc and identical to the original potential for r > rc, see
Fig. 4.4. Here, rc is a chosen core cutoff radius.

rc

Ψpseudo

Ψ

Z
r

Vpseudo

r

Figure 4.4: All-electron potential(solid line) and electronic pseudopotential
(dashed line)

Troullier-Martins pseudopotentials belong to the class of norm-conserving pseu-
dopotentials. These are characterised by the following five properties:

(a) The pseudo wavefunction is twice continuously differentiable and fulfills

lim
rց0

ψpseud
l (r) ≈ rl+1.

(b) ψpseud
l has the same eigenvalue as the all-electron wavefunction ψl.

(c) Pseudo wavefunction and all-electron wave function coincide outside the core
region:

ψpseud
l (εpseud

l , r) = ψnl(εnl, r) for r ≥ rc.

(d) The pseudo wave function is normalised,

∞
∫

0

|ψpseud
l (εpseud

l , r)|2dr =

∞
∫

0

|ψn,l(εn,l, r)|2dr = 1.

(e) The logarithmic derivatives (which act as boundary conditions for the numer-
ical computations) are the same for the all-electron wave function and the pseudo
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wave function:
d

dr
lnψpseud

l (εpseud
l , r) =

d

dr
lnψnl(εnl, r).

Additional to these properties, the Troullier-Martins pseudopotentials are char-
acterised by two further constraints, namely that all first derivatives of the
electron potential and of the pseudopotential coincide at r = rc and that
∂2

∂r2V
pseud(r)|r=0 = 0.

After the general discussion of the theoretical background, we will now focus
on the implementation details with the goal to compute essential properties of
sphalerite and chalcopyrite from quantum mechanics. The calculations are carried
out with ABINIT, [40], a program package developed and distributed by the
Université Catholique de Louvain (http://www.abinit.org).

After simple convergence tests, the energy cutoff ecut was set to 20Ha ≈ 544.23eV
(one has ecut = 1

2 [2π(k+Gmax)]
2, and Gmax is the largest reciprocal lattice vector

included in the Expansion (4.21) of the wave function) yielding a relative error
of 0.4% in the total energy. The macroscopic dielectric constant εdiel (a number
between 1 for a perfect insulator and 106 for metal) of ZnS is preset to 8.32,
the physical value found in literature. For the self-consistent energy minimisation
cycle within ABINIT, the conjugated gradient method is chosen. In order to
obtain satisfying results, the Brillouin zone is sampled with 182 k-points.

The following picture shows the binding energy for cubic ZnS as a function of the
lattice constant.
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Figure 4.5: Binding energy in eV for different lattice constants a and cubic ZnS

The minimal value −7.22eV is obtained at a = 5.317Å (the binding energy com-
puted by GULP for a = 5.419 is −7.676eV). A slight underestimate of the lattice
constant and an overestimate of the binding energy are typical of well-converged
local-density calculations.

Figure 4.6 displays the densities of state for cubic ZnS as a function of energy.
The densities of state are computed using 182 k-points to cover the reciprocal
lattice and with a tetrahedron method.
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Figure 4.6: Density of states vs. energy in Hartree (1Ha≈ 27.211eV) for ZnS

The computations for chalcopyrite are similar to those of ZnS. After convergence
studies the energy cutoff ecut was set to 30Ha ≈ 816.35eV resulting in a relative
error of 0.3%. Unfortunately, εdiel is unknown for chalcopyrite, so that for the first
computations of the relaxed geometry the ZnS-value is taken for chalcopyrite, too.
Numerical tests have shown the results for chalcopyrite to change by less than
0.1% for different values of εdiel. As in the case of sphalerite a good sampling of
the Brillouin zone is essential for the quality of the results. After some tests, the
value of 182 k-points appeared to be a reasonable compromise between numerical
costs and quality of the results.

Figure 4.7 displays the density of states for chalcopyrite. The minimal binding
energy −19.7eV is obtained at a = b = 5.061Å and c = 9.969Å. The binding
energy for chalcopyrite computed by GULP is −20.57eV . Comparing with the
lattice vectors computed by GULP, it appears probable that the constants a, b
and c computed by DFT are as in the case of ZnS slightly too small.
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Figure 4.7: Density of states vs. energy in Hartree for chalcopyrite
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There is no automatic procedure to compute the elastic constants Cij within
ABINIT (nor with any other quantum mechanical software package). Hopefully
this will change in the future.

In the sequel we develop and compare two algorithms to determine Cij . As ex-
plained above, the elastic constants are needed to gauge the interatomic poten-
tials within GULP. The elastic constants for sphalerite serve as comparison and
validation of the method.

I Computation of Cij by lattice deformations

This is the direct and seemingly most natural approach. We are going to exploit
the Cauchy-Born rule and apply a deformation to the lattice, determine the
energy difference between undeformed and deformed state (without initial lattice
relaxation!) and take advantage of the formulas

E =
1

2

∑

i,j,k,l

Cijklεijεkl,

εij =
1

2

(∂ui

∂xj
+
∂uj

∂xi

)

. (4.22)

Here, ε denotes the strain, E the deformation energy and u = (u1, u2, u3) a
displacement. The computations have to be redone for deformations with respect
to all three coordinate axis. In the next step, we rewrite Cijkl by remembering the
Voigt notation (which takes advantage of the symmetries of Cijkl), where pairs
of indices are replaced by single indices:

11→ 1, 22→ 2, 33→ 3,
12, 21→ 6, 13, 31→ 5, 23, 32→ 4.

This goes along with a reformulation of the strain tensor as a vector,

ε =

(

ε11 ε12
ε21 ε22

)

→





ε11
ε22
ε12



 , if D = 2,

ε =





ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



 →

















ε11
ε22
ε33
ε12
ε13
ε23

















, if D = 3.

The final entries of Cij are determined by the lattice geometry, see [56]. The
elastic properties of cubic ZnS are determined by 3 parameters,

C11 = C22 = C33, C44 = C55 = C66, C21 = C13 = C23

and the elastic properties of tetragonal chalcopyrite by 6 values,

C11 = C22, C12, C33, C13 = C23, C44 = C55, C66. (4.23)

All other Cij are zero. Using the symmetry of Cij , this defines C completely.
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The quality of the results is increased by interpolation formulas, i.e. 3 deforma-
tions are used to estimate the response of the energy functional w.r.t. variations
in each direction. We spare the description of the (simple) details.

This method has the disadvantage that the lattice symmetry is lost after applying
a displacement. Therefore the computations consume much time and computer
memory and tend to have a low precision. Furthermore several runs have to be
done for all the deformations. (The response function feature of future ABINIT
versions will probably overcome this.) The second method to compute Cij is
therefore preferable.

II Computation of Cij via acoustical modes

This method is the numerical analogon of the way how elastic constants are
determined in experiment.

Travelling waves in crystals (as waves in general) can be represented by

u(r, t) = ũ exp(i(k · r − ωt)). (4.24)

Here, u is the atomic elongation, ũ = (ũ1, ũ2, ũ3) is the amplitude vector, k =
(k1, k2, k3) the wave vector, r = (r1, r2, r3) the position vector and ω the angular
frequency.

With ABINIT we compute dispersion curves, i.e. curves that describe the re-
lationship k 7→ ω(k). More precisely we estimate with interpolation formulas
the slopes ω′(0) of the acoustic phonon dispersion curves at the origin (acoustic
phonon modes in contrast to optical phonon modes fulfill ω(k = 0) = 0). Using
Representation (4.24) in (4.22) yields

εlj(t) =
i

2

(

ul(t)kj + uj(t)kl

)

=
i

2

(

ũlkj + ũjkl

)

exp(i(k · r − ωt)).

From Newton’s equation of motion

̺∂2
t un = −̺ω2un

we get

̺ω2ũn =
∑

jlm

Cnjlmkjklũm

or
̺ω2ũ = M(k) · ũ.

The values on the left hand side are provided by ABINIT. Suitable k-points can
be gained by densifying the k-point mesh (with dsifkpt). It remains to compute
the matrix M which is straightforward using the Voigt notation again. For the
cubic ZnS lattice we find

M(k)=





C11k
2
1+C44(k

2
2+k2

3) (C12+C44)k1k2 (C12+C44)k1k3

(C12+C44)k1k2 C11k
2
2+C44(k

2
1+k2

3) (C12+C44)k2k3

(C12+C44)k1k3 (C12+C44)k2k3 C11k
2
3+C44(k

2
1+k2

2)





and for tetragonal chalcopyrite we find

M(k)=





C11k
2
1+C66k

2
2+C44k

2
3 (C12+C66)k1k2 (C13+C44)k1k3

(C12+C66)k1k2 C66k
2
1 + C11k

2
2+C44k

2
3 C44k2k3

(C13+C44)k1k3 C44k2k3 C44(k
2
1+k2

2)+C33k
2
3



 .
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The following Table 4.5 shows the results of the computations for ZnS and extends
the results of Table 4.1. As before, EXP1 refers to the experimental results in
[54], EXP2 to [14], PS2 to GULP results, QM1 is the quantum mechanical data
where Cij have been computed by Method I, QM2 quantum mechanical data
with Cij gained by Method II. As can be seen, Method II gives superior results
(and is significantly faster). Therefore, Method II was used to generate reference
values for Cij and chalcopyrite and Table 4.3 was fitted with these results. B0

denotes the bulk modulus.

EXP1 EXP2 QM1 QM2 P2

a/Å 5.41 5.41 5.32 5.32 5.403

V/Å
3

158.29 158.29 150.36 150.36 157.77

B0/GPa 76.6 - 82.8 82.8 71.55

C11/GPa 9.42 9.76 9.77 9.63 9.37

C12/GPa 5.68 5.9 6.02 5.89 6.16

C44/GPa 4.36 4.51 4.91 4.87 4.03

εstat 7.9 - - - 7.21

εhf 5.8 - - - 4.56

Table 4.5: Comparison of experimental and calculated data for ZnS

LDA tends to overbind and produces elastic constants larger than experiment.
This might be corrected by the generalised gradient approach (GGA).

In Table 4.6, the results for chalcopyrite are listed. The computed lattice con-
stants are about 6% off the experimental values. Probably, the Troullier-Martins
pseudopotentials are too soft.

The found elastic constants were used in Section 4.4 to fit the GULP potentials.

Exp2 QM P5

a/Å 5.2864 5.061 5.59

b/Å 5.2864 5.061 5.59

c/Å 10.4102 9.969 10.70

V/Å
3

145.46 127.67 167.73

C11/GPa - 17.83 18.12

C12/GPa - 5.81 5.64

C13/GPa - 6.27 6.59

C33/GPa - 13.15 14.25

C44/GPa - 13.19 18.93

C66/GPa - 4.93 8.70

Table 4.6: Comparison of experimental/calculated data for chalcopyrite

77



78



Chapter 5

Numerical Simulations

5.1 Verification of the algorithms

We present several tests for the correctness of the computational methods.

5.1.1 Two simple analytic tests for Model I

For all program runs in two space dimensions, let Ω := [0, 2] × [0, 1] ⊂ R
2. In

order to test the finite element method and the solution to System (2.29), we
think up a vector (c, χ) = (c1, c2, c3, c4, χ) : ΩT0 → R that is to become a solution
and plug this sought up solution into the equations.

We want to assume for (2.29) Lij = δij , and set artificially b1 = b2 := 1. The last
implies

ω(c, χ) = W ′(χ),

as a look to (2.28) reveals.

Let K1, . . . ,K4 be positive real numbers with (K1,K2,K3,K4) ∈ Σ (according
to Definition (3.3) this means 3

2K1 +K2 +K3 +K4 = 1
2). We set

c20 :≡ K2, c30 :≡ K3, c40 :≡ K4,

χ0 :≡ 1

2
.

With

κ :=
K2

2

K1K3

and due to ω(χ) = W ′(1
2) = 0 we find at once that

(c1, c2, c3, c4, χ) ≡ (K1,K2,K3,K4,
1

2
) (5.1)

solves (2.29) with the above initial values and choices on L, κ and b1, b2, as

µi ≡
1

2

(∂f1

∂ci
+
∂f2

∂ci

)

(K1,K2,K3,K4) =: Mi in ΩT0

for suitable constants Mi ∈ R and where the boundary data gi and hi are of
course set to gi ≡ Ki and hi ≡Mi.
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It was found that the error between the computed and the predicted solution (5.1)
in ‖ ·‖L2 and ‖ ·‖L∞ is exactly 0 for all refinement levels. This is not surprising as
the interpolation error for constant values is 0 independent of the level of numeric
resolution.

This first test mainly checks the algorithms to compute the reaction terms, but the
computational routines for the fluxes, i.e. for calculating div(L∇µ) and △χ, are
not adequately tested. Therefore, as second test case, we once more set Lij = δij ,
b1 = b2 := 1, choose r(c, χ) := (w, 0, 0, 0) with a function w = w(x, t) to be
determined later and verify the code by artificially replacing Eq. (2.29c) by

µj = cj , 1 ≤ j ≤ 4

which is the same as writing

F (c, χ) :=

∫

Ω

(1

2

4
∑

j=1

c2j +
γ

2
|∇χ|2 +W (χ)

)

instead of the correct free energy. This leads to a decoupled system of the standard
elliptic equation

△c1 = w in ΩT0 , (5.2)

an ordinary heat equation for c̃ := (c2, c3, c4) and standard Allen-Cahn equation.
For (5.2) in two space dimensions with (x, y) ∈ Ω we prescribe the solution
c1,ref(x, y) = x(2 − x)y(1 − y) which fulfills c1,ref = 0 on ∂Ω, whence g1 := 0 is
the first Dirichlet condition. The choice of c1,ref implies

w = w(x, y) = 2x(x− 2) + 2y(y − 1)

as right hand side of (5.2). The solution vector c̃ of the heat equations is compared
with the on R

D analytic solution

c̃ref(ξ, t) =
1

(4πt)−D/2
e−|ξ|2/(4t) ∗ c0(ξ)

gained for instance by Fourier transformation for given initial values c0. Since
c̃ is the analytic solution for the whole of R

2 and as Ω is bounded here, we set
c̃ = (g2, g3, g4) := uref on ∂Ω.

Table 5.1 shows the errors ‖c1−c1,ref‖L2(Ω), ‖c1−c1,ref‖H1,2(Ω) and ‖c̃−c̃ref‖L∞(L2)

for both the elliptic equation and the three heat equations where T0 := 1.

Refinement Triangles Vertices ‖c1 − c1,ref‖L2 ‖c1 − c1,ref‖H1 ‖c̃ − c̃ref‖L∞(L2)

2 16 15 2.1 · 10−2 8.3 · 10−2 2.4 · 10−2

4 64 45 6.8 · 10−3 4.4 · 10−2 7.2 · 10−3

6 256 153 1.8 · 10−3 2.2 · 10−2 2.1 · 10−3

8 1024 561 4.6 · 10−4 1.1 · 10−3 4.8 · 10−4

10 4096 2145 1.1 · 10−4 5.6 · 10−3 1.16 · 10−4

12 16384 8385 2.9 · 10−5 2.7 · 10−3 2.97 · 10−5

14 65536 33153 7.3 · 10−6 1.4 · 10−3 7.35 · 10−6

Table 5.1: Computed errors of the test problem for different refinement levels

The results of the Allen-Cahn equation can be checked by the well-known behavior
of the solution (nucleation and interface motion by mean curvature).
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The second test can be used as a benchmark to analyse the behavior of the
Newton-Krylov solver and to adjust the parameters. The critical value is nit

which determines the number of iterations for solving the linear system inside
the loop of the Newton solver. We will not discuss the quite uninteresting details
but remark that the linear GMRES is only ’conditionally convergent’. This means
that if one chooses nit too large, the algorithm will diverge. This is not surprising
as the convergence of the linear GMRES does not rely on the Banach fixed point
theorem. A thorough discussion of this topic can be found in [21], [45].

5.1.2 Analysis of the different parts of the entropy

We compare for certain reference configurations the results of the harmonic ap-
proximation and of MD simulations. In particular this provides useful information
how well the system entropy is captured. GULP can only compute the harmonic
part of the system entropy. The anharmonic vibrational contributions to the sys-
tem entropy are not captured.

For T < 1◦K we will find that both methods yield almost identical results (even
though due to quantum mechanical effects both are wrong). One part of this
section serves hence as a direct validation of GULP and DLPOLY. The used
interatomic potentials are not verified by this comparison because they are the
same in both applications (taken from Table 4.2 and Table 4.4).

Parameters of MD simulations: (Keywords of DLPOLY)
Cubic boundary conditions (imcon 1); overall 4000 steps, 2000 calibration steps;
use of Berendsen thermostat with thermostat relaxation time 0.1ps and baro-
stat relaxation time 2ps (ensemble npt berendsen 0.1 2); atom velocities are
rescaled in every step (scale 1); ewald precision 10−6; Verlet neighbour width
1Å (delr width 1Å); timestep 0.001 ps; pressure 0 kbar; cutoff 12Å;
the interatomic potentials are defined by Table 4.2.

Sphalerite T a = b = c(Å) F (eV ) FVref
(eV )

GULP 1◦K 5.4243 −133.519 −836.58
500◦C 5.4412 −135.37 −840.32
700◦C 5.4473 −136.20 −842.61

DLPOLY 0◦K 5.4243 −133.52 −836.59
500◦C 5.4409 −132.72 −823.99
700◦C 5.4493 −132.29 −817.53

Chalcopyrite T a = b(Å) c(Å) F (eV ) FVref
(eV )

GULP 1◦K 5.577 10.68 −138.491 −832.63
500◦C 5.598 10.701 −139.95 −832.08
700◦C 5.606 10.705 −140.635 −835.85

DLPOLY 0◦K 5.577 10.68 −138.493 −832.65
500◦C 5.602 10.708 −139.09 −827.83
700◦C 5.61 10.73 −139.37 −825.41

Table 5.2: Lattice geometry and free energy for GULP and DLPOLY

The results of DLPOLY are converted from data of a 5 × 5 × 5 supercell. The
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original data for sphalerite and T = 0◦K is a = 27.1215Å (edgelength of the
supercell) and F = −16690 eV (total free energy of the supercell). For the last

column, F is reconverted to Vref = 1000Å
3

thereby taking the volume of the
computed unit cell into account.

As can be seen, the agreement for T = 0◦K (GULP only accepts T > 0◦K for
computations of the free energy) is extremely good when there is (almost) no
entropic contribution to f . Further tests were made for selected atomistic con-
figurations that arise during the phase transition from sphalerite to chalcopyrite
always with a negligable difference in the energy. We omit the presentation of the
figures. This test is the for-mentioned validation of GULP and DLPOLY against
each other in a special case.

Having another look at Table 5.2, there is also bad news. We see that the energy
difference between GULP and DLPOLY data increases as T becomes larger.
We observe that this difference exceeds for T = 700◦C the driving force of the
segregation process as computed by GULP which is the energy difference between
the two phases.

Conclusion: Numerical experiments based on MD simulations can show a different
behavior of the solution as simulations based on the harmonic approximation!

5.2 The dependence of GULP data on atomistic lat-

tice configurations

For given lattice geometry l = 1, 2 we want to analyse the variation of the free
energies as computed by GULP for Rl atomistic configurations that all represent
one concentration vector. The aim is to find an empirical heuristic to control Rl.

This analysis is closely related to Section 4.4. Let ci be the i-th selected entry in
the list of concentration vectors which is kept fixed in the following. Firstly, we
compute admissible atom configurations cji , 1 ≤ j ≤ 20 of a 3 × 3 × 3 supercell
(for both the lattice structures of sphalerite(l = 2) and of chalcopyrite(l = 1))
that represent ci, then invoke GULP to compute the free energies f l(cji ), l = 1, 2.

It is possible that cji = cki for j 6= k and j, k ∈ {1, 2, . . . , 20}, for instance if only
one atomistic configuration exists to represent ci.

The values (f l(cji ))1≤j≤20 are used to sample the distribution. We calculate the
mean value (or expectation value)

f l :=
1

20

20
∑

j=1

f l(cji )

and the variance

sl :=

√

∑20
j=1(f

1(cji )− f l)
2)

20
.

Figure 5.1 shows the fraction sl/f l for l = 2 of the sample (f2(cji ))1≤j≤20 for
different configurations of the sphalerite-supercell. s2/f2 is plotted as a function
of two arguments, the number of Cu atoms on the x-axis and the number of Fe
atoms on the y-axis, both numbers between 0 and 54. As there are overall 108
positions which are not occupied by S atoms, the remaining are still filled by Zn.
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The lattice order of sphalerite is located at the origin (x = y = 0) of the diagram,
the lattice order of chalcopyrite is placed at the right corner (x = y = 54). For
these two geometries, the deviation of f2 is exactly zero because only one atom
configuration may be chosen.
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Figure 5.1: Deviation of GULP data for ZnS as a function of lattice configuration

From Figure 5.1 we learn that the deviation of f2 grows considerably stronger in
x-direction than in y-direction indicating that the Cu atoms have a much larger
impact on the geometry of the sphalerite-supercell than Fe has.

The variation of f1 is not displayed, but it is very similar to Figure 5.1 with
larger values as the superstructure of chalcopyrite has almost doubled its length
in the z-direction.

As the perspective in Figure 5.1 may be misleading, two cuts through the graph
are displayed in Figure 5.2. The first is parallel to the y-axis for x = 45 Cu atoms,
the second parallel to the x-axis for y = 45 Fe atoms.

The information of the sample with 20 computed free energies is now used to
estimate Rl. We assume that Xl := (f l(cji ))j is normally distributed where we

put σl := sl for the variance of Xl. The transformed distribution Ul := Xl−f l

σl

has mean value 0 and variance 1. Now, for a given number ̺ > 0 we determine a
confidence interval of length ̺ which contains f with a probability of at least 95%.
Let Φ denote the (tabulated) function of the normal distribution with variance
1 and mean value 0. In order to fulfill the 95% niveau and due to symmetry we
choose u0 := 1.96 (we have Φ(u0) ≈ 0.975). From the formula

|Xl − f l| ≤
̺

2
= u0

σ√
Rl

which implies

Rl :=
4u2

0σ
2

̺2
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Figure 5.2: Cut through deviation data for x = 45 Cu atoms as a function of Fe
atoms (left) and for y = 45 Fe atoms as a function of Cu atoms (right)

we infer the setting

Rl := min
{

50,
⌈4u2

0s
2

̺2

⌉}

.

The cutoff value of 50 is introduced to bound the computational effort.

5.3 Numerical results for Model I

Now we want to illustrate the behavior of the model (2.29) equipped with the free
energy (2.24). In all numerical simulations, the underlying uniform triangulation
of Ω as well as the time step △t were not adapted during the computation. The
simulations were performed in two space dimensions. System (2.29) was solved
in its dimensional form as explained in Section 2.5.

t = 0d t = 90d t = 134d

Figure 5.3: Diffusion of Cu+. The density of the level sets indicates the steepness
of the copper gradient. At t = 0, the initial datum falls from 0.2 at the boundary
to 0.001 in the center.

Physical Parameters: Ω = [0, 0.2m] × [0, 0.1m] (i.e. D = 2), T = 500◦C,
k = 1, κ = 0.06, γ = 3 · 10−9m, DCu = 2.6 · 10−4m/s, DFe = 1.26 · 10−4m/s,
DZn = 1.85 · 10−7m/s, α1 = 0.555, α2 = 0.66, α3 = 0.635, α4 = 0.64.

Triangulation Data: 6521 points, 12800 triangles, h = 10−8.

General Parameters: ǫGMRES = △t = 0.004, η = 10−8, b1 = 1, b2 = 0.8.

Initial Conditions: c3 ≡ 0.001, c2 ≡ 0.245; χ a small random deviation of 0.5.
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Boundary conditions: ∂νc1 = 0, ∂νc2 = 0, c3 = 0.2 and ∂νχ = 0 on ∂Ω.

t = 90d t = 115d t = 134d

t = 40d t = 55d t = 72d

t = 0d t = 14d t = 25d

Figure 5.4: Time evolution of the chalcopyrite phases. The first picture for t = 0d
shows the random distribution of χ around 0.5. Phase formation takes place
until for t = 134d the chalcopyrite phases concentrate near the boundary as a
consequence of the copper gradient and the diffusion of copper into the crystal.

Some parameters like b1, b2 cannot be obtained from physical considerations.
They are chosen in such a way that conditions (2.49), (3.35) and (2.50) hold and
hence ∂tF (c(t), χ(t)) ≤ 0.

Figure 5.5: Typical plot of Fe3+. The graph of Fe3+ grows slightly towards the
center and is convex. The graph of c1 is very flat due to the maximum content
of Fe3+ on the iron concentration. The display is magnified, the maximum of c1
being 0.05 and the minimum 0.001.
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During the computation, the graph of Fe3+ is flattening even more. The graph
of Zn behaves opposite to that of Cu+ and decreases near the boundary. The
concentration of Fe3+ +Fe2+ is not displayed, it is a perfect constant in time and
space. Hence, Fig. 5.5 also tells us about the distribution of the free electrons as
predicted by Model I.

The diffusivity constants were taken from [55]. From the measurements we learn
the relationship DZn ≈ DFe ≈ 103 ·DCu.

The presented phenomenon depends critically upon the time scales, the diffusion
parameter DCu of Cu and the relaxation parameter τ of the Allen-Cahn equation.

5.4 Extension of Model I to linear elasticity

In this section we shall discuss a generalisation of Model (2.29) that includes
linear elasticity.

Let Ω be a reference configuration of the crystal. We denote by

Φ(t) : Ω→ R
D for t > 0

the time dependent deformation of the crystal. In particular we postulate

Φ ∈ H1,D+δ

for some δ > 0 to guarantee that DΦ exists and that Φ is invertible with
det(DΦ) > 0. We assume the deformations to be small and use a standard lin-
earised theory, the displacement u given by the formula

Φ(t) := Id + u(t). (5.3)

With the help of u the local strain can be written as

ε(u) :=
1

2
(∇u+∇ut)

or equivalently

εij(u) =
1

2
(∂iuj + ∂jui).

The elastic properties of the crystal are determined by the symmetric positive
definite tensor C. Using the reduced vector representation

ε =

(

ε11 ε12
ε12 ε22

)

≈ (ε11, ε22, ε13)
t for D = 2 (5.4)

and

ε =





ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



 ≈ (ε11, ε22, ε33, ε12, ε13, ε23)
t for D = 3, (5.5)

we may write for the cubic lattice geometry of sphalerite

C2ε =





C2
11 C1

12 0
C2

12 C1
11 0

0 0 C2
44









ε11
ε22
ε12



 for D = 2 (5.6)
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and

C2ε =

















C2
11 C2

12 C2
12 0 . . . 0

C2
12 C2

11 C2
12 0 0

C2
12 C2

12 C2
11 0 0

0 . . . 0 C2
44 0 0

0 0 C2
44 0

0 . . . . . . . . . 0 C2
44

































ε11
ε22
ε33
ε12
ε13
ε23

















for D = 3 (5.7)

and this is the form of Cε commonly used in literature. The last two equations are
valid for sphalerite. The analogous formula for C1 and the tetragonal chalcopyrite
is supplied in (4.23).

Due to a well-known work by Eshelby [30], we write the elastic energy of phase l
in the form

Ql(u, c4) :=
1

2
(ε(u)− ε(c4)) : C l(ε(u)− ε(c4)), l = 1, 2. (5.8)

In this formula it is assumed that the energy of the unstressed solid at rest is
determined by the concentration c4 of Zn2+. This can be motivated by considering
the replacement mechanism during the reorganisation of the lattice geometry from
sphalerite to chalcopyrite and from mineralogical measurements, [54], [66].

In (5.8), C1 is defined by Eq. (5.6) or (5.7). Next we assume that the elastic energy
is the convex combination of the elastic energies of both lattice geometries:

Q(ε, c4, χ) := χQ1(ε, c4) + (1− χ)Q2(ε, c4).

The crystal is in elastic equilibrium if for the stress σ = ∂εQ(ε, c4, χ)

div σ = div((χC1 + (1− χ)C2)(ε(u)− ε(c4))) = 0. (5.9)

Eq. (5.9) is coupled with the natural boundary conditions

∂νσ = 0 on ∂Ω. (5.10)

With the knowledge of the local strain we are in the position to find a more
precise formula for the free energy of the single phases. For the free energy of the
bulk phase we write

fl(c, u) = bl
4
∑

i=1

ci ln ci +Ql(ε(u), c4), l = 1, 2. (5.11)

In Section 2.3 the approximation (
∑

i αici)
2 instead of Ql(ε, c4) for the elastic

part of the free energy had been used.

For convenience it is assumed that the minimal strain ε(c4) is a multiple of the
identity:

ε(c4) = ̺c4Id (5.12)

with the lattice misfit ̺.

The remaining modifications to the model are straightforward. The density of the
mixing entropy sM is defined as in Section 2.3. To avoid ambiguities we denote
by s the entropy density and by σ the stress. Due to the thermodynamic relation
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f = e − Ts, with the concentration vector c = (c1, c2, c3, c4), the free energy
density of the system has the form (2.8).

For the numerical treatment, it is suitable to eliminate the equation for c4. For
the computation of µj we remember c4 = 1

2 − 3
2c1 − c2 − c3 and write with the

chain rule
∂Q(ε, c4)

∂cj
=
∂Q(ε, c4)

∂c4

∂c4
∂cj

, 1 ≤ j ≤ 3.

A simple calculation yields

∂Q(ε, c4)

∂c4
= −(χC1 + (1− χ)C2)(ε(u)− ε(c4)) :

∂ε

∂c4
= −σ :

∂ε

∂c4
.

For ε(c4) = ̺c4Id we find

∂Q(ε, c4, χ)

∂c4
= −̺ tr(σ).

Replacing (2.9), for ω we make the ansatz

ω(c, χ) = lnχ− ln(1− χ)− χ+m(c)−
∑

ij

ξijεijχ. (5.13)

This is a bilinear coupling between strain and order parameter. The numbers ξij
are determined by the symmetry group and cannot be chosen arbitrarily, see [64].

Finally, for the resulting model, we obtain the coupled equations (2.29), (5.13),
(5.9), (5.10), where Relation (2.8) determines the free energy density f .

When numerically solving the equations one faces the problem that Eq. (5.9)
determines uniquely the strain ε, but not the displacement u. This is due to the
fact that the differential operator ε(u) has the non-trivial kernel

ker(ε) = {f : R
D → R

D | f(x) = a ∧ x+ b; a, b ∈ R
D}.

To overcome this difficulty, in each step of GMRES one projects to the orthogonal
complement of the matrix corresponding to Eq. (5.9).

In order to be able to show existence of solutions to this model, the following
additional assumptions are needed:

(A6) The elastic energy Q ∈ C1(RD×D × R× R; R) fulfills

(A6.1) Q(ε, c4, χ) only depends on the symmetric part of ε ∈ R
D×D, i.e.

Q(ε, c4, χ) = Q((ε)t, c4, χ) for all ε ∈ R
D×D, all c4 ∈ R and all χ ∈ R.

(A6.2) ∂εQ(·, c4, χ) is strongly monotone uniformly in c4 and χ, i.e. there exists
a constant C2 > 0 such that for all symmetric ε1, ε2 ∈ R

D×D

(∂εQ(ε1, c4, χ)−∂εQ(ε2, c4, χ)) : (ε1−ε2) ≥ C2|ε1−ε2|2 for all c4 ∈ R, χ ∈ R.

(A6.3) There exists a constant C3 > 0 such that for all symmetric ε ∈ R
D×D, all

0 < c4 < 1 and all 0 ≤ χ ≤ 1

|Q(ε, c4, χ)| ≤ C3(|ε|2 + |c4|2 + 1),

|∂c4Q(ε, c4, χ)| ≤ C3(|ε|2 + |c4|2 + 1),

|∂εQ(ε, c4, χ)| ≤ C3(|ε|+ |c4|+ 1).
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Assumption (A4.2) is extended by

(A4.2)+ The lattice misfit ̺ > 0 in (5.12) is sufficiently large. This guarantees
tr(σ) < 0 and hence

∫

Ω

(∂Q

∂c1
− 2

∂Q

∂c2
+
∂Q

∂c3

)

=

∫

Ω

̺

2
tr(σ) < 0.

Combining the results of Chapter 3 and the crucial estimates of [38], the proof
of the following theorem is now straightforward:

Theorem 5.1: (Global existence and uniqueness for the extended model)
Let the assumptions of Section 3.9 and (A6) hold. Then there exists a unique weak
solution (c, µ, χ) of Formulation (3.1) with logarithmic free energy and elasticity
such that

(i) c ∈ C0, 1
4 ([0, T0]; L

2(Ω; R4)),
(ii) ∂tc ∈ L2(0, T0; (H1

0 (Ω; R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L

2(Ω)),
(iv) ∂tχ ∈ L2(0, T0; (H1

0 (Ω))′),
(v) there exists a p > 2 such that u ∈ L∞(, 0, T ; H1,p(Ω)),
(vi) there exists a q > 1 such that ln cj ∈ Lq(ΩT0) for 1 ≤ j ≤ 4,

lnχ, ln(1− χ) ∈ L2(ΩT0) and in particular 0 < χ, cj < 1 a.e.

After stating the theory, we have a look at the numerical solutions. First, we
consider the time evolution of the chalcopyrite phases in the new model, see
Fig. 5.6. The results are similar to those without elasticity, we still observe an
accumulation of chalcopyrite phases near ∂Ω as a consequence of the penetrating
Cu+. But now the phases are slightly stretched.

Physical Parameters: Ω = [0, 0.2m] × [0, 0.1m], T = 500◦C, κ = 0.06, k = 1,
γ = 3·10−9m, DCu = 2.6·10−4ms−1, DFe = 1.26·10−4ms−1, DZn = 1.85·10−7ms−1,
C11 = 9.42GPa, C12 = 5.68GPa, C44 = 4.36GPa.

Triangulation Data: 6521 points, 12800 triangles, h = 10−8.

General Parameters: ǫGMRES = △t = 0.004, η = 10−8, b1 = 1, b2 = 0.8.

Initial Conditions: c3≡0.001, c2≡0.245; ~u≡0; χ a random deviation of 0.5.

Boundary conditions: ∂νc1 = ∂νc2 = ∂νχ = ∂νS = 0 and c3 = 0.2 on ∂Ω.

t = 0d t = 72d t = 134d

Figure 5.6: Time evolution of the chalcopyrite phases. Initial values are a random
distribution of χ with small deviation around 0.5.
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Figure 5.7: Typical plot of the local strain u, here for t = 72d. The length of the
vector u mainly depends on the gradient of c4 and is hence largest near ∂Ω.

To illustrate the stretching effect, Fig. 5.8 displays a subsection of Ω and shows the
influence of elasticity to the shape of the chalcopyrite phase. The two pictures are
taken at identical time from two calculations with identical physical parameters
and initial data.

Figure 5.8: Enlargement of a section located at the left bottom of ∂Ω. The straight
line is part of the boundary. Left the shape of the chalcopyrite phase without
elasticity (Model I), right with elasticity.

The following picture illustrates the effect of elasticity in more clarity.

Figure 5.9: Comparison of the shape of the transition layer between sphalerite
and chalcopyrite. Left without elasticity, right with elasticity. In the background,
the underlying triangulation is rendered.
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5.5 Finite element computations with the tabulated

free energy

In the following we present some finite-element computations in 2D. The free
energy is computed beforehand by the harmonic approximation. The results will
depend on the number of sub-divisions M2 = M4 = 30, M3 = 40 of the free
energy data bases w.r.t. cj , see Section 4.2, on the cutoff value 50 that bounds
the maximal number of generated atomistic configurations, see Section 5.2, and
finally on the number of 27 unit cells that form the supercell. As mentioned
before, larger values for these parameters would be desirable.

The following Fig. 5.10 illustrates the development of the phase parameter χ for
Model II and free energy gained by GULP computations. The main effect is that
χ flips over from the sphalerite to the chalcopyrite phase as Cu penetrates the
domain.

t = 0d t = 42d

t = 85d t = 130d

Figure 5.10: Evolution of χ for Model III with constant surface energy and free
energy computed by the harmonic approximation

The plots of Figure 5.10 do not show the delicate interplay between chalcopyrite
phases and sphalerite phases close to the boundary as observed in nature (docu-
mented by Figure 1.1) and in experiment, but are quite regular. The complicated
shape of the chalcopyrite phases close to the crystal boundary is a consequence
of a competition between surface energy and volumetric free energy. This effect is
captured neither by Model II nor by Model III. Even if we calculated the surface
energy correctly for the different configurations that occur in the model (instead
of setting it to the constant

∫

Ω γ|∇χ|2 for Model II respectively to
∫

Ω γ|∇χ| for
Model III) the situation sketched in Figure 5.10 would not change significantly.
This is due to a perfect symmetry with respect to the circular level sets of c3.
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Rather, the impurities play an important role as nucleation centers.

In order to demonstrate this effect, we make the following test. We decompose Ω
in two disjoint subsets, Ω := Ω1 ∪Ω2, where Ω1, Ω2 are invariant w.r.t. time, and
set artificially χ :≡ 1 in Ω1 for t ≥ 0. The set Ω1 is not simply connected and
consists of randomly chosen elements of the triangulation Th that do not touch
∂Ω. The elements in Ω1 will play the role of impurities. In case of Model III, the
mathematical formulation reads now:

Find for t ≥ 0 the vector c = (c2, c3, c4) and χ such that in Ω ⊂ R
D for t > 0

∂tci = div





4
∑

j=2

Lij∇µj



 , i = 2, 3, 4,

µi = χ
∂f1

∂ci
(c) + (1− χ)

∂f2

∂ci
(c), i = 2, 3, 4,

F (c, χ) = min
χ̃∈Ṽ

F (c, χ̃),

Ṽ := {χ̃ ∈ BV (Ω) | χ̃(1− χ̃) = 0 a.e. in Ω, χ = 1 a.e. in Ω1}

and for t = 0, x ∈ Ω

ci(x, 0) = c0i(x), i = 2, 3, 4; χ(x, 0) = χ0(x)

and for t > 0, x ∈ ∂Ω

∂νχ = 0,

ci = gi, 2 ≤ i ≤ 4,

µi = hi, 2 ≤ i ≤ 4.

In order to have a consistent formulation, we demand χ0 ≡ 1 in Ω1.

Figure 5.11 shows the evolution of the phase parameter for this modification. Due
to the constraint χ := 1 in Ω1, those elements Ti ∈ Th with Ti ∩ Ω1 6= ∅ can flip
over more easily because this shortens the interface between sphalerite phase and
chalcopyrite phase. This introduces unsymmetry into the model.

As is of course well understood, the resolution of the computations is rather
poor in comparison to the size of impurities in experiment and in nature. The
computations only serve as a demonstration of the principle.

Finally we want to formulate a list of fundamental differences between Model I
with order-disorder logarithmic free energy and Model II, Model III.

• In Model I the initial datum χ0 of χ significantly governs the behavior of
χ for t > 0. Depending upon sgn(χ− 0.5), the solution will tend to one of
the local minima of f . By m(c3) it is only controlled which of the minima
is more favorable.

• Once Model I has reached a local minimum of the free energy, the solution
stays in this minimum forever. This means in particular that no flipping
from sphalerite phase to chalcopyrite phase is possible in Model I. Changes
of χ during the late stages of the computation to 5.3 are only due to diffusion
(with flux γ∇χ). This also puts new light on the initial random datum χ0

in Fig. 5.3. When starting with the physically correct initial datum χ0 ≈ 0
for sphalerite, no chalcopyrite could ever form!
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t = 0d

t = 19d

t = 45d

Figure 5.11: Evolution of χ for Model III with constant surface energy, free energy
computed by the harmonic approximation, and ’Impurities’

• For certain values of the copper concentration c3, with Model IIl and
Model II there will be no formation of chalcopyrite whereas some quan-
tity of chalcopyrite will always form for Model I due to the random initial
values of χ (but a much smaller amount than sphalerite).

It remains to explain how the minimisation process corresponding to Eq. (2.32)
is implemented numerically. This part logically belongs to Chapter 4, but can be
better understood after the applications with Figure 5.11 and Figure 5.10 have
been introduced.
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5.6 Free energy minimisation for Model III

The algorithm presented here is a simple variant of the Fast Marching Method,
extensively discussed in [67]. We want to assume that at t = 0 a transition layer
Γ(t = 0) between sphalerite phase and chalcopyrite phase exists.

This transition layer is implicitly given as zero level set of a function Φ : ΩT0 → R,

Γ(t) = {x ∈ Ω | Φ(x, t) = 0}.

If v ∈ R denotes the speed of the front Γ, the front motion can be formulated
within the framework of hyperbolic conservation laws,

Φs + v|∇Φ| = 0. (5.14)

A new time variable s ≥ 0 is introduced here because the propagation of Γ has
to be done for each time step t of the full system (2.31) as an inner loop. The
mapping s 7→ Φ(·, s) defines a time evolution independent of t.

The original fast marching method consists in restricting to a small band of tri-
angles belonging to the triangulation Th of Ω close to Γ(t) with notes (xj)j∈J and
updating Φ|xj

in ’upwind direction’ from smaller values of Φ to larger values of Φ.
This goes along with the direction of the characteristics of the hyperbolic prob-
lem (5.14), hence with the way information is transported in the corresponding
physical problem.

There is one simplification to the original fast marching method at hand here
because the diffusion induced segregation process is not time-reversal. This means
that an element Ti ∈ Th once it has switched from sphalerite to chalcopyrite never
flips back at later time. Hence, the front speed v is always positive and the small
band close to Γ can be placed in only one direction of the two normal directions
±~n to Γ. The minimisation problem (2.32) is now solved by propagating Γ for
s > 0 due to the Hamilton-Jacobi equation (5.14) and flipping an element Ti

adjacent to Γ whenever this decreases the free energy F defined in Eq. (2.34).

The algorithm for every discrete time step tk = k△t > 0 consists hence of the
following steps:

1. Set Γ̃(s = 0) := Γ(tk−1), where Γ(tk−1) denotes either the front computed
at the end of time step tk−1 or is given as the starting front at t = 0.
For the computations of Figure 5.10 we set Γ(t = 0) := ∂Ω and for the
computations of Figure 5.11 we have Γ(t = 0) := ∂Ω ∪ ∂Ω1.

2. Evolve Γ̃(s) as explained above for small constant front speed v > 0 by
flipping an element Ti whenever this decreases F .

3. Set Γ(tk) := lims→∞ Γ̃(s).

For the computations of Figure 5.10 without ’impurities’ where a simple front
starting from ∂Ω moves inward it would be possible to define Γ̃(s = 0) in terms
of a suitable level set of c3. The difficulty with this variant is that such a level
set of c3 first has to be projected to the triangulation Th.
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Chapter 6

Discussion of the Results and

Outlook

The first main topic of the present work is an analysis of the nature of reactions
in the context of phase change problems and the correlation of reactions to the
free energy estimate or the second law of thermodynamics. It could be shown how
common formulas to describe reactions have to be modified in order to account
for the introduced order parameter. In particular Condition (2.17) plays a key
role to characterise reactions.

The treatment of the reaction term in the existence proof is quite instructive.
In the semi-implicit scheme (3.7), in particular in (3.7a), the reaction term is
treated explicitly. The proof of the a-priori estimate Lemma 3.3, see Eq. (3.20),
indicates that this is the canonical formulation of the problem and goes along
with the estimation

∫

Ω

∑

i riµi ≤ 0 and the structure expressed in Formula (2.17).
Hence there is a natural connection between the free energy estimate (or entropy
estimate in the non-isothermal case) and the semi-implicit time discretisation.
We remark that the reaction term cannot be written as minimum of an energy
functional (hence the explicit treatment in the time-discrete scheme). It rather
fulfills a sattle point condition w.r.t. concentration and chemical potential.

Beside the reaction term, these other aspects of Model I deserve a remark:

• The free energy f and the function m(c) were gained theoretically and have
no direct connection to the sphalerite-chalcopyrite-system.

• There is no analysis of micro structure.

• The control mechanism to the phase parameter only enables us to repre-
sent the generation of chalcopyrite in the early stages of the simulation. A
flipping over from sphalerite phase to chalcopyrite phase is not possible for
the model. This goes along with unphysical initial values for χ.

• The set of variables d with di = ci for i 6= 2 and d2 = c1 + c2, as introduced
in page 26, is the most natural way to formulate the mathematical system.
The reason is that for fixed d2 = c1 + c2 the variable d1 = c1 also describes
the free electrons. Nevertheless it was decided to prefer Formulation (2.29),
because it allows to handle more easily the investigations of existence and
uniqueness as well as the numerical simulations. A transformation between
the two formulations is of course trivial.
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The introduction of
∫

Ω

λ|∇c|2

as a term in the free energy functional in the beginning of Chapter 3 is necessary
to estimate 1

2h‖c− cm−1 − hrm−1‖L, as Estimate (3.4) underlines. Without this
additional surface term, Lemma 3.1 will be wrong, i.e. one cannot proof the
existence of a minimiser with the methods of Chapter 3, at least as long as
one considers solutions in H1,2(Ω) and not in L2(Ω). For the case of solutions
c ∈ L2(Ω) the techniques developed in [1] are well suited.

The smallness condition (A4.2) on λ indicates that the approximation scheme of
Chapter 3 is unphysical. Probably, the reaction term should be modified in order
to account for

∫

Ω λ|∇c|2 in the free energy. The same difficulty is encountered in
Section 2.8 where it is shown that constant, i.e. non-solution-dependent, surface
energy terms as for instance

∫

Ω

(1

2
Λ∇c : ∇c+

γ

2
|∇χ|2

)

(6.1)

are wrong in the context of reactive systems. It is mandatory that the interfacial
energy must depend on χ and c, even though it is common practice in simpler
models to introduce constant coefficients in the surface energy.

Solution-dependent tensors Λ are not new but are commonly used to model
anisotropic diffusion, i.e. γ(χ) = γ0 cos(α), where γ0 > 0 is a constant and α
denotes the angle between ∇χ 6= 0 and a preferred direction, e.g. a fixed canon-
ical basis vector of R

D. In the physical derivation of the standard segregation
models, e.g. the Cahn-Hilliard model [22], the surface tensor is set up correctly
as non-constant quantity.

As second main issue of this work it was tried to simulate diffusion induced
segregation closer to reality. As could be seen, the simulations were able to capture
some of the properties of DIS, but several open questions remain.

Let us collect here the main physical restrictions and simplifications that Model I
and Model II have in common.

• The diffusivities of Cu+, Zn2+ and of the Fe-ions are assumed to be constant.

• Impurities by other elements like Indium or Selen are not taken into account.

• The attachment of S2− ions and the growth of the crystal surface is not
incorporated.

A realistic representation of the diffusion process appears to be rather difficult.
The diffusing Cu+ dramatically perturbes the regular lattice structure of spha-
lerite. Hence, diffusion will depend on additional parameters as the lattice geom-
etry on the micro scale. A way to overcome this might be to find a description
of the mechanism on the smaller scales and then to apply homogenisation tech-
niques.

Little is known about the actual influence of impurities, but it is believed that
they play a crucial role as nucleation centers in the early stages of segregation.
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The mathematical models of homogeneous nucleation are not yet satisfying and
further research in this direction (e.g. by analysing many-particle-models of Ising
type) will hopefully yield some progress.

For the modification of Model I with linear elasticity as discussed in Section 5.4 it
should be mentioned that instead of Condition (5.10) there should be a jump of
∂nσ along the transition layer in accordance with the Gibbs-Thomson law (this
is well known for the Stefan problem with kinetic undercooling).

It follows a list of problems that arise with regard to Model II.

• MD and harmonic computations can only compute states in electronic equi-
librium. Consequently, for the computations of Chapter 5, electric equilib-
rium is assumed. Quantum effects are neglected for the generation of the
free energy data base as quantum mechanical computations are very time
consuming.

• The harmonic approximation does not capture well the vibrational parts
of the entropy. As the analysis of Section 5.1.2 reveals, the free energies
computed with the harmonic approximation and with MD simulations may
differ significantly and this effect increases as T increases. With the com-
puter power available today it does not seem likely to use MD simulations
on a large scale in the way the harmonic approximation is used in this work.

• The static and high frequency dielectric constants εstat and εhf as well as the
elastic constants of chalcopyrite are not known from experiment. At least
the elastic parameters are needed to fit the GULP potentials. Therefore, the
GULP potentials had to be fitted to quantum mechanical computations in
the hope that this provides satisfying data until experimental results are at
hand.

• The numerical resolution of the finite element approach is quite poor when
considering the spatial scale needed to satisfyingly resolve transition layers,
nucleation and impurities. This situation will not change in the near future.

• Identical intermolecular potentials were used for GULP and DLPOLY.

• There exists no a-priori justification of the density function theory used
in Section 4.6. The method can only be justified a-posteriori. No absolute
bounds exist for the errors of the free energy approximations gained by
quantum mechanical/ab-initio computations.

The problem of resolving the electron-electron interaction is already in-
herent in the Schrödinger equation itself which cannot be solved for three
or more particles. Hartree-Fock models (with corrections of the correlation
energy) do not seem to improve the situation.

• For practical implementation reasons, the numerical effort is limited and
three artificial restrictions are introduced: the size of the supercell ansatz in
Section 4.4, the number of subdivisions Mj for the free energy databases in
Section 4.2 and the maximal number of computed atomistic configurations
per concentration vector (here 50) in Section 5.2. It is not known how the
solution depends on these choices.
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• Assumptions are made on the geometry of the lattice during the phase
transition.

• In the Allen-Cahn equation, there appears a term

α(ln(χ)− ln(1− χ))

in order to guarantee 0 < χ < 1 in ΩT0 . Every positive α > 0 can be used,
but χ will depend on this arbitrary parameter. It is not possible to avoid
this logarithmic term in order to ensure 0 < χ < 1 as long as an evolution
equation for χ is used. Cutting off the solution if χ < εc or χ > 1 − εc is
no alternative, since this gives unrealistic kinks in the graph of χ and the
choice of the cut level εc strongly and artificially influences the solution.
Therefore, choosing functions of bounded variation for χ and searching the
minimum of the free energy, see (2.32), is preferable.

• In the Allen-Cahn equation a constant surface energy
∫

Ω |γ∇χ|2 is em-
ployed. Similarly,

∫

Ω γ|∇χ| in Equation (2.32) defines a constant surface
energy. The correct physical surface energy FS is not a constant but de-
pends on c and the atomistic configurations. In order to correctly compute
FS , pairs of atomistic configurations for both lattice geometries have to be
plugged in and the surface energy has to be computed by averaging or by
reasoning which configurations are unphysical.

• The numerical results for Model I, Model II and Model III stress that a
satisfying theory for nucleation is needed.

One might hope to incorporate stochastic terms to the free energy of Model I
and thereby introduce a way for the model to change (at least with low proba-
bility) from one phase to the other. This might be also a way towards a better
understanding of nucleation. But so far, work in this direction has not been very
promising, see [25].

The presented approach for chalcopyrite disease within sphalerite can certainly
be transferred to simulate other phenomena of solid state physics. Yet, for metals,
quantum mechanical effects cannot be neglected and the harmonic approximation
will fail and yield wrong numbers.
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Appendix A

Notations

Symbol Meaning Introduced
————————————————————————————————————————–
T temperature p.1
t time, t ≥ 0 p.5
x coordinate of a point in physical space p.5
Ω ⊂ R

D bounded Lipschitz domain, representing the crystal p.5
T0 stop time of simulation p.5
ΩT0 cylinder in space time, ΩT0 := Ω× (0, T0) ⊂ R

D+1 p.5
c1 concentration of Fe3+ p.5
c2 concentration of Fe2+(Model I)/overall Fe concentration p.5, p.14
c3 concentration of Cu+ p.5
c4 concentration of Zn2+ p.5
c5 vacancy concentration p.5, p.6
ce electron concentration p.5
cS (constant) sulphur centration p.5
c concentration vector, c = (c1, . . . , c4) p.10
Σ simplex of feasible concentration vectors c p.26
di, 1 ≤ i ≤ 4 natural variables for the reaction term p.10
L = (Lij)1≤i,j≤4 positive definite mobility tensor p.5
µi chemical potential of i-th substance p.6
µ vector of chemical potentials, µ = (µ1, . . . , µ4) p.6

∇µ ∇µ = ( ∂µi

∂xj
)1≤i≤4,1≤j≤D p.6

∂ia ∂ia = ∂a
∂xi
, 1 ≤ i ≤ D for a function a : R

D → R p.16

J = L∇µ mass flux p.6

divj divergence of a function j : R
D → R, divj =

∑D
i=1 ∂ij p.5

△a Laplacian of a function a : R
D → R, △a =

∑D
i=1

∂2a
∂x2

i

p.19

~ν unit outer normal to ∂Ω p.19

a · b =
∑D

i=1 aibi inner product of vectors a, b p.19
At transpose of a linear mapping A p.87
A : B inner product, A : B := tr(AtB) =

∑

ij AijBij p.23

diag(λi) tensor with λi ∈ R as diagonal entries p.23
fl theoretical free energy density of phase l, l = 1, 2 p.6
f l(c) free energy density of phase l taken from data-base p.15
f l(c, χ) decomposition of f in convex (f1) and sublinear part (f2) p.28
f free energy density p.7
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F total free energy, F =
∫

Ω f p.11
sM density of mixing entropy p.7
s entropy density p.7
e internal energy density p.7
γ square of thickness of boundary chalcopyrite-sphalerite p.7
W double-well potential in definition of sM p.7
αi energy coefficient related to the ion radius of substance i p.6
βl

i factors in definition of f l, l = 1, 2 p.6
bl normalisation of coefficients βl

i, l = 1, 2 p.11
bχ factor in free energy, bχ = χb1 + (1− χ)b2 p.11
α > 0 additive constant in the driving force for χ p.12
χ volume fraction of chalcopyrite phase p.7
τ time scale adjustment in the Allen-Cahn equation p.7
ω driving force in the Allen-Cahn equation p.7, p.28
ri reaction terms p.9
k, κk reaction rates of Fe-reaction p.9
c0i initial values for ci p.13
gi Dirichlet data for ci p.13
hi Dirichlet data for µi p.13
Q(c) quadratic approximation for elastic energy p.19
V V := {χ ∈ BV (Ω) | χ(1− χ) = 0 a.e. in Ω} p.15
Å length scale Angstrøm, 1Å = 10−10m p.18
~ Planck’s constant, ~ ≈ 6.63 · 10−34Js, p.59
J Joule p.18
eV electron volt, 1eV ≈ 1.60 · 10−19J p.18
Ha Hartree, 1Ha ≈ 27.211eV p.74
ε0 electric field constant, ε0 ≈ 8.85 · 10−12AsV −1m−1 p.58
kB Boltzmann constant, kB ≈ 1, 38 · 10−23JK−1 p.6
σ1, σ2, σ3 constants defining the sup/inf of ci in ΩT0 p.20
C, const generic constants that can change from line to line p.26
λ small parameter for surface energy term in F p.26
λ0 maximal value for λ with ∂tF (c(t), χ(t)) ≤ 0 p.29
X1, X2 solution spaces p.26

Y space of test functions, Y := H1,2
0 (Ω; R4) p.26

D dual of Y , D := H−1,2(Ω) p.27
rm−1 abbreviation for reaction term, rm−1 = r(cm−1, χm−1) p.28
G Green’s operator, inverse of −div(L∇µ) in a weak sense p.27
(·, ·)L2 inner product in L2(Ω), (v1, v2)L2 :=

∫

Ω v1(x)v2(x) dx p.27
(·, ·)L L scalar product, (v1, v2)L := (L∇Gv1,∇Gv2)L2 p.27

‖·‖L L-norm, ‖v‖L :=
√

(v, v)L p.27
η small parameter for GMRES p.54
δij Kronecker delta, δij = 1 for i = j, δij = 0 for i 6= j p.55
Mj dimension of free energy data base w.r.t. cj p.56

Rl no. of atomistic samples representing cji to compute f l(ci) p.66
εstat static dielectric constant p.61
εhf high-frequency dielectric constant p.61
Ω1 subset of Ω preset to chalcopyrite phase p.92
Ω2 subset of Ω without ’impurities’, Ω2 := Ω\Ω1 p.92
DZn diffusivity constant of Zn p.86
DFe diffusivity constant of Fe p.86
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DCu diffusivity constant of Cu p.86
β parameter in the Boltzmann distribution, β = (kBT )−1 p.59
Q elastic energy p.87
σ stress tensor p.87
u displacement vector u = (u1, . . . , uD) p.86
ε (linearised) strain tensor, ε(u) = 1

2(∇u+∇ut) p.75, p.87
a, b, c lattice constants of unit cell p.61
Cij elastic constants p.61
V volume of unit cell p.61
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Appendix B

Mathematical Symbols

B.1 Function spaces

Let Ω ⊂ R
d be open, 1 ≤ d ≤ 3, 1 ≤ p ≤ ∞, m ∈ N0, and let Ld denote the

Lebesgue measure in R
d. We define the following spaces:

1. C∞
0 (Ω) denotes the space of infinitely often differentiable functions with

compact support in Ω.

2. Cm(Ω) is the space of m-times continuously differentiable functions over Ω
such that Dαf can be continuously extended for |α| ≤ m to Ω. Cm(Ω) is a
Banach space with the norm

‖f‖Cm(Ω) :=
∑

|α|≤m

sup
x∈Ω
|Dαf(x)|.

3. Lp(Ω) denotes the space of Lebesgue measurable and p-integrable functions
over Ω, equipped with the norm

‖f‖Lp(Ω) :=
(

∫

Ω

|f(x)|p dx
) 1

p
, p <∞,

‖f‖L∞(Ω) := ess sup
x∈Ω

|f(x)| := inf
Ld(N)=0

sup
x∈Ω\N

|f(x)|, p =∞.

4. Hm,p(Ω) is introduced as the Sobolev space of functions in Lp(Ω) that
possess weak derivatives up to order m in Lp(Ω). Hm,p(Ω) is a Banach
space. For p <∞ the corresponding norm is

‖f‖Hm,p(Ω) :=
(

m
∑

k=0

‖Dkf‖Lp(Ω)

) 1
p

where

‖Dkf‖pLp(Ω) :=
∑

|α|≤k

‖Dαf‖pLp(Ω), Dαf :=
∂|α|f

∏d
i=1 ∂

αi

i

for α ∈ N
d
0.
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5. With Hm,p
0 (Ω), 1 ≤ p < ∞ we denote the closure of C∞

0 (Ω) in Hm,p(Ω)
w.r.t. ‖ ·‖Hm,p . Frequently we write Hm(Ω) instead of Hm,2(Ω) and Hm

0 (Ω)
for Hm,2

0 (Ω).

6. For T0 > 0 and functions u : Ω× (0, T0)→ R we define Lp(0, T0; H
q(Ω)) as

the set of functions for which the expression

‖u‖Lp(0,T0; Hq) :=





T0
∫

0

‖u(s)‖pHq(Ω) ds





1/p

if p <∞,

‖u‖L∞(0,T0; Hq) := ess sup
t∈(0,T0)

‖u(t)‖Hq(Ω) if p =∞

is finite.

7. For a function u ∈ L1(Ω) let

‖Du‖ := sup
{

∫

Ω

u divϕ
∣

∣

∣ ϕ = (ϕ1, . . . , ϕd) ∈ C∞
0 (Ω,Rd), ‖ϕ‖∞,Ω ≤ 1

}

and define
‖u‖BV (Ω) := ‖u‖L1(Ω) + ‖Du‖.

A function of bounded variation is now characterised by ‖u‖BV (Ω) <∞.

Alternatively, u ∈ BV (Ω) if and only if there exist (signed) Radon measures
µ1, . . . , µd in Ω such that |Dµi|(Ω) <∞ and

∫

Rd

uDiϕ = −
∫

Rd

ϕdµi ∀ϕ ∈ C∞
0 (Ω).

Hence, the partial derivatives of BV-functions are measures with finite total
variation.

Additional definitions and background knowledge concerning the spaces just in-
troduced can for instance be found in [4], [76], [34].

B.2 Vector- and tensor notations

Let a and b be vectors. a⊗ b, the tensor product of vectors a and b is the tensor
defined by the equality (a⊗b) :c = (b·c)a for all vectors c. For a matrix A = (Aij)ij

let At := (Aji)ij be the transposed of A.

With ∂j := ∂
∂xj

we denote the j-th partial derivative w.r.t. coordinate j. Diver-

gence, gradient and Laplace operator of a scalar field χ are denoted by ∇χ, divχ
and △χ. For a vector field u(x) let ∇u(x) be the tensor with entries (∂iuj)ij ,
i=line index, j=column index. Let A = Aij and B = Bij be two tensor fields.
The divergence of A is the vector with components

∑

j ∂jAij and A : B is the
scalar function defined by

∑

ij AijBji.

The derivative of a scalar function f is denoted by f ′, the Fréchet derivative of a
field u(x) by Du(x).
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