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Abstract

The tensor-structured methods developed recently for the accurate calcula-
tion of the Hartree and the non-local exchange operators have been applied
successfully to the ab initio numerical solution of the Hartree-Fock equation
for some molecules. In the present work, we show that the rank-structured
representation can be gainfully applied to the accurate approximation of the
electron density of large Aluminium clusters. We consider the Tucker-type
decomposition of the electron density of certain Aluminium clusters origi-
nating from finite element calculations in the framework of the orbital-free
density functional theory. Numerical investigations of the Tucker approxi-
mation of the corresponding electron density reveal the exponential decay
of the approximation error with respect to the Tucker rank. The result-
ing low-rank tensor representation reduces dramatically the storage needs
and the computational complexity of the consequent tensor operations on
the electron density. As main result, the rank of the Tucker approxima-
tion for the accurate representation of the electron density is small and only
weakly dependent on the system size for the systems studied here. This
shows good promise for resolving the electronic structure of materials using
tensor-structured techniques.
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1. Introduction

In this article we are concerned with the accurate and efficient represen-
tation of the electronic structure of large, non-periodic systems with hun-
dreds or thousands of atoms. Density functional theory (DFT) as formu-
lated by Hohenberg, Kohn and Sham [12, 20] is widely used to compute the
ground state properties and electronic structure for a wide range of materi-
als. Although the ground state properties of any material system are only a
function of the electron density, the functional representation of the kinetic
energy of non-interacting electrons is not known explicitly in terms of the
electron density. This makes a direct computation of ground state properties
in terms of the electron density inaccessible. This problem is circumvented
with the Kohn-Sham approach (KSDFT) where the ground state properties
are computed by solving for the wave-functions of a non-interacting system
of electrons in a mean field in a self-consistent manner. The complexity
associated with the computation of many wavefunctions in a self-consistent
manner in the Kohn-Sham approach restricts the size of material systems in
most cases to a few hundred atoms. Recently, there have been many efforts
towards developing explicit functional representations for the approximate
kinetic energy of non-interacting electrons in terms of the electron density
[28, 29]. These approximations which do not require the computations of
wavefunctions (or orbitals) constitute the orbital-free density functional the-
ory (OFDFT). The reduced computational complexity of orbital-free density-
functional theory makes the computation of the electronic-structure of larger
material systems possible that are not otherwise accessible by the Kohn-Sham
approach to density-functional theory. We note that orbital-free approxima-
tions to density functional theory are well-developed for material systems
with an electronic structure close to a free-electron gas (simple metals, Alu-
minium, etc.), but their accuracy in material systems with ionic or covalent
bonding is still not satisfactory and this is an active area of research.

In the past, most density functional theory calculations have either used
plane-wave basis functions (for solid-state calculations, cf., e. g., [22]) or

2



atom-centered atomic orbitals or Gaussian type basis functions (for non-
periodic systems, cf., e. g., [11]). More recently, finite elements are becoming
a popular basis set for the computation of the electronic-structure of mate-
rials, especially in non-periodic systems [8, 9, 24, 26]. The adaptive nature
of the basis set, the ease of considering complex geometries and boundary
conditions, the local nature of the basis that allows for an efficient parallel im-
plementation are some of the attractive features of finite elements. Although
finite elements are better suited for calculations on non-periodic systems in
comparison to other commonly-used basis sets like plane-waves or Gaussian
basis functions, the number of finite elements required to achieve chemical
accuracy (0.1 eV/atom) is quite large. The size of material systems acces-
sible by a finite element basis where all atoms are accounted for is a few
thousand atoms in OFDFT and on the order of a hundred atoms in KSDFT
[8, 26]. However, many interesting material properties, especially those in-
volving defects, occur in much larger systems with millions of atoms which
poses a big challenge in materials science. To this end there is a great need to
develop appropriate representations for the electronic structure that reduce
the computational complexity and the limitations on the accessible sizes of
material systems.

Low-rank tensor representations of the multi-dimensional data based on
the canonical and Tucker models [27] have been initially considered in signal
processing and computer science, see [4, 5, 21] and references therein. Recent
tensor-structured methods [17, 17, 10, 16, 18, 19, 14] reduce dramatically the
complexity of the numerical evaluation of the multivariate functions and op-
erators in R

d, d ≥ 3. Note that conventional numerical methods like the
classical finite element method (FEM) have limitations due to their expo-
nential scaling in dimension d. The algebraically separable tensor approach
proved to be particularly useful for the numerical treatment of 3D problems in
electronic structure calculations. In this regard we mention tensor-structured
algorithms for the calculation of the Hartree and non-local exchange opera-
tors in the Hartree-Fock equation [18, 14].

The appealing perspective of the tensor-structured methods lies in the
possibility of the grid-based evaluation of the integral operators in R

d, d ≥ 3,
with linear scaling in the one-dimension grid size n, see [14, 15, 18]. In terms
of conventional estimation for 3D problems by volume size Nvol = n3, the
tensor-structured operations are of sublinear complexity O(N 1/3

vol ).
The present paper is a first step towards applying the tensor-structured

algorithms for the OFDFT model. We consider the Tucker approximation to
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the electron density of the Aluminium atomic clusters originating from the
finite element calculations in the framework of OFDFT [8]. After interpolat-
ing the results of the finite element simulations onto the fine enough uniform
3D Cartesian grid, the multigrid accelerated Tucker decomposition method
[18] is applied to find the algebraically separable tensor-product approxima-
tion of the original 3D tensor as a sum of rank-1 elementary tensors. These
tensors can be used as the basis functions in the same way as the discretized
Gaussians are used in [18, 14] for the tensor-structured evaluation of the mul-
tidimensional convolution integrals. One of the goals of the present paper
is to show the existence of the algebraically separable basis of a sufficiently
small rank for the electron density of large Aluminium clusters.

Our numerical experiments demonstrate the exponential decay of the
Tucker decomposition error of the electron density with respect to the Tucker
rank. Hence, the initial 3D tensor representing the electron density of an Alu-
minium cluster on a n× n× n grid with sufficiently large n can be approx-
imated in a separable tensor format using a small number r3 (with r ≪ n)
of basis functions built from the respective Tucker orthogonal matrices. The
storage cost of this representation is (r3 + 3rn) ≪ n3. Our numerical ex-
amples show that the accuracy of the FE approximation of the considered
Aluminium clusters can be achieved with rather small Tucker rank; r ∼ 10
for most test cases considered. The orthogonal vectors of the Tucker decom-
position could then be used as the problem-adaptive global basis functions
instead of the finite elements.

The results of this investigation suggest that the Tucker rank r is only
weakly dependent on the size of Aluminum cluster when varying sizes of the
Aluminum clusters with repeating face-centered cubic (FCC) unit cells—
1× 1× 1 FCC unit cell to 5× 5× 5 FCC unit cells—are analyzed. Further,
we observe that a small Tucker rank r ∼ 10 is sufficient for approximating
the electron density of these systems. This can be explained by the fact that
r characterizes the smoothness properties of the represented function [17]
(here the electron density), independent of the size of the discrete system.
As more stringent tests, we further considered a system comprising of a single
vacancy in a 5×5×5 Aluminum cluster, as well as a system comprising of 10
vacancies and 10 Lithium substitutional atoms placed at random in a 5×5×5
Aluminum cluster. While the required rank of the Tucker approximation
increased with system complexity, a Tucker rank of r = 20 is still observed
to be sufficient for these more complex systems. We remark that the Tucker
rank increases with increasing perturbations of periodic systems, and has
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been reported in previous studies [14, 17].
This article is organised in the following way. We begin in Section 2 by

the presentation of a real-space formulation of the orbital free density func-
tional theory and discuss the finite element discretization (we refer to [8] for
a more comprehensive description). In Section 3 we recall a brief description
of the canonical and Tucker-type approximations and the algorithm for the
numerical Tucker decomposition [4, 17] and mention some features of the
tensor-structured methods. In Section 4 we apply the Tucker model to data
from finite element simulations of Aluminium clusters using OFDFT. We ob-
serve exponential convergence of the Tucker-type approximation with respect
to the Tucker rank and find a dramatic reduction of the required storage for
approximating the electron density. In addition we find that the absolute
approximation error of the respective decomposition is in the range of the
initial accuracy of the finite element scheme for the considered Aluminium
clusters. We end with a critical discussion and an outlook.

2. Orbital-free density functional theory: Real-space formulation
and finite element discretization

Let N denote the number of electrons and M the number of atoms in
a charge neutral system. The ground state energy in DFT is given by (see,
e.g., [7, 23])

E(̺,R) = Ts(̺) + Exc(̺) + EH(̺) + Eext(̺,R) + Ezz(R), (1)

where ̺ denotes the electron density such that
∫

Ω

̺(x) dx = N,

and R = [R1, . . . ,RM ] is the position vector of the nuclei. The term Ts

denotes the kinetic energy of non-interacting electrons. A typical ansatz in
OFDFT is the Thomas-Fermi-von Weizsäcker (TFW) functional, given by

Ts(̺) = CF

∫

Ω

̺5/3(x) dx+
λ

8

∫

Ω

|∇̺(x)|2

̺(x)
dx

for a constant CF = 3
10
(3π2)2/3, a parameter λ > 0, and Ω contains the

compact support of ̺. We note that non-local corrections to the TFW func-
tional have also been proposed and we refer to [28, 29] for more details.
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We also note that numerical investigations over the past decade have shown
that orbital-free approximations of the kinetic energy are sufficiently accu-
rate for material systems whose electronic structure is close to free electron
gas, e. g. simple metals and Aluminium. However, these approximations fail
to produce reasonable accuracy when the bonding is covalent or ionic.

The functional Excrepresents the exchange and correlation energy. Within
the framework of local density approximation (LDA), [2], [25], it is given by

Exc(̺) =

∫

Ω

εxc(̺(x))̺(x) dx,

and the exchange and correlation energy per electron is defined by

εx(̺) = −
3

4

( 3

π

)1/3

̺1/3,

εc(̺) =

{ γ
1+β1

√
rs+β2rs

if rs ≥ 1,

A ln rs + B + Crs ln rs +Drs if rs < 1,

for rs = ( 3
4π̺

)1/3 and γ, β1, β2, A, B, C and D are constants. We note
that these constants are not material dependent, with the exception that
their values are slightly different for materials which are unpolarised and
polarised.

For the complete definition of equation (1), we still need to introduce
the electrostatic interactions. EH is the Hartree energy or the electrostatic
interaction energy between the electrons, Eext is the electrostatic interaction
energy between electrons and nuclei, and Ezz is the repulsive nucleus-nucleus
interaction energy. They are given by

EH(̺) =
1

2

∫

Ω

∫

Ω

̺(x)̺(y)

|x− y|
dx dy,

Eext(̺,R) =
M
∑

I=1

∫

Ω

ZI

|x−RI |
̺(x) dx,

Ezz(R) =
1

2

M
∑

I=1

M
∑

J=1,J 6=I

ZIZJ

|RI −RJ |
,

where ZI < 0 is the value of the nuclear charge of the I-th atom. We note
that it is conventional to treat electron density to be positive and nuclear
charges to be negative in electronic structure calculations.
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We remark that, in the framework of orbital-free DFT using TFW kinetic
energy functionals, the various energy components are local except for the
electrostatic interactions. However, we note that the electrostatic interac-
tions are convolutions with a 1

|x| kernel, which is the Green’s function for the
Laplace operator. With this observation, the electrostatic interaction energy
can be reformulated in a local form as the following variational problem:

1

2

∫

Ω

∫

Ω

̺(x)̺(y)

|x− y|
dxdy+

∫

Ω

∫

Ω

̺(x)b(y;R)

|x− y|
dxdy+

1

2

∫

Ω

∫

Ω

b(x;R)b(y;R)

|x− y|
dxdy

= − inf
φ∈H1

0
(Ω)

{

1

8π

∫

|∇φ(x)|2dx−

∫

(̺(x) + b(x;R))φ(x)dx

}

, (2)

where φ denotes a trial function for the electrostatic potential of the system
of charges, and b(x;R) =

∑

I ZIδ(x−RI) with δ(x−RI) representing the reg-
ularized nuclear charges, which, in pseudopotential calculations, represents a
nuclear charge distribution corresponding to a pseudopotential. We remark
that the left hand side of equation (2) differs from the sum of electrostatic
terms by the self energy of the nuclei, which is an inconsequential constant
that goes along with the choice of the pseudopotential.

The ground state electron density is determined by minimizing the energy
with respect to the electron density ̺ under the constraints ̺ ≥ 0 and

∫

Ω
̺ =

N . The constraint ̺ ≥ 0 is introduced through the substitution ̺ = u2, and
the problem of determining the ground state electron density and energy for
fixed positions of nuclei is given by the saddle point problem

min
u∈H1

0
(Ω)

max
φ∈H1

0
(Ω)

L(φ, u,R) subject to

∫

Ω

u2dx = N, (3)

where the Lagrangian L(φ, u,R) is given by

L(φ, u,R) =
λ

2

∫

Ω

|∇u(x)|2dx−
1

8π

∫

Ω

|∇φ(x)|2dx+ CF

∫

Ω

u10/3(x)dx

+

∫

Ω

u2(x)εxc(u
2(x))dx+

∫

Ω

(u2(x) + b(x;R))φ(x)dx.

The equation (3) describes the ground state properties of a material system
in the OFDFT framework as a local variational formulation in real-space.
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Thus, a finite element basis set which respects this local structure is a natural
choice for the discretization. Further, finite element basis functions allow
for arbitrary boundary conditions and consideration of complex geometries,
unlike more structured basis functions like plane-waves. The local nature
of the finite elements also aids in an efficient parallel implementation of the
calculation, which is especially important for electronic structure calculations
that are computationally demanding, both in terms of computing cycles as
well as memory requirements. If Th denotes the finite element triangulation
of the domain Ω, and Xh denotes the subspace spanned by the corresponding
finite element basis functions that becomes increasingly dense in H1

0 (Ω), the
saddle point problem given by equation (3) reduces to a constrained saddle
point problem given by

inf
uh∈Xh

sup
φh∈Xh

L(φh, uh,R) subject to

∫

(uh(x))2dx = N. (4)

We refer to [8] for a comprehensive discussion on the mathematical prop-
erties of the finite element discretization in equation (4), the numerical im-
plementation of the method, and computations of the electronic structure
of Aluminium clusters of varying sizes—from 14 atoms to a few thousand
atoms.

3. Rank-structured representation of the full-size tensors

This section recalls the general ideas and some basic definitions on the ten-
sor product algorithms given in [4, 5, 21] which have been developed further
towards the tensor-structured methods for the problems of numerical analy-
sis in higher dimensions [17, 18, 19, 14]. The numerical examples considered
in the latter references include, in particular, the efficient 3D tensor-product
convolution with the Newton kernel and accurate numerical evaluation of the
non-local integral operators in electronic structure calculations.

A real tensor of order d is a multidimensional array whose elements are
referred to by an index set I = I1 × . . .× Id,

A = [ai1...id : iℓ ∈ Iℓ] ∈ R
I , Iℓ = {1, . . . , nℓ}, ℓ = 1, . . . , d. (5)

The tensor A is an element of the tensor-product linear space Vn = ⊗d
ℓ=1Vℓ

with Vℓ = R
Iℓ , equipped with the Euclidean inner product 〈·, ·〉 : Vn ×Vn →
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R, defined as

〈A,B〉 :=
∑

(i1,...,id)∈I
ai1...idbi1...id for A,B ∈ Vn.

The related Euclidean (Frobenius) norm is

‖A‖F :=
√

〈A,A〉.

The number of entries in A is S(A) :=
∏d

ℓ=1 nℓ. Hence, assuming nℓ = n,
we obtain S(A) = nd. To get rid of the exponential scaling in d we use the
“rank-structured” separable approximation of tensors.

The simplest example of rank-structured tensors is the canonical rank-1
tensor which is formed by the tensor product of d ℓ-mode vectors u(ℓ) =
{u(ℓ)

iℓ
}iℓ∈Iℓ ∈ Vℓ (ℓ = 1, . . . , d),

U ≡ [ui]i∈I = u(1) ⊗ . . .⊗ u(d) ∈ Vn with entries ui = u
(1)
i1

· · · u(d)
id
.

This tensor requires only dn numbers to store (now linear scaling in d).
For d = 2, the tensor product of two vectors represents a rank-1 matrix.
A generic tensor cannot be represented by a canonical rank-1 tensor with a
given accuracy, hence we are enforced to use more appropriate constructions.

For the ease of presentation, in the following, we consider only the 3D
tensors, A = [ai1i2i3 ], iℓ ∈ Iℓ for ℓ = 1, 2, 3.

A set of tensors represented by a sum of rank-1 tensors with a given rank
parameter R ∈ N is called a canonical format of tensors,

A(R) =
R
∑

ν=1

cνu
(1)
ν ⊗ u(2)

ν ⊗ u(3)
ν , cν ∈ R, (6)

where u
(ℓ)
ν ∈ Vℓ (ℓ = 1, 2, 3) are normalised vectors. The minimal parameter

R in (6) is called the (canonical) rank of a tensor. The storage cost is bounded
by 3Rn with n = max

ℓ
{nℓ}.

The canonical representation is useful in multilinear tensor operations.
In [17] it is shown that the bi-linear operations with tensors in the rank-R
canonical format have linear complexity O(n) with respect to the univariate
grid size n of the function-generated tensor. The disadvantage of this presen-
tation consists in the absence of fast and stable algorithms for transforming
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the arbitrary full-size tensors into the canonical format with the controlled
accuracy.

The Tucker tensor model provides robust algorithms for the decomposi-
tion of full-size tensors into the rank-structured format. The rank-(r1, r2, r3)
Tucker representation (approximation) for a given 3rd order tensor A =
[ai1i2i3 ], iℓ ∈ Iℓ (ℓ = 1, 2, 3) is defined as

A(r) :=

r1
∑

ν1=1

r2
∑

ν2=1

r3
∑

ν3=1

βν1ν2ν3v
(1)
ν1

⊗ v(2)ν2
⊗ v(3)ν3

. (7)

The vectors v
(ℓ)
νℓ ∈ R

nℓ (1 ≤ νℓ ≤ rℓ) form an orthonormal basis of Tℓ =

span1≤νℓ≤rℓ
{v(ℓ)νℓ } (ℓ = 1, 2, 3) with dimTℓ = rℓ. Here, r := max

ℓ
{rℓ} is

called the Tucker rank. The coefficients tensor β = [βν1ν2ν3 ], an element of
the tensor space Br := R

r1×r2×r3 , r := (r1, r2, r3), is called the core tensor.
Since the storage complexity of the Tucker representation (7) is bounded by
r3 + 3rn, it takes the advantage if r ≪ n, which is usually the case in our
applications.

Using the orthogonal side matrices V (ℓ) = [v
(ℓ)
1 . . . v

(ℓ)
rℓ ], we represent the

Tucker decomposition of A using the contracted products,

A(r) = β ×1 V
(1) ×2 V

(2) ×3 V
(3), (8)

where the ℓ-mode contracted product ×ℓ involves the summation over the
ℓ-th dimension, ℓ = 1, 2, 3 (see Appendix).

Figure 1 shows the orthogonal ℓ-mode side matrices and the core tensor
of the Tucker tensor decomposition for the tensor with d = 3. It was shown,
[17], that the Tucker approximation error for a class of 3D function-related
tensors decays exponentially with respect to the Tucker rank, that the Tucker
rank r only weakly depends on n, and the shape of the orthonormal vectors in
the side matrices characterizes the discretized function and does not depend
on n.

A rank-(r1, . . . , rd) Tucker approximation can be formulated as the solu-
tion of a minimisation problem: For a given initial tensor A0 ∈ Vn compute
the optimal A in the orthogonal Tucker format,

f(A) := ‖A− A0‖
2
F → min over A ∈ T r. (9)

The minimisation problem (9) is equivalent to the maximisation [5]

g(V (1), . . . , V (d)) :=
∥

∥A0 ×1 (V
(1))T × . . .×d (V

(d))T
∥

∥

2
→ max (10)

10



A
B

V

V

r3

I3

I2

r
2

(3)

(2)

I
1

I

I

I

2

3

1
r
2

r
3

r
1

r1

V (1)

Figure 1: Tucker tensor decomposition for the tensor with d = 3.

over the set of orthogonal matrices V (ℓ) ∈ R
nℓ×rℓ , ℓ = 1, . . . , d.

In the case d = 3, for given matrices V (ℓ), the core tensor β that minimises
(9) is represented by

β = A0 ×1 (V
(1))T ×2 (V

(2))T ×3 (V
(3))T ∈ R

r1×r2×r3 . (11)

The algorithm for the best Tucker approximation based on the alternating
least squares (ALS) procedure is proposed in [4].

Below we present the main steps of the best Tucker approximation (BTA)
algorithm for the decomposition of the full size tensor A0 ∈ Vn to the Tucker
format. It is given for the case d = 3 for simplicity of presentation.

1. Compute the initial guess V
(ℓ)
0 (ℓ = 1, 2, 3) for the ℓ-mode side-

matrices by the truncated singular value decomposition (SVD) applied to
matrix unfolding A(ℓ) (see Appendix). This step is of the largest complexity
O(n4).

2. For k = 1 : kmax do: for each q = 1, 2, 3, and with fixed side-
matrices V (ℓ) ∈ R

n×rℓ , ℓ 6= q, optimise the side matrix V (q) by computing the
dominating rq-dimensional subspace. It is computed by the truncated SVD
of the respective (reduced) matrix unfolding B(q) ∈ R

nq×r̄q , r̄q =
∏3

ℓ=1,ℓ6=q rℓ.
The corresponding q-mode contracted products are (see Appendix)

B(1) = A0 ×2 (V
(2))T ×3 (V

(3))T ,

B(2) = A0 ×1 (V
(1))T ×3 (V

(3))T ,

B(3) = A0 ×1 (V
(1))T ×2 (V

(2))T .
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For function related tensors the Tucker decomposition needs only a few ALS
iterations, for example, kmax = 3.

3. Compute the core β as the representation coefficients of the orthogonal
projection of A0 onto Tn = ⊗3

ℓ=1Tℓ with Tℓ = span{v(ℓ)νℓ }
rℓ
νℓ=1, by contracted

products
β = A0 ×1 (V

(1))T ×2 (V
(2))T ×3 (V

(3))T .

The complexity of this algorithm scales as nd+1, in our case O(n4). Therefore,
the direct Tucker decomposition is computationally unfeasible for the cubic
grids of the size larger than 1283 on a SUN workstation, as we are currently
using Matlab for the computations. This limitation can be avoided by using
the multigrid accelerated (MGA) Tucker decomposition introduced in [18]. It
is based on the successive reiteration of the ALS Tucker approximation on a
sequence of refined grids, using the results of the coarse grid approximation
as the initial guess for the dominating subspaces on finer grid levels. The
resulting complexity of the MGA Tucker decomposition for the full-size ten-
sors is O(nd), which currently enables application of this algorithm to the 3D
function-related tensors with the maximum size of an n × n × n Cartesian
grid in the range of 5123 entries. In fact, for the MGA Tucker decomposi-
tion, applications are only limited by the available storage size for the input
tensor.

Using the above algorithm, the mapping matrices V (ℓ) are calculated to
approximate the initial full size tensor A = [ai1i2i3 ] (having a pointwise rep-
resentation (5)) by a separable tensor of type (7), where the core tensor β

consists of coefficients βν1ν2ν3 for the rank-1 tensors

v(1)ν1
⊗ v(2)ν2

⊗ v(3)ν3
. (12)

In this way, we find a separable approximation of the initial tensor with a
required accuracy, using r3 rank-1 discrete basis functions (12). According to
[14] one can easily make the canonical representation (6) of a Tucker tensor
using at most r2 canonical tensors of rank-1. This representation is useful
for further calculation of the 3D potentials and integral operators in the
tensor-structured format [14].

In fact, the numerical integration in 3D is then reduced to a sequence
of 3D discrete convolutions with the corresponding Hadamard and scalar
products, where all operations have linear complexity in the one-dimension
grid size n [15, 18]. For example, for a pair of tensors in the canonical format
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the convolution transform is computed in

O(dR1R2n log n) (13)

operations, where R1 and R2 are the canonical ranks of the respective target
tensors. The complexity (13) of the tensor-structured convolution proposed
in [15] essentially outperforms the best existing exact O(n3 log n)-methods
based on the 3D FFT. The numerics on the tensor-product convolution with
the Newton potential in application to the electronic structure calculations
is presented in [18, 19, 14].

4. Numerical results

In this section we investigate the accuracy and effectiveness of the Tucker-
type decomposition of the electronic structure computed from orbital-free
density functional theory. In particular we are interested in understanding
the properties of this decomposition for varying system sizes, which will de-
termine the viability of tensor decomposition techniques for large scale elec-
tronic structure computations. To this end, we use the real-space formulation
of orbital-free density functional theory and a finite element discretization
of the formulation, as discussed in Section 2, to compute the ground state
electronic density of varying sizes of Aluminium clusters. The different clus-
ters considered in this study are a single Aluminium atom and clusters with
1 × 1 × 1, 3 × 3 × 3, 4 × 4 × 4 and 5 × 5 × 5 FCC unit cells. In the subse-
quent text we denote them by cluster1 to cluster5 consisting of 14, 172, 365,
and 666 Aluminium atoms, respectively. The simulations on the Aluminium
clusters are performed using the TFW kinetic energy functional with λ = 1

6
,

local density approximation for the exchange correlation energy [25] and an
evanescent-core pseudopotential for Aluminium [6].

In finite element computations, the computational domain is chosen to
be about a hundred times the size of the cluster and Dirichlet boundary
conditions are applied on the boundary of this domain as the electronic fields
comprising of electron density and electrostatic potential decay away from the
cluster. The finite element triangulations, comprising of linear tetrahedral
elements that rapidly coarse-grain away from the cluster for computational
efficiency, are chosen such that the error in energy is within 0.1 eV/atom
(chemical accuracy). We refer to [8] for details on coarse-graining rates for
the triangulations and numerical aspects of these computations.
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We begin our analysis by considering the electronic structure of a single
Aluminium atom. We compute the electronic structure on two finite element
triangulations, a coarse triangulation containing 599, 040 elements and a fine
triangulation, obtained from a uniform subdivision of the coarse triangula-
tion using the Freudenthal’s tetrahedron subdivision algorithm [1], which has
4, 792, 320 elements.

Next we represent the electron density from the finite element calculations
on the 3D Cartesian n× n× n grid using the standard Matlab interpolation
procedure. In this test case and those to follow, we only use the electron
density from the cluster region to assess the efficiency of the Tucker repre-
sentation. Since the accuracy level for the considered examples of the finite
element data was sufficient with n = 250, there was no need for finer grids.
Then the initial tensor A0 is transformed by the MGA Tucker decomposition
with the rank r = (r1, r2, r3) and equal ℓ-mode ranks rℓ = r, (ℓ = 1, 2, 3),
where the rank-parameter r increases from r = 1, 2, . . . to some predefined
value.

The orthogonal vectors and the Tucker core of the size r× r× r are then
used for the reconstruction of the approximating tensor A(r) ≈ A0 on the
3D Cartesian grid for estimating the approximation properties of the tensor
decomposition with the given rank. For every rank r Tucker decomposition,
we compute the relative error in the Frobenius norm as in [17]

EF =
‖A0 − A(r)‖2

‖A0‖2
(14)

and the relative error in the ℓ2-energy

EEN =

∣

∣‖A0‖2 − ‖A(r)‖2
∣

∣

‖A0‖2
. (15)

Figure 2 shows the convergence of the Tucker approximation in terms of the
relative error in the Frobenius norm and ℓ2-energy norm for the coarse and
fine triangulations. Note that there is an exponential drop in the approxi-
mation error for small Tucker ranks, and we obtain good convergence with
respect to the relative error in Frobenius norm up to 2.4 · 10−3 with a small
Tucker rank r = 4. However, no significant improvement in the errors is
observed beyond r = 5. We remark that this stagnation of the error is a
consequence of the accuracy of the finite element OFDFT data that cannot
be surpassed. This is evident from the fact that Tucker approximation errors
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Figure 2: Convergence with respect to the Tucker rank r in Frobenius and energy norms
for one Aluminium atom, coarse triangulation (left) and fine triangulation (right).

are almost one order lower in the fine triangulation in comparison to the
coarse triangulation.

Next we consider the Tucker approximation of the electron density for
cluster1 to cluster5. The finite element computations are performed on trian-
gulations with 8, 646, 656 elements for cluster1, 20, 643, 840 elements for clus-
ter3, 39, 456, 768 elements for cluster4, and 57, 716, 736 elements for cluster5.
Figure 3 shows the electron density contours along a slice through cluster1
and cluster5. Fig. 4 shows the first 6 basis functions of the Tucker tensor
approximation for cluster1 (left) and cluster5 (right), respectively. These
vectors constitute one of the orthogonal mapping matrices V (ℓ), ℓ = 1, 2, 3,
obtained by the multilinear singular value decomposition in the Tucker ALS
algorithm. As the figures demonstrate, the form of the basis functions de-
pends on the shape of the considered material system, therefore they pro-
vide good approximation properties as seen in the subsequent Fig. 5. Fig. 5
presents the absolute error of the Tucker approximation with the rank r = 12
for cluster5. The maximum absolute errors of the approximation are of the
order 5.10−4 which is in the range of the error bound for the finite element
approximation.

Fig. 6 shows the convergence of the relative error in Frobenius norm EF

and the relative error in ℓ2-energy EEN with respect to the Tucker rank r for
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Figure 6: Error convergence of the Tucker tensor approximation with respect to the in-
creasing Tucker rank for cluster1 with 14 atoms (top left), cluster3 with 172 atoms (top
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the interpolated data on the Cartesian grids. Here we have chosen the uni-
variate grid sizes n = 45, 89, 177 for cluster1 with 14 atoms; n = 46, 91, 181
for cluster3 with 172 atoms; n = 55, 109, 217 for cluster4 with 365 atoms;
and n = 61, 121, 241 for cluster5 with 666 atoms. Firstly, we note that the
convergence is exponential for small Tucker ranks before saturation of these
errors occurs resulting from the finite accuracy of the finite element solutions.
A relative Frobenius error of less than 10−2 and a relative ℓ2-energy error of
less than 10−5 are obtained using just a Tucker rank of r = 10 for the various
clusters considered in this study. Another important feature of this approxi-
mation, as seen from the results in Fig. 6, is that the Tucker approximation is
only weakly dependent on the univariate grid size as remarked in Section 3.

Next, to further demonstrate the applicability of the Tucker approxima-
tion, we consider the Tucker decomposition of cluster5 with an asymmetric
vacancy, see Fig. 7, top. Fig. 7 (left bottom) shows the orthonormal vectors

of one of the Tucker side matrices V (1) = [v
(1)
1 . . . v

(1)
r1 ], with r1 = 6. It is

clearly seen that the 5-th orthogonal vector of the side matrix V (1) reveals
the shape and location of the vacancy in the Aluminium cluster. Fig. 7 (right
bottom) shows the convergence of the approximation error for the cluster5
with a vacancy. We observe only a slight decrease in the convergence of the
approximation error as compared with the results for cluster5.

The figures 8 to 9 show the results of computations for the cluster with
originally 666 Aluminium atoms where 20 Aluminum atoms have been re-
placed at random by 10 vacancies and 10 Lithium atoms. The top pictures
in Fig. 8 present two sectional planes of this cluster. Two Lithium atoms
can be identified in the upper left corner of the plane z = 0 (left), and two
vacancies and two Lithium atoms at the sectional plane y = −8 (right).
Figure 8, bottom shows the exponential convergence of the approximation
error with respect to the Tucker rank. One can notice in Figures 9, left
and right, that the orthogonal Tucker vectors v

(2)
1 , . . . , v

(2)
7 and v

(3)
1 , . . . , v

(3)
7 ,

respectively, reveal the location of random Li atoms and vacancies in the
Aluminium cluster.

The numerical investigations show that the electronic structure of Alu-
minium clusters of different sizes and complexity can be captured very effi-
ciently using the Tucker representation as the error convergence is exponen-
tial with the Tucker rank. This is similar to spectral convergence using plane-
wave basis functions for electronic structure calculations, but can be achieved
now in a non-periodic setting with very few basis functions in comparison
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Figure 7: Electron density of an Aluminium cluster with 666 atoms with an asymmetric

vacancy (top). The left bottom figure shows the orthogonal Tucker vectors v
(1)
1 , . . . , v

(1)
6 .

It is seen that the 5-th vector of the Tucker mode-1 side matrix “reveals” the shape
and location of the vacancy. The right bottom figure shows that the convergence of the
approximation error is not significantly affected by the presence of a vacancy in the cluster.
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Figure 8: Electron density of a cluster with 666 Al atoms with random replacement of 20
Aluminium atoms by 10 Lithium atoms and 10 vacancies: two sectional planes with z = 0
(left) and y = −8 (right). The bottom figure shows the convergence of the approximation
error for n = 64, 128 with respect to the Tucker tensor rank. The line for n = 256 (not
shown) repeats the one for n = 128.
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Figure 9: Examples of the first seven Tucker orthogonal vectors in mode 2 (left) and mode
3 (right) for the cluster with 646 Aluminium atoms and randomly located 10 Lithium
substitutional atoms and 10 vacancies.

to plane-waves. Moreover, a small Tucker rank is sufficient for accurately
representing the electron density obtained by finite element computations.
This dramatically reduces the number of degrees of freedom to

O(r3 + 3rn) (16)

which in turn reduces the storage requirements and can reduce the com-
putational complexity of electronic structure calculations. For example, for
cluster3 and the Tucker rank r = 10 and the 3D grid with one-dimension size
n = 200, we need only Nstorage = 7000 entries, in contrast to approximately
20MB of the original data. This is illustrated in the table 1 below, also for
the other clusters. The memory requirements of the Tucker representation
reported in table 1 agree with Formula (16) when setting r = 10 and with the
maximal n as stated in Fig. 6. Finally and most importantly, the Tucker rank
is almost independent of the system size. A Tucker rank of r = 10 suffices
to approximate the electronic structure of varying system sizes including a
single Aluminium atom and clusters containing 14, 172, 365, and 666 atoms
as well as a cluster with a vacancy. This suggests that in the Tucker represen-
tation, the number of basis functions required to approximate the electronic
structure to a desired accuracy only weakly depends on the system size for
the aforementioned systems. Further, a Tucker rank of r = 20 is sufficient
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to represent the electronic structure of a complex system comprising of 646
Aluminium atoms, 10 Lithium substitutional atoms and 10 vacancies.

Cluster Atoms Finite Elements Memory full tensor Memory Tucker repr.

1 14 8, 646, 656 9438 KB 49.3 KB

3 172 20, 643, 840 21690 KB 50.2 KB

4 365 39, 456, 768 39593 KB 58.7 KB

5 666 57, 716, 736 59685 KB 64.3 KB

Table 1: Comparison of memory requirements for storing the full tensor representation
and the Tucker approximation with r = 10 of the electron density and different clusters

5. Discussion of the results and outlook

In this article we demonstrated the effectiveness of the Tucker tensor-
decomposition for the rank-structured representation of the electron den-
sity obtained from finite element computations for large Al clusters (also
without periodicity). As main result of our numerical investigations, after
exploring varying sizes of the Aluminum clusters with repeating FCC unit
cells—1 × 1 × 1 FCC unit cell to 5 × 5 × 5 FCC unit cells—we demon-
strated that a small Tucker rank r is sufficient to represent this data, and
r is almost independent of the system size. Further, for a complex system
where 20 Aluminum atoms in a 5× 5× 5 Aluminum cluster are replaced at
random with 10 vacancies and 10 Lithium atoms, a Tucker rank r = 20 is
sufficient to approximate the electron density. Hence, the application of the
tensor-structured approach with the Tucker representation of the electron
density can dramatically reduce the complexity of the problem. This result
is very important since it justifies the development of quantum mechanical
algorithms (for OFDFT, and possibly KSDFT) based entirely on the Tucker
representation and including the computation of all essential parts of the en-
ergy functional like nuclear potential, exchange-correlation energy or kinetic
energy by the tensor-structured techniques.

Motivated by these results, it seems plausible that the tensor-structured
numerical algorithms can be applied further to a large class of applications
from physics and chemistry. The pending systematic steps are an error anal-
ysis between full data and the reduced representation, and the complete
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Figure 10: Unfolding of the 3rd order tensor over the mode ℓ = 1 to a matrix A(1) of size
I1 × I3I2.

implementation of the Kohn-Sham problem in Tucker tensor format. One
of the desirable final objectives of the tensor methods based on separable
rank-structured representations is the investigation of dislocations and other
defects in a non-periodic quantum mechanical setup. Studies of dislocations
in a periodic setting can be found in [3], [13]. The far-reaching applications
of such a method would include the study of dislocations, vacancies, cracks,
doped systems and free surfaces in solids where the core of the defect and
the long-ranged elastic effects are studied using quantum mechanics.

6. Appendix

Here we describe the unfolding and contraction of the multidimensional
tensors [21] for the case d = 3, though all considerations are valid for d > 3.

In the Tucker decomposition algorithm we use the unfolding of a tensor
into a matrix. The unfolding of a 3D tensor A = [ai1i2i3 ] ∈ R

I1×I2×I3 , Iℓ =
{1, . . . , nℓ}, with respect to the mode q (ℓ, q = 1, 2, 3), is denoted by the
matrix A(q) of size nq× n̄q, where n̄q =

∏3
ℓ=1,ℓ6=q nℓ. Hence, one of the sizes of

the matrix A(q) is the product of all dimension sizes of the tensor A except
the q-th mode,

A(q) = [aiqk], with k = 1, . . . , n̄q, n̄q =
3
∏

ℓ=1,ℓ6=q

nℓ.

Figure 10 presents the example of the matrix unfolding over the mode ℓ = 1
for the 3rd order tensor.
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Another important tensor operation is the contracted product of two
tensors. In the following we use a tensor-matrix contracted product along
mode ℓ. Given a tensor A ∈ R

I1×I2×I3 and a matrix M ∈ R
Jℓ×Iℓ , we define

the respective mode-ℓ tensor-matrix product by1

U = A×ℓ M ∈ R
I1×...×Iℓ−1×Jℓ×Iℓ+1×...×Id ,

where

ui1...iℓ−1jℓiℓ+1...id =

nℓ
∑

iℓ=1

vi1...iℓ−1iℓiℓ+1...idmjℓiℓ , jℓ ∈ Jℓ.
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