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Abstract
In this paper quantitative simulations of a particular segregation problem
arising in mineralogy are done. Using ab initio methods, in particular, the
harmonic approximation, the free energy of the physical process is calculated
for a range of concentration vectors. Furthermore, diffusion coefficients and
elasticity coefficients are computed. The obtained data are the foundation for
high-precision finite element computations. For selected configurations, the
computed free energies are validated with results from quantum mechanics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The present work is concerned with computer simulations on the so-called chalcopyrite disease
within sphalerite. This is a well-known and extensively-discussed problem arising in geology.
The quantitative description of this process helps to get a precise understanding of the time
scales involved in magma ascending from the earth’s core and might lead to better predictions
of earthquakes and volcanic eruptions.

A characteristic of chalcopyrite disease is the presence of a melon-type structure close to
the boundary of a rock sample (figure 1).

The common understanding is that these structures develop during a long time period
in the range of several hundred thousand years. Since no experimentalist would be so
patient, mineralogists studied chalcopyrite disease under altered conditions in the laboratory,
where they surrounded a ZnS single crystal with sulfur gas, spread copper powder on its
surface and significantly increased the temperature (kept isothermally between T = 550 ◦C
and T = 700 ◦C); see the reports of the experiments [3, 4]. With an increase in T (and
sufficiently high sulfur fugacity, see below) the process is accelerated and the characteristic
pattern formation is observed after several weeks (T = 700 ◦C) or months (T = 550 ◦C).

Chalcopyrite disease is caused by gradients of the chemical potential induced by an
increase in external sulfur fugacity. Hereby, the primary Fe2+ is oxidized to Fe3+ and reacts
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Figure 1. Part of the boundary region of a rock sample with chalcopyrite disease (reflecting light
image), black matrix: sphalerite, white grains: chalcopyrite.

Figure 2. Reorganization of ZnS lattice to chalcopyrite.

with copper diffusing into the Fe-containing sphalerite crystal to form chalcopyrite (=CuFeS2).
During the process, gas S2− molecules become attached to the crystal surface. Since, roughly
speaking, the formation of chalcopyrite phases can only take place after a sufficient amount
of Cu has diffused into the matrix, the generic mechanism has been called diffusion induced
segregation (DIS).

Figure 2 sketches the reorganization of the sphalerite lattice close to the crystal boundary,
assuming a perfect structure without impurities. The migration of Zn is not displayed as it
behaves contrary to the migration of Cu.

The mathematical analysis of chalcopyrite disease presented in this work is based on
partial differential equations and a thermodynamical description and tries to understand the
physics underlying these examinations with the goal of making simulations close to the ideal
experimental conditions. The developed model represents chalcopyrite disease on a medium
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spatial scale; the microstructure is not resolved. The main idea pursued in this paper is to insert
expressions of the free energy gained from ab initio calculations into (standard) finite element
computations.

The paper is organized in the following way. In section 2 the mathematical formulation
is restated. The general numerical ansatz is explained in section 3. Section 4 explains the
implementation details of the harmonic approximation. Section 5 uses quantum mechanical
(QM) methods for the sphalerite and chalcopyrite structure for validation and for computing
elastic constants. In section 6 a comparison between molecular dynamics (MD)-simulations
and harmonic approximation is carried out. The structure dependence of the computed data
is studied in section 7. Section 8 is devoted to the computation of the diffusion constant of
Cu depending on the concentrations of the other constituents. The results of some numerical
experiments are presented in section 9. We finish with a critical evaluation of the results.

2. Mathematical formulation

Readers not interested in the details of the mathematical formalism only need to understand the
reduction in the concentration vector to three components (stated by cS ≡ 0.5 and relation (1)),
accept the definition of the free energy (equation (4)) and the formulation as diffusion problem
(equation (5)) and then can proceed with section 3.

Let � be a (time-independent) domain in R
D, 1 � D � 3, containing the crystal. By

0 < T0 < ∞ we denote a stop time and by �T := � × (0, T0) a cylinder in space-time.
ci = ci(x, t) denotes the relative number of species i, i ∈ {1, 2, 3} per available lattice point
at time t and space point x ∈ �, where we set

c1 ≈ Fe, c2 ≈ Cu, c3 ≈ Zn, c4 ≈ vacancies.

c1 satisfies c1 = NFe/NMe, where NFe is the number of Fe atoms and NMe the number of metal
ion sites. Similar relationships hold for c2 and c3. We will not model the attachment of S
molecules at the lattice surface and assume that the concentration of S is identically cS := 0.5.
Due to electric neutrality we postulate, see [3, 5],

c4 = 1
2c1. (1)

By mass conservation the concentration vector c thus fulfils

c = (c1, c2, c3) ∈ � := {(c̃1, c̃2, c̃3) ∈ R
3|c̃i � 0, 3

2 c̃1 + c̃2 + c̃3 ≡ 1
2 }.

The constitutive relation for the mass fluxes is assumed to be of the form

Ji =
3∑

j=1

Lij∇µj , 1 � i � 3. (2)

This isotropic ansatz goes back to [29]. L, the mobility, is symmetric due to Onsager’s
reciprocity law and a positive semi-definite 3 × 3 tensor. Furthermore,

µj = ∂f

∂cj

is the chemical potential. To simplify the existence theory we assume that L is positive definite.
The total Helmholtz free energy density f consists of f1 for chalcopyrite and f2 for sphalerite.
Hence, the two different phases or lattice orders are characterized by two different free energies
and f is the convex hull of f1 and f2.

The characterization of the phases is given within the framework of functions of bounded
variation BV (�) (see [14, 35]). It is convenient to introduce the set

V := {χ̃ ∈ BV (�)|χ̃(1 − χ̃) = 0 a.e. in �} (3)
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and choose for the free energy with a constant γ > 0 the convex-combination

F(c, χ̃) :=
∫

�

γ |∇χ̃ | +
∫

�

(χ̃f1(c) + (1 − χ̃)f2(c)). (4)

The first integral
∫
�

γ |∇χ̃ | defines the (constant) surface energy.
To sum up, we are concerned with the following formulation.
Find the vector c = (c1, c2, c3) and χ such that in � ⊂ R

D for t > 0

∂tci = div


 3∑

j=1

Lij∇µj


 , i = 1, 2, 3, (5)

µi = χ
∂f1

∂ci

(c) + (1 − χ)
∂f2

∂ci

(c), i = 1, 2, 3, (6)

F(c, χ) = min
χ̃∈V

F (c, χ̃), (7)

with the initial and boundary conditions

ci(x, 0) = c0i (x), i = 1, 2, 3; χ(x, 0) = χ0(x) in �, (8)

∂νχ = 0,

ci = gi, 1 � i � 3
µi = hi, 1 � i � 3


 at ∂�. (9)

We stress that (7) actually means that the free energy is in a global minimum with respect
to χ . For most physical systems, this assumption is not reasonable. But here the segregation
dramatically changes the local lattice order such that there is a huge start energy and at least
approximately a global minimum is obtained. If we replace (7) by an Allen–Cahn equation,
the system may get stuck in a local minimum and flipping over from sphalerite to chalcopyrite
may become impossible at large times t ; see the detailed discussion in [7].

The following theorem is covered by the results in [6]. It is formulated for classical
Dirichlet boundary conditions gi = hi = 0.

Theorem 1 (Global existence of solutions for systems (5)–(9)). There exists a weak solu-
tion (c, µ, χ) of (5)–(9) such that

(i) c ∈ C0, 1
4 ([0, T0]; L2(�; R

3)),
(ii) ∂tc ∈ L2(0, T0; (H 1

0 (�; R
3))′),

(iii) µ ∈ L2(0, T0; H 1
0 (�; R

3)),
(iv) χ ∈ L1(0, T0; BV (�)) with χ(1 − χ) = 0 almost everywhere in �.

In general the solution (c, µ, χ) is not unique since χ may not be unique.

3. General outline of the numerical solution ansatz

We solve the weak formulation of (5)–(9) with linear finite elements. The arising discrete
system is solved with a Newton–Krylov method. This is a quasi-Newton scheme where the
inner linear loop is solved with the generalized minimal residual method (GMRES). This
combines fast convergence of Newton’s method with the excellent damping properties of
GMRES; see the extensive analysis in [9].

The various possibilities to speed up the finite element code such as parallelization by
multi-grid methods or domain decomposition are not exploited. In order to incorporate
approximations of the physical free energy, we will pursue the following ansatz. Let c be
a given concentration vector. In a first independent computation step two approximations
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f tab
1 (c) and f tab

2 (c) are computed which simulate the actual free energy density of the material
in the bulk phases and hence represent two local minima of f . The main computational tool
is the harmonic approximation with GULP [16], and the tabulated values f tab

1 (c), f tab
2 (c) are

obtained from modified chalcopyrite and sphalerite configurations. Furthermore we apply
MD simulations with DLPOLY (http://www.cse.clrc.ac.uk/msi/software/DL POLY/). For
QM computations we use ABINIT [18], a package originally developed by the Université
Catholique de Louvain (http://www.abinit.org).

Generally, f tab
1 (c) and f tab

2 (c) are stored beforehand in huge databases. Each entry in
these databases is a reference to a small range of concentration vectors c (approximation of
f tab

l by piecewise constant functions).
It remains to find approximations for (∂f tab

m )/(∂cj ). This is done by central differencing
of the tabular entries where possible and by one sided differences at the beginning and end of
the database. To make this precise, let Mj ∈ N be the dimension of the database w.r.t. cj , that
is f tab

m (c1, . . . , cj , . . . , c3) is constant for cj ∈ [cl
j , c

l+1
j ) (cl

j is a monotone sequence in l) and
1 � l � Mj − 1. Set for cj ∈ (cl

j , c
l+1
j ) (where we suppress the frozen components cα for

α 	= j )

∂f tab
m

∂cj

(cj ) :=




f tab
m (cl+1

j ) − f tab
m (cl−1

j )

cl+1
j − cl−1

j

if 2 � l � Mj − 1,

f tab
m (c1

j ) − f tab
m (c2

j )

c1
j − c2

j

if l = 1,

f tab
m (c

Mj

j ) − f tab
m (c

Mj −1
j )

c
Mj

j − c
Mj −1
j

if l = Mj.

(10)

After numerical tests with analytic expressions for f , the parameters M1 = M3 = 30, M2 = 40
were chosen. Larger values of Mj are desirable as they reduce the approximation errors.
Unfortunately, the numerical effort grows enormously because every entry is the result of a
costly averaging process as we shall see.

4. Free energy computation with GULP

The theory of harmonic approximation is explained in [2,12]. For computations within GULP
we have to fit the heuristic potentials that represent the short-range interatomic potentials. We
begin with ZnS. We use the Buckingham potential

φ(r) := −4ε(σ/r)6 + B exp(−r/ρ) (11)

which gives in practice better results than Lennard–Jones potentials. In (11), r is the interatomic
distance, σ that particular interatomic distance where the energy vanishes and ε is the potential
energy at equilibrium separation. The term (σ/r)6 describes the van-der Waals induced dipole
moments whereas the exponential stands for the repulsive forces.

We use a shell model [11], where the rigid atom is split into an inner part comprising
the nucleus with tightly bound inner electrons and an outer part with loosely bound shell
electrons. This allows us to take dipole moments into account caused by the interactions with
neighbouring ions. Additionally, a harmonic three-body potential is used to account for the
directionality on the S–Zn–S bond according to the Taylor expansion

W3b(θ) := 1
2k2(θ − θ0)

2 + 1
6k3(θ − θ0)

3 + 1
12k4(θ − θ0)

4,

where θ0 is the angle of the unstressed three-body system and k2, k3 and k4 determine the
sensibility w.r.t. angular changes; see [32] for details.

http://www.cse.clrc.ac.uk/msi/software/DL_POLY/
http://www.abinit.org
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Table 1. Comparison of experimental and calculated data for ZnS.

EXP1 EXP2 P1 P2 P3

a/Å 5.41 5.41 5.403 5.403 5.402
V/Å3 158.29 158.29 157.77 157.77 157.69
C11/GPa 9.42 9.76 8.6 9.37 9.18
C12/GPa 5.68 5.9 6.54 6.16 5.83
C44/GPa 4.36 4.51 3.8 4.03 4.41
εstat 7.9 — 8.565 7.21 7.33
εhf 5.8 — 4.815 4.56 3.64

Table 2. Potential parameters for P1, P2 and P3 used for ZnS.

P1 P2 P3

Potential parameters
S–S
A/eV 1200.0 1200.0 1200.0
ρ/Å 0.149 0.149 0.149
B/eV Å6 120.0 120.0 120.0
Zn–S
A/eV 613.36 613.36 528.9
ρ/Å 0.399 0.399 0.411
B/eV Å6 0.0 0.0 0.0

Shell model
SKS/eV Å−2 12.7 12.7 16.86
ZnKS/eV Å−2 0.0 0.0 2.181

Three-body terms
S–Zn–S force constant/eV rad−2 0.713 0.713
S–Zn–S bond angle/degrees 109.47 109.47
k2/eV rad−2 3.0 3.0
k3/eV rad−3 3.0 3.0
k4/eV rad−4 5.0 5.0

GULP sets up interactions of potentials between shells and other atoms/shells and these
potentials must be fitted to give reasonable results. For sphalerite and chalcopyrite this is a
tricky business, probably because the bondings in sulphides are not purely ionic but may range
from ionic to covalent through to metallic. A least squares fit to measured parameters in the
spirit of [34] is carried out (table 1). a is the lattice parameter of the cubic lattice, V the volume
of the unit cell, Cil the elastic constants. To find the potential parameters, one starts with a
simple model without shells where the charges of S and Zn are fixed to −2 and +2. By a least
squares optimization run the parameters for the spring constant and in the case of sphalerite for
the S–Zn–S interactions are fitted. The parameters thus obtained are then used in an extended
model that includes shells and three-body terms.

For P1, a Buckingham potential is fitted and a shell is only used for the S ions. In P2, a
three-body potential for S–Zn–S is added. In particular this results in better values of C44, εhf

and εst. In P3 a shell for Zn is included. The necessary parameters for a complete definition
of the potentials are given in table 2. For all the Buckingham potentials, the cutoff level was
set to 12 Å.

The potentials P1 and P3 correspond to PS1 and PS3 in [34]. Some of the values in table 1
differ slightly from the figures reported there because all computations were redone with the
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Table 3. Experimental/QM and calculated data for chalcopyrite.

Exp2/QM P4 P5

a/Å 5.2864 5.601 5.59
b/Å 5.2864 5.601 5.59
c/Å 10.4102 10.71 10.70
V/Å3 145.46 168.08 167.73
C11/GPa 17.83 18.02 18.12
C12/GPa 5.81 5.67 5.64
C13/GPa 6.27 6.59 6.59
C33/GPa 13.15 14.23 14.25
C44/GPa 13.19 18.86 18.93
C66/GPa 4.93 8.68 8.70

newer version GULP 1.3. The data set EXP1 refers to the experimental results in [25] while
EXP2 to the recently made measurements in [24] (in these experiments no measurements of
εstat and εhf were made).

As can be seen, the agreement documented in table 1 is suitably well with an error in
the size of uncertainty of the measured parameters. This proves that GULP can be used to
compute fundamental material properties of sulphides. P2 and P3 both seem to be very well
suited to represent the structure of ZnS.

The fitting procedure to chalcopyrite is similar. For P4, Cu and Fe cores replace Zn. The S
shell is fitted to yield good values for the lattice constants and the volume of the primitive cell.
But there is one bottleneck: to date it has not been possible to measure the elastic parameters
Cil for chalcopyrite in experiment. The slanted parameters in table 3 are the result of QM
computations in section 5 and the GULP potential is fitted to these parameters. To further
improve the quality of the results, three-body potentials for S–Cu–S and S–Fe–S are added.
Table 3 provides the results of the fitting and table 4 the fitting parameters.

We see that there is almost no improvement by using the three-body potentials. The
agreement to the QM parameters is quite good, except for C44 and C66.

5. QM computations

We perform QM computations on sphalerite and chalcopyrite using ABINIT [18]. The
Born–Oppenheimer approximation of the Schrödinger equation is solved with the local-
density approximation within the framework of density function theory [19, 20, 30]. For the
representation of the electron–atom interactions Troullier–Martins pseudopotentials [33] are
used.

After simple convergence tests, the energy cutoff ecut was set to 20 Ha ≈ 544.23 eV (one
has ecut = 1

2 [2π(k + Gmax)]2 and Gmax is the largest reciprocal lattice vector included in the
Bloch expansion of the wave function) yielding a relative error of 0.4% in the total energy. The
macroscopic dielectric constant εdiel of ZnS is preset to 8.32, the physical value found in the
literature. For the self-consistent energy minimization cycle within ABINIT, the conjugated
gradient method is chosen. In order to obtain satisfying results, the Brillouin zone is sampled
with 182 k-points.

The following picture shows the binding energy for cubic ZnS as a function of a (figure 3).
The minimal value −7.22 eV is obtained at a = 5.317 Å (the binding energy computed

by GULP for a = 5.419 is −7.676 eV). A slight underestimation of the lattice constant and an
overestimation of the binding energy are typical of well-converged local-density calculations.
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Table 4. Potential parameters for P4 and P5 used for chalcopyrite.

P4 P5

Potential parameters
S–S
A/eV 1200.0 1200.0
ρ/Å 0.508 0.508
B/eV Å6 120.0 120.0
Fe–S
A/eV 5694.68 5694.68
ρ/Å 0.2748 0.2748
B/eV Å6 0.0 0.0
Cu–S
A/eV 110.62 100.619
ρ/Å 0.327 0.327
B/eV Å6 0.0 0.0
Shell model
SKS/eV Å−2 12.70 12.70
Three-body terms
S–Cu–S force constant/eV rad−2 0.011 64
S–Cu–S bond angle/degrees — 109.47
k2/eV rad−2 — 2.5
k3/eV rad−3 — 2.5
k4/eV rad−4 — 4.0
S–Fe–S force constant/eV rad−2 — 0.011 69
S–Fe–S bond angle/degrees — 109.47
k2/eV rad−2 — 2.5
k3/eV rad−3 — 2.5
k4/eV rad−4 — 4.0

Figure 3. Binding energy in electronvolts for different lattice constants a and cubic ZnS.

Figure 4 displays the densities of state for cubic ZnS as a function of energy. The densities
of state are computed using 182 k-points to cover the reciprocal lattice and with a tetrahedron
method.

The computations for chalcopyrite are similar to those of ZnS. After convergence studies
the energy cutoff ecut was set to 30 Ha ≈ 816.35 eV resulting in a relative error of 0.3%.
Unfortunately, εdiel is unknown for chalcopyrite, so that for the first computations of the
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Figure 4. Density of states versus energy in Hartree (1 Ha ≈ 27.211 eV) for ZnS.

Figure 5. Density of states versus energy in Hartree for chalcopyrite.

relaxed geometry the ZnS-value is taken for chalcopyrite, too. Numerical tests have shown
the results for chalcopyrite to change by less than 0.1% for different values of εdiel. As in the
case of sphalerite the Brillouin zone was sampled with 182 k-points. A not too small value is
essential for the quality of the results.

Figure 5 displays the density of states for chalcopyrite. The minimal binding energy
−19.7 eV is obtained at a = b = 5.061 Å and c = 9.969 Å. The binding energy for
chalcopyrite computed by GULP is −20.57 eV. Comparing with the lattice vectors computed
by GULP, it appears probable that the constants a, b and c computed by DFT are as in the case
of ZnS slightly too small.

In the rest of the section we compute Cij via the acoustical modes. The obtained elastic
constants are needed to gauge the interatomic potentials within GULP. The elastic constants
for sphalerite serve as comparison and validation of the method.
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Table 5. Comparison of experimental and calculated data for ZnS.

EXP1 EXP2 QM P2

a/Å 5.41 5.41 5.32 5.403
V/Å3 158.29 158.29 150.36 157.77
B0/GPa 76.6 — 82.8 71.55
C11/GPa 9.42 9.76 9.63 9.37
C12/GPa 5.68 5.9 5.89 6.16
C44/GPa 4.36 4.51 4.87 4.03
εstat 7.9 — — 7.21
εhf 5.8 — — 4.56

Travelling waves in crystals (as waves in general) can be represented by

u(r, t) = ũ exp(i(k · r − ωt)). (12)

Here, u is the atomic elongation, ũ = (ũ1, ũ2, ũ3) the amplitude vector, k = (k1, k2, k3) the
wave vector, r = (r1, r2, r3) the position vector and ω the angular frequency. The strain ε is
given by

εij = 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (13)

With ABINIT we compute dispersion curves, i.e. curves which describe the relationship
k 
→ ω(k). More precisely we estimate with interpolation formulae the slopes ω′(0) of
the acoustic phonon dispersion curves at the origin (acoustic phonon modes in contrast to
optical phonon modes fulfil ω(k = 0) = 0). Using (12) in (13) yields

εlj (t) = i

2
(ul(t)kj + uj (t)kl) = i

2
(ũlkj + ũj kl) exp(i(k · r − ωt)).

From Newton’s equation of motion ρ∂2
t un = −ρω2un we get

ρω2ũn =
∑
j lm

Cnjlmkj klũm

or

ρω2ũ = M(k) · ũ.

The values on the left-hand side are provided by ABINIT. Suitable k-points can be gained by
densifying the k-point mesh (with dsifkpt). It remains to compute the matrix M which is
straightforward using the Voigt notation, see [28]. For the cubic ZnS lattice we find

M(k) =

C11k

2
1 + C44(k

2
2 + k2

3) (C12 + C44)k1k2 (C12 + C44)k1k3

(C12 + C44)k1k2 C11k
2
2 + C44(k

2
1 + k2

3) (C12 + C44)k2k3

(C12 + C44)k1k3 (C12 + C44)k2k3 C11k
2
3 + C44(k

2
1 + k2

2)




and for tetragonal chalcopyrite it holds as

M(k) =

C11k

2
1 + C66k

2
2 + C44k

2
3 (C12 + C66)k1k2 (C13 + C44)k1k3

(C12 + C66)k1k2 C66k
2
1 + C11k

2
2 + C44k

2
3 C44k2k3

(C13 + C44)k1k3 C44k2k3 C44(k
2
1 + k2

2) + C33k
2
3


 .

Table 5 below shows the results of the computations for ZnS and extends the results of
table 1. As before, EXP1 refers to the experimental results in [25], EXP2 to [24], PS2 to GULP
results and QM is the quantum mechanical data. B0 denotes the bulk modulus.

LDA tends to overbind and produces elastic constants larger than experiment.
Table 6 lists the results for chalcopyrite. The computed lattice constants are about 6% off

the experimental values. Probably, the Troullier-Martins pseudopotentials are too soft.
The elastic constants found were used in section 4 to fit the GULP potentials.
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Table 6. Comparison of experimental/calculated data for chalcopyrite.

Exp2 QM P5

a/Å 5.2864 5.061 5.59
b/Å 5.2864 5.061 5.59
c/Å 10.4102 9.969 10.70
V/Å3 145.46 127.67 167.73
C11/GPa — 17.83 18.12
C12/GPa — 5.81 5.64
C13/GPa — 6.27 6.59
C33/GPa — 13.15 14.25
C44/GPa — 13.19 18.93
C66/GPa — 4.93 8.70

6. Analysis of the different parts of the entropy

Now we compare for certain reference configurations the results of the harmonic approximation
and MD simulations. For a general introduction to MD simulations see for instance [15]. In
particular this provides useful information as to how well the system entropy is captured.
GULP can only compute the harmonic part of the system entropy. The anharmonic vibrational
contributions to the system entropy are not captured.

For T ≈ 0 K we will find that both methods yield almost identical results. Hence, one
part of this section serves as a direct validation of MD and harmonic approximation. The used
interatomic potentials are not verified by this comparison because they are the same in both
applications (taken from tables 2 and 4).

Parameters of MD simulations (Keywords of DLPOLY) Cubic boundary conditions (imcon
1): overall 4000 steps, 2000 calibration steps, use of Berendsen thermostat with thermostat
relaxation time 0.1 ps and barostat relaxation time 2 ps (ensemble npt berendsen 0.1 2),
atom velocities are rescaled in every step (scale 1), ewald precision 10−6, Verlet
neighbour width 1 Å (delr width 1Å); timestep 0.001 ps, pressure 0 kbar, cutoff
12Å; the interatomic potentials are defined by table 2.

The results of DLPOLY are converted from the data of a 5 × 5 × 5 supercell. The original
data for sphalerite and T = 0 K is ā = 27.1215 Å and F̄ = −16690 eV. In the last column,
F is reconverted to Vref = 1000 Å3, thereby taking into account the volume of the computed
unit cell.

As can be seen, the agreement for T = 0 K (GULP only accepts T > 0 K for computations
of the free energy) is extremely good when there is (almost) no entropic contribution to f .
Further tests were made for selected atomistic configurations that arise during the phase tran-
sition from sphalerite to chalcopyrite again with a negligible difference in energy. We omit the
presentation of the figures. This test is the afore-mentioned validation of GULP and DLPOLY.

Table 7 shows that chalcopyrite is energetically preferable; thus the lattice order of
chalcopyrite is preferred if the concentration vector c permits it. We notice that the energy
difference between GULP and DLPOLY data increases as T becomes larger. An increase in
F for increasing T as stated by DLPOLY is plausible, and we conclude that GULP does not
capture well the entropic part of F . Consequently, computations based on DLPOLY may show
a different behaviour from simulations based on harmonic approximation. Though we expect
this effect not to be decisive for the investigated temperature range as χ is determined by the
global energy minimization (7) and the difference F1 − F2.
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Table 7. Lattice geometry and free energy for GULP and DLPOLY.

Sphalerite T a = b = c(Å) F (eV) FVref (eV)

GULP 1 K 5.4243 −133.519 −836.58
500 ◦C 5.4412 −135.37 −840.32
700 ◦C 5.4473 −136.20 −842.61

DLPOLY 0 K 5.4243 −133.52 −836.59
500 ◦C 5.4409 −132.72 −823.99
700 ◦C 5.4493 −132.29 −817.53

Chalcopyrite T a = b (Å) c (Å) F (eV) FVref (eV)

GULP 1 K 5.577 10.68 −138.491 −832.63
500 ◦C 5.598 10.701 −139.95 −832.08
700 ◦C 5.606 10.705 −140.635 −835.85

DLPOLY 0 K 5.577 10.68 −138.493 −832.65
500 ◦C 5.602 10.708 −139.09 −827.83
700 ◦C 5.61 10.73 −139.37 −825.41

Figure 6. The unit cells of sphalerite and chalcopyrite.

7. The dependence of GULP data on atomistic lattice configurations

The concentration vector c determines the concentrations of Cu, Zn and Fe but not the position
of the atoms within the lattice. It is clear that there is a large number of different configurations
representing the same vector c and the free energy is in general different for these configurations.
In order to take this issue into account, a supercell approach has been implemented in which
all atoms are placed manually and no lattice symmetry is used a priori. The lattice unit cell is
duplicated many times to fill the supercell and randomly certain atoms are replaced in order
to fulfil the prescribed concentration percentage.

The following picture displays the three-dimensional lattice structure of cubic ZnS (space
group F 4̄3m) and tetragonal chalcopyrite (space group I 4̄2d). In earlier work by Groß, the
space group of chalcopyrite had wrongly been identified as P 4̄2m but recent papers [21, 24]
have it right.

From figure 6 we can read off the lattice transformation from sphalerite to chalcopyrite.
The Zn atoms at the corners of the unit cell are replaced by Cu; the six Zn atoms at the centres
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of every face are replaced by four Fe atoms and two Cu atoms. As the bonding energies change,
the S atoms slightly shift their positions resulting in an overall change in the space group. In
the direction of the lattice vector c of the unit cell, this corresponds to an almost doubling of
the lattice constant.

From these considerations we can derive a natural replacement mechanism for the
transformation from sphalerite to chalcopyrite (and vice versa). The positions where Cu
atoms and Fe atoms are found in chalcopyrite determine those lattice points where Cu and Fe
must be placed when altering the structure of sphalerite. The positions of the sulfur atoms are
automatically adjusted during the minimization run of GULP.

The generation of the free energy databases requires the computation of two huge tables
of the form f tab

1 (ci) and f tab
2 (ci) for a priori chosen concentration vectors c1, . . . , cN . For

each vector ci , many atomistic states cα
i are automatically generated that all represent ci on the

supercell. As the number of atomistic states cα
i representing ci can be large and as it is not clear

which of them are preferable, a file builder generates a certain number Rl of different GULP
input files (Rl is chosen dynamically, with 20 � Rl � 100, where (f tab

l (c
j

i ))1�j�20 are always
computed to sample the distribution), each with an atomistic configuration cα

i , 1 � α � Rl ,
corresponding to the selected concentration vector ci . For each input file, GULP is invoked
and the table entries f tab

l (cα
i ) are computed by the arithmetic mean

f tab
l (ci) := 1

Rl

Rl∑
α=1

f tab
l (cα

i ), l = 1, 2.

The entire procedure is repeated for all ci , 1 � i � N , to build the two databases, l = 1 for
chalcopyrite and l = 2 for sphalerite. For fixed c, the average values found represent the two
minima f tab

1 (c) and f tab
2 (c).

Even though this method works out nicely, it has one disadvantage. Since all atoms are
placed manually in the supercell (set up in accordance to the space group), GULP cannot use the
lattice symmetry to accelerate the computations. Hence, the calculations are time consuming.
For the generated database with discrete c values and partitions M1 = M3 = 30, M2 = 40,
the above calculations took 12 weeks of computations on a SUN workstation cluster.

For lattice geometry l = 1, 2 we want to analyse the variation in the free energies as
computed by GULP for Rl atomistic configurations all of which represent one concentration
vector. The aim is to find an empirical heuristic to control Rl .

Let ci be the ith selected entry in the list of concentration vectors which is kept fixed
in the following. Firstly, we compute admissible atom configurations c

j

i , 1 � j � 20, of a
3 × 3 × 3 supercell (for both lattice structures of sphalerite (l = 2) and chalcopyrite (l = 1))
which represent ci , then invoke GULP to compute the free energies f tab

l (c
j

i ), l = 1, 2. It is
possible that c

j

i = ck
i for j 	= k and j, k ∈ {1, 2, . . . , 20}, for instance, if only one atomistic

configuration exists to represent ci .
The values (f tab

l (c
j

i ))1�j�20 are used to sample the distribution. We calculate the mean
value (or expectation value)

f̄l := 1

20

20∑
j=1

f tab
l (c

j

i )

and the variance

sl :=
√∑20

j=1(f
tab
1 (c

j

i ) − f̄l)2)

20
.

Figure 7 shows the fraction sl/f̄l for l = 2 of the sample (f tab
2 (c

j

i ))1�j�20 for different
configurations of the sphalerite-supercell. s2/f̄2 is plotted as a function of two arguments, the
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Figure 7. Deviation of GULP data for ZnS as a function of lattice configuration.
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Figure 8. Cut through deviation data for x = 45 Cu atoms as a function of Fe atoms (left) and for
y = 45 Fe atoms as a function of Cu atoms (right).

number of Cu atoms on the x-axis and the number of Fe atoms on the y-axis, both numbers being
0 and 54. As there are overall 108 positions which are not occupied by S atoms, the remaining
are still filled by Zn. The lattice order of sphalerite is located at the origin (x = y = 0) of the
diagram; the lattice order of chalcopyrite is placed at the right corner (x = y = 54). For these
two geometries, the deviation of f tab

2 is exactly zero because only one atom configuration may
be chosen.

From figure 7 we learn that the deviation of f tab
2 grows considerably stronger in the

x direction than in the y direction indicating that the Cu atoms have a much larger impact on
the geometry of the sphalerite-supercell than Fe.

The variation in f tab
1 is not displayed but is very similar to figure 7 with larger values as the

superstructure of chalcopyrite almost doubles its length in the z direction. As the perspective
in figure 7 may be misleading, two cuts through the graph are displayed in figure 8. The first
is parallel to the y axis for x = 45 Cu atoms, the second parallel to the x-axis for y = 45 Fe
atoms.

The information of the sample with 20 computed free energies is now used to estimate Rl .
We assume that Xl := (f tab

l (c
j

i ))j is normally distributed where we put σl := sl for the variance
in Xl . The transformed distribution Ul := (Xl − f̄l)/σl has mean value 0 and variance 1. Now,
for a given number ρ > 0, we determine a confidence interval of length ρ which contains f̄ with
a probability of at least 95%. Let � denote the (tabulated) function of the normal distribution
with variance 1 and mean value 0. In order to fulfil the 95% niveau and due to symmetry we
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choose u0 := 1.96 (we have �(u0) ≈ 0.975). From the formula

|Xl − f̄l| � ρ

2
= u0

σ√
Rl

,

which implies Rl := (4u2
0σ

2)/ρ2, we infer the setting

Rl := min

{
100,

⌈
4u2

0s
2

ρ2

⌉}
.

The artificial cutoff value 100 is introduced to bound the computational effort.

8. Computation of the diffusion coefficient for Cu

The concentration of Cu governs the segregation process. The diffusion of Cu is nonlinear
and depends on the concentrations of the other constituents and on the vacancies. In the
following we perform computations to estimate this effect. Measured data is available for
a perfect ZnS lattice in [26]. The reported figures predict DFe ≈ DCu ≈ 103 · DZn and
DCu = 2.6 · 10−4 m2 s−1. We use the measured constants DZn and DFe directly but need to
analyse the dependence of DCu on the other constituents as this coefficient is crucial for the
quality of the results.

We introduce the autocorrelation function of an arbitrary phase variable A by

〈A〉 :=
∫

A(�) exp (−βH(�)) d�∫
exp (−βH(�)) d�

,

where � := (r, p) is an element of the 6N -dimensional phase space, N the number of particles
of the MD simulation, r the positions, p the momenta of the particles and β := (kBT )−1 with kB

the Boltzmann constant and H the Hamiltonian of the system. The computations are performed
in the canonical ensemble; the temperature is preserved using the Nosé thermostat [27].

For the determination of the diffusion coefficient the relation

DCu = 1

6
lim
t→∞

d

dt
〈(r(t) − r(0))2〉 (14)

is fundamental. Equation (14) is an example of a Green–Kubo relation [17,22] and generalizes
a result by Einstein [13].

Since DCu is a constant (for given c), (14) yields that 〈(r(t) − r(0))2〉 is asymptotically
linear in t ; therefore

DCu = 1

6
lim
t→∞

〈(r(t) − r(0))2〉
t

. (15)

Identity (15) relates the diffusivity of one selected Cu particle with the change in spatial
coordinates of the same particle. The general diffusion coefficient DCu = DCu(c) for the
chosen concentration vector c = (c1, c2, c3) is computed by averaging over the diffusion
coefficients of all particles.

Figure 9 plots DCu as a function of c. It shows that DCu increases for increasing
Fe concentration as due to (1) the vacancy concentration increases, too. c2 
→ DCu(c)

is decreasing, since in the physical process Zn must be replaced by Cu and leaves the
crystal.
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Figure 9. Functional dependence of DCu on Fe (left) and on Zn (right).

Figure 10. Diffusion of Cu. The density of the level sets indicates the steepness of the copper
gradient. At t = 0, the initial datum falls from 0.25 at ∂� to 0.001 in �.

Figure 11. Segregation of chalcopyrite (red) within sphalerite (blue) in a perfect crystal as predicted
by the harmonic approximation.

The computed value for DCu for a perfect crystal is DCu ≈ 2.23 · 10−4 m2 s−1 which does
not coincide with the measured value 2.6 · 10−4 m2 s−1 in [26]. Therefore, we multiply any
computed DCu(c) by 1.15 in order to calibrate with the measurements.

9. Numerical results

Now we will focus on numerical solutions to systems (5)–(9) in its two-dimensional form
based on the tabulated free energy and linear finite elements.

Figures 10 and 11 show the results of a finite element computation based on the tabulated
harmonic free energy.

Physical parameters: � = [0, 0.2 m] × [0, 0.1 m], T = 500 ◦C, γ = 3 · 10−9 m,
DCu: Modified values of the constant 2.6 · 10−4 m2 s−1 as explained in section 8,
DFe ≡ 1.26 · 10−4 m2 s−1, DZn ≡ 1.85 · 10−7 m2 s−1.
Triangulation data: 33153 points, 65536 triangles, h = 10−8.
General parameters: εGMRES = �t = 0.004, η = 10−8.
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Figure 12. Time evolution of the chalcopyrite phase with small stochastic Fokker–Planck term in
fl . At t = 0d only sphalerite (blue) is present (not displayed). As Cu enters from the boundary,
chalcopyrite (red) forms. One can observe that the segregation starts with small islands that grow
steadily.

Initial conditions: c10 ≡ 0.066, c20 ≡ 0.001 in �, χ0 minimum of χ 
→ F(c0, χ).

Boundary conditions: ∂νc1 = ∂νc3 = ∂νχ = 0 and c2 = 0.25 on ∂�.

Due to the boundary conditions, the Cu concentration increases in � during the
computation. Once it exceeds a certain threshold, as a consequence of the free energy
minimization (7), chalcopyrite (in red) is formed. The graph of Zn behaves contrary to that of
Cu. The concentration of Fe is not displayed; it is a perfect constant in time and space.

At first glance it seems disappointing that figure 11 just shows a regular segregation front
travelling inwards. But this result is clear due to symmetry: the initial values are constant in �

and the parameters on which the diffusion coefficient DCu depends do not vary on the isolines
displayed in figure 11.

As the experimental pictures of chalcopyrite disease within sphalerite suggest, there is a
competition between the elastic energy and the surface energy. Yet, as we have just seen, there
must be some mechanism which destroys the symmetry. Subsequently we assume that local
changes arise in the free energy densities. These changes may be due to inhomogeneities of
the material, and impurities in turn can be the seed for nucleation of chalcopyrite.

A stochastic source term in the context of spinodal decomposition has first been introduced
by Cook [10]. Langer [23] has developed a statistical theory of spinodal decomposition leading
to a Fokker–Planck equation. The stochastic source ξ is a white noise term and is added to the
computed free energies by setting

f st
1 (c) = f tab

1 (c) + ξ(x, t), f st
2 (c) = f tab

2 (c) − ξ(x, t), (16)

where again f tab
l (c) denote the tabulated energies of the harmonic approximation and f st

l

are the free energy databases with stochastic component. Figure 12 visualizes the result of
the computations with the stochastically perturbed free energy. We see that the solution looks
very similar to the in situ observations and also predicts small chalcopyrite islands that proceed
towards the main segregation front.
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10. Discussion

We begin with a general evaluation of the employed ab initio techniques and list the problems
that were encountered with these methods.

• No reasonable error estimates exist for the computed free energy as a function of
the number of atoms in the numerical computation. It is clear that the asymptotic
approximation of the calculated free energies towards some ‘limit’ as the number of
atoms becomes large is only a prerequisite but not a proof of convergence.

• MD and harmonic computations can only compute states in electronic equilibrium.
This is why electric equilibrium is assumed in the computations. Quantum effects are
neglected for the generation of the free energy database as QM computations are very
time consuming.

• The harmonic approximation does not capture well the vibrational parts of the entropy. As
the analysis of section 6 reveals, the free energies computed with harmonic approximation
and MD simulations may differ, and according to the formula F = E − T S this effect
increases as T increases. With the computer power available it was not possible to use
MD simulations on a large scale the way the harmonic approximation is used in this work.

• The static and high frequency dielectric constants εstat and εhf as well as the elastic
constants of chalcopyrite are not known from experiment. At least the elastic parameters
are needed to fit the GULP potentials. Therefore, the GULP potentials had to be fitted to
QM computations in the hope that this provides satisfying data until experimental results
are at hand.

• The numerical resolution of the finite element approach is quite poor when considering
the spatial scale needed to satisfactorily resolve transition layers, nucleation centres and
impurities.

• There exists no a priori justification of the density function theory; it can only be justified
a posteriori. As for the other ab initio computations, no absolute bounds exist for the
errors of the free energy approximations gained by QM computations.
The problem of resolving the electron–electron interaction is already inherent in the
Schrödinger equation itself which cannot be solved for three or more particles. Hartree–
Fock models (with corrections of the correlation energy) do not seem to improve the
situation.

• In simple cases, a renormalization of the frequencies, see [8] is possible, permitting the
computation of the anharmonic part of the free energy. In more complicated situations,
a thermodynamic integration between carefully chosen reference states as in [1] may be
convenient.

• Assumptions are made on the geometry of the lattice during the phase transition. This
means in particular that there is no intermediate lattice state with a different spatial
geometry and that no other mechanisms (such as ‘wall pinning’ or polarons) play a role.
More on this topic can be found in [31].

• In (7) the term
∫
�

γ |∇χ | defines a constant surface energy. The correct physical surface
energy FS is not a constant but depends on c and on the atomistic configurations. In order
to correctly compute FS, pairs of atomistic configurations for both lattice geometries have
to be plugged in and the surface energy has to be computed by averaging or by reasoning
which configurations are unphysical. The implementation costs for this procedure are
enormous.

• For practical implementation reasons, the numerical effort is limited and three artificial
restrictions are introduced: the number of subdivisions Mj for the free energy databases
in section 3, the size of the supercell in section 4 and the maximal number of computed
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atomistic configurations per concentration vector (here 100) in section 7. Nothing is
known about the impact of these bounds on the numerical solution (finite size effects).

For the GULP computations, a supercell as a conglomerate of 3 × 3 × 3 unit cells is generated
and only vectors c which are stoichiometric concentrations with respect to the supercell can
be represented. This last restriction is not severe. There are 216 atoms within the 3 × 3 × 3
supercell of sphalerite and 648 atoms within the larger supercell of chalcopyrite. Hence, c1 and
c2 can be resolved for the supercell of sphalerite with 1/216 ≈ 0.46% and with 1/648 ≈ 0.15%
for the supercell of chalcopyrite. Finally, the supercell geometry yields natural bounds for the
concentrations c1, c2 � 54/216 = 0.25 and c3 � 0.5.

A further note is required on the MD method. The number of atoms N of a computation
is restricted by computer capacities and the numerical effort grows exponentially with N .
A typical range for N is 103–106 atoms which is very far away from the Avogadro number
NA = 1023. Despite this gap the method gives in practice surprisingly good results as long
as T > 100 K. For low temperatures close to the zero point, quantum effects give large
contributions and it is reasonable to see why the method yields wrong results. Yet, it is
important to realize that whenever more than two atoms collide, there is no way to predict the
velocities and momenta of these atoms after the collision. No reliable estimates are known for
the number of collisions of triples (quadruples, quintuples, . . .) of atoms.

Finally, some remarks are in place about the limitations of the mathematical model for
chalcopyrite disease within sphalerite.

• The ansatz does not cover the smallest length scales. No attempt is made to resolve the
microstructure or the early stages of the nucleation of chalcopyrite within sphalerite.

• Impurities by other elements such as indium or selen are not taken into account.
• The attachment of S2− ions and the growth of the crystal surface is not incorporated.

A generalized model for the time-dependent domain and the derivation of an existence
result based on geometric measure theory is in preparation.

• The spatial distribution of the inhomogeneities is not purely random as was assumed for
simplicity. Precise knowledge on the coupling of ξ(x, t) to the concentration vector c

would be very valuable to improve the accuracy of the predictions by the model.
• In the simulations of section 8, material inhomogeneities as impurities are not taken into

account. Furthermore, these calculations assume that the ensemble is in equilibrium at
t = 0. The external field that corresponds to the diffusion force heats the system; therefore,
the thermostat is essential.

Little is known about the actual influence of impurities, but it is believed that they play a
crucial role as nucleation centres in the early stages of segregation. The mathematical models
of homogeneous nucleation are not yet satisfying and further research in this direction (e.g. by
analysing many-particle-models of Ising type) will hopefully yield some progress.

The main question concerning chalcopyrite disease within sphalerite is that of the
underlying key mechanism. The first possibility is that the phenomenon is caused by
inhomogeneous diffusion; the second option is that it is due to nucleation. If the diffusion
coefficients behave in reality as suggested by the computations in section 8 (that exclude
inhomogeneities) then the numerical results of section 9 indicate that diffusion as a responsible
mechanism must be ruled out.

To summarize, a quantitative model for DIS is developed in this paper. The simulations
capture the main properties of DIS. With the exception of metals where it is known that QM
effects cannot be neglected and the harmonic approximation fails and yields wrong answers,
the presented approach for chalcopyrite disease within sphalerite can be transferred to simulate
other phenomena of solid state physics.
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