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Abstract. A modified Allen-Cahn equation is combined with the compressible
Navier-Stokes system. We show that after a modification of the stress-tensor, for
the resulting equations the second law of thermodynamics is valid. We give a physical
motivation for this altered stress tensor and compare the new equations with the well
known phase field approach. The model can be used to describe cavitation in a flowing
liquid.
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1. Introduction

During the last 40 years, remarkable advances have been made to describe the behaviour

of materials undergoing phase changes, see the well known works [1], [3] and [2].

Unfortunately, most approaches consider inert systems, only a few, like [4], [5], [6]

and [7], incorporate convection. From the theoretical point of view as well as for a

certain class of applications, it is desirable to overcome this restriction. In this article, a

modified Allen-Cahn equation is combined with the Navier-Stokes system. The resulting

model, due to some assumptions that generally neeed not be fulfiled, requires further

generalization, but is a first step to describe the behaviour of gas phases in a flowing

liquid. The model allows phases to grow or shrink due to changes of temperature and

density in the fluid and incorporates their transport with the current. In a forthcoming

paper an adapted numerical scheme and sample solutions will be presented to underline

the physical importance of the model.

As a main result of this work, it is shown that, compared to the Navier-Stokes

equations, the stress tensor contains an additional term −δ%T∇χ⊗∇χ.
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2. Notations and Thermodynamic Relationships

Let Ω ⊂ IRd, 1 ≤ d ≤ 3 be a bounded domain with Lipschitz boundary. For 0 < D ≤ ∞
let ΩD := Ω × (0, D) and % : ΩD → IR+ denote the (averaged) density of the fluid,

e : ΩD → IR+ the internal energy, v : ΩD → IRd the velocity field of the fluid. Governed

by a phase parameter χ : ΩD → [0, 1], two phases (e.g. a gas and a liquid phase)

may exist in Ω. Let
√
δ denote the thickness of transition layers between two phases.

Generally, we postulate the potential energy density Epot of the system to be the convex

combination of the corresponding values of the two phases, giving rise to the definition

Epot = χEpot,1 + (1− χ)Epot,2. (1)

Similar relationships will be assumed for the entropy density S and the Gibbs free energy

density G. The internal energy density E is obtained after adding the kinetic energy:

E = Epot +
1

2
|v|2.

Capital letters genericly denote densities, values corresponding to small letters include

a factor ρ or ρi. Indices refer to the phase, values without index to the whole system.

For instance, we have

epot = epot,1 + epot,2 = %1Epot,1 + %2Epot,2

= %(χEpot,1 + (1− χ)Epot,2) = %Epot, (2)

e = epot +
%

2
|v|2.

% and χ are solutions of the system of partial differential equations (5) – (8) below and

allow us to calculate the specific densities %1, %2 of the phases.

To make the definitions precise, consider the specific volume V = 1
%
. Let Vi be the

specific volume of phase i (phase i has mass 1 in Vi) and Ṽi be the volume phase i is

actually occupying in V . Now we define

ψi := Ṽi

V
volume fraction of phase i in V , 0 ≤ ψi ≤ 1,

%i := ψi

Vi
= Ṽi

Vi

1
V

specific density of phase i, 0 ≤ ρi ≤ ρ,

χi := %i

%
= Ṽi

Vi
density quotient = mass of phase i in V , 0 ≤ χi ≤ 1.

Direct from the definition follows
∑

i

%iVi =
∑

i

ψi = 1.

We synonymously use χ1 = χ, χ2 = 1−χ. Let (for the moment) Mi denote the mass of

phase i in V. If we assume MiVi = Ṽi, that is both phases shall be incompressible, then

χi =
%i
%

=
Mi

V

1

%
= Mi.
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The specific densities %i are therefore obtained by

%1 = %χ, %2 = %(1− χ),

thereby explaining the third equation in (2).

To guarantee the formation of phases, we subtract the mixing entropy density S̃,

S̃ := W (χ) +
δ

2
|∇χ|2,

W (χ) := χ lnχ+ (1− χ) ln(1− χ)− 1

2
χ2, (3)

from S and set s̃ := %S̃. This represents the entropy density as

S = χS1 + (1− χ)S2 −W (χ)− δ

2
|∇χ|2.

Let T : ΩD → IR+ be the temperature and p : ΩD → IR+ the pressure of the fluid.

Since f/T = epot/T − s and (∂Tf)V = −s, we have

T

[
∂T

(
f

T

)]

V

= −epot

T
.

Therefore, the mixing entropy is not present in epot, but with a factor −T in the

Helmholtz free energy f and the Gibbs energy g. This leads to the representation

of e above and the definitions for the densities F and G by

F = χF1 + (1− χ)F2 + T S̃, G = χG1 + (1− χ)G2 + T S̃. (4)

3. Mathematical Formulation

Beside the definitions above, let ε > 0 be a scaling constant for the substantial derivative

dχ := ∂tχ+ v · ∇χ of χ. For given velocity field v, let RI := {x ∈ ∂Ω | v(x) · ~n(x) < 0}
denote the inlet, RO := {x ∈ ∂Ω | v(x) · ~n(x) > 0} the outlet of the domain Ω, where ~n

is the unit outer normal vector to ∂Ω.

We modify the stress tensor and set (δij be the Kronecker delta)

Γij := τij − pδij − δ%T∂iχ∂jχ,

τij := µ(∂ivj + ∂jvi) + ν(divv)δij

with viscosity coefficients ν, µ, where ν ≥ −2
3
µ for d = 3 and ν ≥ −µ for d = 2, see

(15). Notice that the correct form of the stress tensor and the restrictions on ν and µ

are assumed here, but will be a consequence of the entropy estimate in section 5.

The thermodynamic driving force of the Allen-Cahn like equation is defined by

J(%, T, χ) := W (χ) +
1

T
[χG1(%, T ) + (1− χ)G2(%, T )].
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With these definitions, we introduce the following system of equations corresponding to

conservation of mass (5), momentum (6) and energy (7):

For given (%0, v0, e0, χ0), (vr, Tr, χr) and %I find the solution U = (%, %v, e, χ)t of

∂t% = − div(%v), (5)

∂t(%v) = − div(%v ⊗ v + δ%T∇χ⊗∇χ) + div(τ)−∇p, (6)

∂te = div(L∇T − (e− Γ)v), (7)

ε ∂tχ = − ∂χJ +
δ

%
div(%∇χ)− εv · ∇χ (8)

in Ω with the initial values

(%, %v, e, χ)(·, 0) = (%0, %0v0, e0, χ0) in Ω

and the boundary values

χ = χr, v = vr, T = Tr on ∂Ω

and

% = %I on RI .

As a consequence of a parabolic maximum principle for (8), the logarithmic form of

W in (3) guarantees 0 < χ < 1 in Ω∞, if the same is true for the initial data χ0.

All extrema β of the phase parameter χ satisfy

∂χJ(%, T, β) = ln

(
β

1− β

)
− β +

1

T
(G1(%, T )−G2(%, T )) = 0.

This identity explains how ρ and T determine over T−1(G1 − G2)(ρ, T ) the preferred

phase (gas or liquid).

4. Assumptions

We list up all physical assumptions that were implicitly made in the approach above.

• The domain Ω as well as the inlet and outlet do not depend on time t.

• All phases are assumed to be moving with identical velocity vector v.

• For Epot, equation (1) is assumed. Similar relationships are assumed to hold for S,

F and G as explained above.

• The volume of a mixture consisting of 2 phases is supposed to obey the formula

V = χV1 + (1− χ)V2. (9)

• The viscosities νi and µi, the heat coefficients Li and the adiabatic coefficients γi
are assumed to be constants and shall have one value for both phases.

• Chemical reactions don’t take place. Magnetic and electric forces are neglected.
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• Both phases are assumed to be incompressible.

• T1 = T2: Two neighbouring phases shall have the same temperature

(instantaneous equalization of entropy).

• p1 = p2: Two neighbouring phases shall possess the same pressure on the boundary

(instantaneous equalization of volume).

• The heat generated by shearing of boundary layers is not taken into account.

• The buoyancy of gas phases is not incorporated.

5. Entropy Estimate

We prove the validity of the second law of thermodynamics for system (5) – (8),

corresponding directly to the existence of a Lyapunov-functional. We start by

calculating dsi, the total differential of phase i, i = 1, 2. By definition, we have

dsi = d(%iSi) = Si d%i + %i dSi.

Because of the Gibbs equation dSi = 1
T
dEi +

p
T
dVi it follows:

dsi = Si d%i +
%i
T
dEi +

%ip

T
dVi

=
(
Si − pVi

T

)
d%i +

%i
T
dEi +

p

T
d(%iVi)

=
(
Si − pVi

T
− Ei
T

)
d%i +

1

T
d(%iEi) +

p

T
dψi

= − 1

T
Gi d%i +

1

T
dei +

p

T
dψi.

And after summing up over all phases:

ds+ ds̃ =
∑

i

dsi = − 1

T

∑

i

Gi d%i +
1

T
de+

p

T
d(

∑

i

ψi)

︸ ︷︷ ︸
=0

.

Here we use the relationship d%i = χi d%+ % dχi and observe dχ1 = −dχ2. It follows:

ds+ ds̃ = − 1

T

∑

i

χiGi d%+
1

T
de− %

T
(G1 −G2) dχ. (10)

Now we assume that the internal energy available for thermodynamic processes does

not depend on v. For v = 0 the differential de in (10) is depot. If we consider the arising

equation as a relation in phase space, so that we can compare the ∂t-terms separately,

we get after integration:
∫

Ω

∂ts =
∫

Ω

[ 1

T
∂tepot − 1

T

∑

i

χiGi ∂t%− %

T
(G1 −G2) ∂tχ− ∂ts̃

]
.
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Now we need a representation of 1
T
∂tepot. Because of

∂te = ∂t

(
epot +

%

2
|v|2

)
= ∂tepot + v · ∂t(%v)− |v|2

2
∂t%,

exploiting the conservation equations (5), (6) and (7) yields

∫

Ω

1

T
∂tepot =

∫

Ω

[
− v

T
· ∂t(%v) +

|v|2
2T

∂t%+
1

T
div(L∇T − (e− Γ)v)

]

=
∫

Ω

[
− v

T
· div(−%v ⊗ v + Γ)− |v|2

2T
div(%v)

+
1

T
div(L∇T − (epot +

%

2
|v|2 − Γ)v)

]
.

After partial integration, this means

∫

Ω

1

T
∂tepot =

∫

Ω

[
L
|∇T |2
T 2

+
Γ

T
:∇v + epotv · ∇

( 1

T

)]
+

∫

∂Ω

[
−epot

v

T
+ L

∇T
T

]
·~n.

We get

∫

Ω

∂ts =
∫

Ω

[
L
|∇T |2
T 2

+
Γ

T
:∇v + epotv · ∇

( 1

T

)
− %

T
(G1 −G2) ∂tχ

− 1

T

∑

i

χiGi ∂t%− ∂ts̃
]
+

∫

∂Ω

[
− epot

v

T
+ L

∇T
T

]
· ~n. (11)

Now we transform the term − 1
T

∑
i χiGi ∂t% in (11).

∫

Ω

− 1

T

∑

i

χiGi ∂t% =
∫

Ω

1

T

∑

i

χiGi div(%v)

=
∫

Ω

−∇
( 1

T

∑

i

χiGi

)
· (%v) +

∫

∂Ω

1

T

∑

i

%iGiv · ~n

=
∫

Ω

[
−∑

i

%iGiv · ∇
( 1

T

)
− %

T

∑

i

Gi∇χi · v − v

T
·∑

i

%i dGi

]

+
∫

∂Ω

1

T

∑

i

%iGiv · ~n. (12)

We simplify this further. The first and third integrand in (12) are

∫

Ω

−∑

i

%iGiv · ∇
( 1

T

)
=

∫

Ω

[
− epotv · ∇

( 1

T

)
− v

T
(s+ s̃) · ∇T − pv · ∇

( 1

T

)]
,

∫

Ω

− v

T
·∑

i

%i dGi =
∫

Ω

− v

T
· (∇p− (s+ s̃)∇T ).
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The last equality is a consequence of dGi = −Si dT + Vi dp and
∑
i %iVi = 1. Therefore

∫

Ω

− 1

T

∑

i

χiGi ∂t% =
∫

Ω

[
− epotv · ∇

( 1

T

)
− 1

T
(%v) ·∑

i

Gi∇χi
]

−
∫

Ω

[
pv · ∇

( 1

T

)
+
v

T
· ∇p

]
+

∫

∂Ω

1

T

∑

i

%iGiv · ~n.

By inserting this in (11), we obtain
∫

Ω

∂ts =
∫

Ω

[
L
|∇T |2
T 2

+
τ

T
: ∇v − p divv − pv · ∇

( 1

T

)
− v

T
· ∇p− ∂ts̃

]

−
∫

Ω

δ%∇χ⊗∇χ : ∇v −
∫

Ω

%

T
(G1 −G2)(v · ∇χ+ ∂tχ)

+
∫

∂Ω

[ ∑

i

%iGi − epot

] v
T
· ~n+

∫

∂Ω

L ∇T
T

· ~n. (13)

In (13) we remark at once, that
∫

Ω

[
− p

T
divv − pv · ∇

( 1

T

)
− v

T
· ∇p

]
=

∫

Ω

−div(p
v

T
) =

∫

∂Ω

−p v

T
· ~n,

enabling us to reformulate the boundary integrals:
∫

∂Ω

[ ∑

i

%iGi − epot

] v
T
· ~n−

∫

∂Ω

p
v

T
· ~n = −

∫

∂Ω

(s+ s̃)v · ~n.

Now we write the modified Allen-Cahn equation in the form

− 1

T
(G1 −G2) = ε(∂tχ+ v · ∇χ) +W ′(χ)− δ

%
div(%∇χ).

Inserting in (13) yields:
∫

Ω

∂ts =
∫

Ω

[
L
|∇T |2
T 2

+
τ

T
: ∇v − δ%∇χ⊗∇χ : ∇v + ε% (∂tχ+ v · ∇χ)2 − ∂ts̃

]

+
∫

Ω

(%W ′(χ)− δdiv(%∇χ))(∂tχ+ v · ∇χ)−
∫

∂Ω

(s+ s̃)v · ~n+
∫

∂Ω

L ∇T
T

· ~n.

Next we systematically remodel (%W ′(χ)− δdiv(%∇χ))(∂tχ+ v · ∇χ). Firstly,
∫

Ω

(%W ′(χ)− δdiv(%∇χ)) ∂tχ =
∫

Ω

[
− (W (χ) +

δ

2
|∇χ|2) ∂t%+ ∂t(%W (χ) +

δ%

2
|∇χ|2)

]

−
∫

∂Ω

δ% ∂tχ∇χ · ~n,

and for the transport term after partial integration
∫

Ω

(%W ′(χ)−δdiv(%∇χ)) v · ∇χ=
∫

Ω

∇(%W (χ) +
δ%

2
|∇χ|2) · v − (W (χ) +

δ

2
|∇χ|2)∇% · v
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+
∫

Ω

δ%∇χ⊗∇χ : ∇v −
∫

∂Ω

δ%(v · ∇χ)∇χ · ~n.

Thus we get

∫

Ω

∂ts =
∫

Ω

L
|∇T |2
T 2

+
τ

T
: ∇v + ε% (∂tχ+ v · ∇χ)2 +∇s̃ · v − S̃∂t%− S̃∇% · v

−
∫

∂Ω

s̃v · ~n−
∫

∂Ω

sv · ~n+
∫

∂Ω

L
∇T
T

· ~n−
∫

∂Ω

δ%(∂tχ+ v · ∇χ)∇χ · ~n.

Finally we use
∫

∂Ω

−s̃v · ~n =
∫

Ω

−div(s̃v) =
∫

Ω

−v · ∇s̃− s̃ divv,

∫

Ω

[
− S̃ ∂t%− s̃ divv − S̃ ∇% · v

]
= 0,

to get the result:

∫

Ω

∂ts+
∫

∂Ω

sv · ~n =
∫

Ω

[
L
|∇T |2
T 2

+
τ

T
: ∇v + ε% (∂tχ+ v · ∇χ)2

]

−
∫

∂Ω

%(∂tχ+ v · ∇χ) δ∇χ · ~n+
∫

∂Ω

L ∇T
T

· ~n. (14)

Now, for a thermodynamically closed system, there is no temperature and entropy flux

at ∂Ω. So, by choosing Neumann-boundary data for χ or χ ≡ const on ∂Ω, all boundary

integrals in (14) vanish. L |∇T |
2

T 2 is a production term due to heat diffusion, τ
T

: ∇v the

dissipated motion energy. Defining the tensor fij := 1
2
(∂ivj + ∂jvi), we see τ : ∇v ≥ 0:

τ : ∇v = µ
∑

i,j

(∂ivj + ∂jvi)∂jvi + ν(divv)
∑

i,j

∂jviδij

= µ
∑

i,j

2(fij)
2 + ν

∑

k

fkk
∑

i,j

fijδij

= 2µ
∑

i,j

(fij)
2 + ν(

∑

i

fii)
2. (15)

After diagonalizing fij by principal axis transformation and for ν ≥ −2
3
µ for d = 3 we

get τ : ∇v ≥ 0 and therefore ∂t
∫
Ω
s ≥ 0 as claimed. Notice also that

∫
Ω
ε% (∂tχ+ v · ∇χ)2

corresponds to the Lyapunov functional of the unmodified Allen-Cahn equation.

6. Interpretation of the New Stress Tensor

As we have seen above, in comparison to the Navier-Stokes equations, the tensor Γ has

been changed in our model. Beside the motivation by the second law of thermodynamics,
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there exists another physical reason for this modification. To see this, we look at the

Navier-Stokes equations and remember the identity

p =
d

dV
[−FNST(V, T )]. (16)

So pδij is the part of the stress tensor that responds to changes of volume and that we

therefore shall call the elastic component of Γ. Now we split Γ and set

Γ = Γel + Γinel, Γel = −p δij. (17)

For our equations consider the functional (the specific density fulfils V = %−1)

F(V, T, χ) :=
∫

Ω

%(x) F (
1

%(x)
, T (x), χ(x)) + %(x)T (x)

δ

2
|∇χ(x)|2 dLn(x). (18)

Let Φ : Ω0 → Ω be the transformation from Lagrange- to Euler-coordinates, %0 be the

density in Ω0. For a C1-vectorfield ξ, let ψ : IRd × [0, 1] → IRd be a deformation in the

direction of ξ, that is ψ(x, 0) = x and ∂sψ = ξ ◦ ψ, 0 ≤ s ≤ 1. To explain the method

we start with the second term in (18), map it to Ω0 and rewrite it in the form

F2 :=
∫

Ω0

[
%̃0T̃0

δ

2
|∇χ̃|2

]
◦ Φ̃,

where χ̃ = χ ◦ ψ−1, %̃0 = %0 ◦ ψ−1, T̃0 = T0 ◦ ψ−1 and Φ̃ = ψ ◦ Φ. Because of

∂jχ̃ =
∑d
i=1(∂iχ) ◦ ψ−1∂j(ψ

−1)i, we have

F2 =
∫

Ω0

[
%̃0T̃0

δ

2

∑

i,j,k

∂iχ ◦ ψ−1∂j(ψ
−1)i ∂kχ ◦ ψ−1∂j(ψ

−1)k
]
◦ Φ̃

=
∫

Ω0

[
%0T0

δ

2

∑

i,j,k

∂iχ ∂j(ψ
−1)i ◦ ψ ∂j(ψ−1)k ◦ ψ ∂kχ

]
◦ Φ.

From this result, as an application of the product rule, we obtain

∂sF2

∣∣∣
s=0

=
∫

Ω0

{
%0T0

δ

2

∑

i,j,k

∂iχ∂kχ
[
∂s(∂j(ψ

−1)i ◦ ψ)∂j(ψ
−1)k ◦ ψ

+ ∂j(ψ
−1)i ◦ ψ ∂s(∂j(ψ−1)k ◦ ψ)

]}
◦ Φ.

A short calculation gives ∂s[∂j(ψ
−1)i ◦ ψ]∂j(ψ

−1)k ◦ ψ = −∂iξk and we get:

∂sF2

∣∣∣
s=0

= −
∫

Ω0

[
%0T0

δ

2

∑

i,k

∂iχ(∂iξk + ∂kξi)
]
◦ Φ

= −
∫

Ω0

%0T0 δ∇χ⊗∇χ : ∇ξ ◦ Φ.

In the same manner, the first part of (18) is treated. Because of (16) and (17) it follows

(divξ comes from ∂s det(Dψ)):

∂sF1

∣∣∣
s=0

= −
∫

Ω0

%0 p divξ ◦ Φ =
∫

Ω0

%0 Γel : ∇ξ ◦ Φ.
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Combining the results, we obtain (Idij = δij)

∂sF
∣∣∣
s=0

= −
∫

Ω0

%0[p Id + δT0∇χ⊗∇χ] : ∇ξ ◦ Φ.

So we understand the change of the stress tensor as a consequence of subtracting δ
2
|∇χ|2

from the entropy density S.

7. Comparison with the Phase Field equation

For v ≡ 0, the entropy estimate is fulfiled with the original stress tensor Γ̃ij := τij− pδij
of the Navier-Stokes equations. Since ∂t% = 0, we may set without loss of generality

% ≡ 1. For ε = 1 and L = const, equations (5) – (8) can be rewritten as

∇p = 0, (19)

∂te = L4T,
∂tχ = − ∂χJ + δ4χ.

Now, by setting

Epot,1 := T + 1, Epot,2 := T, (20)

such that e = epot = T + χ, and convenient ∂χJ , we recover the phase field equations:

∂t(T + χ) = L4T,
∂tχ = − ∂χJ + δ4χ,

where due to (19) a physical situation with constant pressure is considered. Apparently,

due to (20), T jumps between two phases. So we see that our model is related to the

phase field model, but does not account for temperature jumps across boundary layers.

8. Conclusion

The model presented here is a first step to incorporate transport mechanisms in the

description of phase formation processes where the mass of the phases is no order

parameter. It still needs generalizations to be applicable to practical problems. The

approach was made as general as possible to simplify further improvements, this is why

the system is compressible while single phases are regarded as incompressible.
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