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On reconstitutive phase transitions
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Summary: This article studies diffusion in solids in the case of two phases under isothermal
conditions where due to plastic effects the number of vacancies changes when crossing a transition
layer, i.e. a reconstitutive phase transition. A segregation model is derived and the equations are
studied in the limit of a sharp interface. A Gibbs–Thomson law is derived and it is shown that the
vacancy component of the chemical potential jumps across the transition layer thereby explaining
recent experimental observations. The thermodynamic correctness of the model is shown as well
as the existence of weak solutions with logarithmic free energies.

1 Introduction
The present article is concerned with the influence of phase transitions on diffusion
processes in solids close to transition fronts. In particular the model developed here
conclusively explains recent experimental results in [29], see also [30], on the ferrite
transformation at high temperature in low-carbon steels where a jump of the chemical
potential across the interface is observed. This observation is not in agreement with well-
established mathematical and physical models for interface dynamics like the Allen–Cahn
or phase field equations, [5], the Cahn–Hilliard system, [12], the Stefan problem, [20], or
other recent models for phase transitions in solids, see for instance [14, 2], and [3].

In [29] also some numerical simulations are done. They are based on the representation
fl = ∑M

i=1 Xliµli(Xl1, . . . , XlM) of the free energy density of phase l and a formula for
the mass flux J related to the Onsager relation, see (2.5) below. Both crucial identities thus
depend on the vector µ of chemical potentials which in turn depends in a complicated way
on the molar fractions Xli. Explicit formulas for µ as a function of Xli are provided by huge
data bases in CALPHAD or SGTE, see [17, 15], and http://www.calphad.org,
http://www.sgte.org. In this way, the jump of the chemical potential is captured
in the numerical computations in [29], but no further explanation for the jump of µ is
given. This is the objective of the present article.

A jump of the chemical potential was also observed numerically in [9] on studies
of stress assisted diffusion in Gallium Arsenide single crystals where unwanted liquid
droplets grow in the solid surrounding. Because contrary to the solid phase the liquid

AMS 2000 subject classification: 35K15, 74F25, 74N20
Key words: Phase transitions, dynamics of phase boundary, initial value problems for parabolic equations
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126 Blesgen

phase does not contain any dislocations and vacancies, this leads to a jump of the chemical
potential across the solid-liquid interface. For the chemical potential of the Gallium phase
and the Arsenide phase, [9] postulates the constitutive relations

µGa = µ0
Ga + RT log(1 − y) + (L0 + L1(3 − y))2,

µAs = µ0
Ga + RT log(y) + (L0 + L1(1 − 4y))(1 − y)2,

where the constants L0, L1 > 0 measure the strength of the mixing energy, T denotes
the constant temperature and R is the gas constant. The parameter y denotes the arsenic
mole fraction. It is set according to measured values and jumps at the interface.

Key to the mathematical formulation presented here is Equation (2.9) that describes
the behaviour of the vacancies as a traveling wave with a non-vanishing velocity only
close to the interfacial layer. This ansatz is purely phenomenological. From the mechanical
point of view, close to a transition layer the internal forces may be considerably larger
than the drag forces of the lattice and the material undergoes a plastic deformation. On
the atomistic level, this may be accompanied by the presence of dislocations, by twinning
or by the generation of shear bands. In this article no attempt is made to incorporate these
phenomena into the model as at present no satisfying theory for the dynamics of lattice
dislocations exist (but see [25, 22]).

As we shall see, due to (2.9) the number of vacant lattice positions nv changes locally.
This causes a local change of the concentration vector c which is the reason for the local
variation of the free energy with respect to c close to the interface.

The outline of this article is as follows. In Section 2 we introduce some notation and
derive the model. A thermodynamic validation follows in Section 3. The mathematical
existence proof is subdivided into two parts. The first part in Section 4 deals with the
straightforward case of positive mobilities and polynomial free energies. The second part
in Section 5 discusses possibly degenerate mobilities and a logarithmic free energy and
uses part one. The sharp interface limit is studied in Section 7.

2 Derivation of the model
We consider an isothermal regime with constant temperature θ . Let � ⊂ RD be a bounded
domain with Lipschitz boundary that contains M ≥ 1 different species of molecules.

Let ni = ni(x, t) be the number of lattice sites occupied by an atom of species i,
1 ≤ i ≤ M and let n := (n1, . . . , nM). By nv we denote the number of vacant lattice
positions. Due to plastic deformations near the interface the local coordination of the atoms
may change irreversibly. Conservation of mass implies that

∫
� ni(x, t)dx are conserved

quantities for 1 ≤ i ≤ M. Yet, the mass densities vary locally when crossing a phase
transition due to changes of the lattice geometry. In the following we will take this
into account by allowing the vacancy number nv to change locally. This means that∫
�

nv(x, t)dx is a non-conserved quantity.
Consequently we write

N = N(n, nv) :=
M∑

i=1

ni + nv (2.1)
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Reconstitutive phase transitions 127

for the available lattice sites in � and set ci := ni
N , 1 ≤ i ≤ M for the concentration

of the i-th constituent. The established mathematical models are formulated for the
concentration vector c := (c1, . . . , cM) and neglect plastic effects.

As we assume that at most two phases coexist we introduce a phase parameter
χ = χ(x, t) ∈ [0, 1] which is an indicator function of Phase 1, say. Instead of the
common variable c we formulate the model for (n, nv), as we want to keep track of the
change of lattice positions during the reorganisation of the lattice close to the transition
layer.

The free energy F of the system is

F = F(n, nv, χ) =
∫
�

f(n, nv, χ) dx

with the free energy density f(n, nv, χ). For f we make the ansatz

f(n, nv, χ) = χ f1(n, nv) + (1 − χ) f2(n, nv) + θ
(

W(χ) + γ̃

2
|∇χ|2 + 1

2
|∇nv|2

)
,

(2.2)

where the last term is due to the entropy of mixing. Furthermore, γ̃ > 0 determines the
square root of the thickness of the boundary layer between the two phases, and

W(χ) := χ ln χ + (1 − χ) ln(1 − χ) − θcχ
2

is a double well potential for a large constant θc > 0. To simplify notation, we set γ := θγ̃ .
The unconserved order parameter χ is governed by the Allen–Cahn equation

τ̂∂tχ = −∂ f

∂χ
(n, nv, χ) (2.3)

with a positive constant τ̂ = τ̂(θ) that adjusts the time scale of the propagation in χ, and
∂ f
∂χ

denotes the first variation of the functional f with respect to χ, i.e.

∂ f

∂χ
(n, nv, χ)ζ = d

ds
f(n, nv, χ + sζ)|s=0.

The functions fl in (2.2) denote the convex and smooth free energy densities of phase
l. A possible choice on fl , l = 1, 2 is the purely entropic ansatz

fl(n, nv) := kBθ

[ M∑
i=1

(ni

N

)(
ln

(ni

N

)
+ El

i

kBθ

)
+

(nv

N

)(
ln

(nv

N

)
+ El

0

kBθ

)]
, (2.4)

where kB denotes the Boltzmann constant and El
i > 0 are enthalpic energy terms.

The conservation of mass leads to the formulation ∂tn = −div(J ). Onsager’s postu-
late, [23, 24], states that the thermodynamic flux is linearly related to the thermodynamic
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128 Blesgen

force. In our case the thermodynamic forces are the negative chemical potential gradients,
and we obtain the phenomenological equations, see [18, p. 137],

Ji = −
M∑

j=1

Li j∇µ j , 1 ≤ i ≤ M, (2.5)

with a mobility matrix L = (Li j )1≤i, j≤M that may depend on the solution vector. The
Onsager reciprocity law, [23, 24, 18], states that L has to be symmetric which we assume
in the following. To simplify the existence theory we will further assume that L is positive
definite. By

µi(n, nv, χ) = ∂ f

∂ni
(n, nv, χ), 1 ≤ i ≤ M, µv(n, nv, χ) = ∂ f

∂nv

(n, nv, χ)

we denote the i-th chemical potential and the vacancy component of the chemical poten-
tial, respectively. Furthermore we set µ := (µ1, . . . , µM).

Similar to (2.3) we postulate that nv is governed by gradient descend dynamics,

∂tnv = −V(χ)
δ f

δnv

(n, nv, χ) = −V(χ)µv(n, nv, χ),

where a physically reasonable ansatz for V is, see [6] and [16],

V(χ) := χ(1 − χ). (2.6)

As a consequence of the evolution laws ∂tn = −div(J ) and ∂tnv = −V(χ)µv, n and nv

are subject to continuous changes and are no integer quantities. Similarly, N = N(x, t)
specifies an inverse density.

To conclude, we are concerned with the following system of equations:

∂tni = div
( M∑

j=1

Li j∇µ j

)
, (2.7)

µi = ∂ f

∂ni
(n, nv, χ), (2.8)

∂tnv = −V(χ)µv(n, nv, χ), (2.9)

µv = ∂ f

∂nv

(n, nv, χ), (2.10)

τ̂∂tχ = γ�χ + ω(n, nv, χ) (2.11)

combined with the initial conditions

ni(·, 0) = ni0, nv(·, 0) = nv0, χ(·, 0) = χ0 in �, (2.12)

and the Neumann- and no-flux boundary conditions

∇ni · ν = ∇µi · ν = ∇µv · ν = ∇nv · ν = ∇χ · ν = 0 on ∂�, t > 0. (2.13)

In this formulation, ni0, nv0 and χ0 are initial values for ni , nv and χ, and ν denotes the
outer normal to ∂�.
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Reconstitutive phase transitions 129

A comparison to (2.3) yields

ω(n, nv, χ) = ( f2 − f1)(n, nv) − θW ′(χ).

If we multiply (2.9) with a test function, integrate by parts and respect the boundary
conditions for ∇nv, we obtain

∂tnv = div(V(χ)θ∇nv) − b(n, nv, χ).

A comparison with (2.9) and using (2.4) yields for the source term b

b(n, nv, χ) = V(χ)
(
χ

∂ f1

∂nv

+ (1 − χ)
∂ f2

∂nv

)
(2.14)

= kBθ

N
V(χ)

M∑
i=1

(ni

N

)[
ln

(nv

ni

)
+χ

E1
0−E1

i

kBθ
+(1−χ)

E2
0−E2

i

kBθ

]
,

where we used for l = 1, 2

∂ fl
∂nv

(n, nv) = kBθ

N

M∑
i=1

(ni

N

)[
ln

(nv

ni

)
+ El

0 − El
i

kBθ

]
.

Due to (2.9), the number of vacancies nv is different in each phase. Therefore, in the limit
γ → 0, the vacancy component of the chemical potential µv jumps at the interface.

3 Thermodynamic validation
We shortly verify the second law of thermodynamics for the equations (2.7)–(2.13). As
the temperature θ is kept constant it is enough to show that for a closed system the total
free energy decreases with time.

The chain rule yields d
dt f(n, nv, χ) = ∑M

i=1
∂ f
∂ni

∂tni + ∂ f
∂nv

∂tnv + ∂ f
∂χ

∂tχ. Thus we have

to test (2.7)i with ∂ f
∂ni

, (2.9) with ∂ f
∂nv

and (2.11) with ∂ f
∂χ

. After summation, integration
over � and one integration by parts the result is

d

dt

∫
�

f(n, nv, χ) +
∫
∂�

M∑
i=1

µi Ji · ν −
∫
�

[ M∑
i=1

∇µi · Ji + ∂ f

∂nv

∂tnv + ∂ f

∂χ
∂tχ

]
= 0.

With the help of (2.3), (2.5) and (2.9) this can be rewritten in the form

d

dt

∫
�

f(n, nv, χ) +
∫
�

[
L∇µ : ∇µ + V(χ)(µv)

2 + 1

τ̂
(∂χ f(n, nv, χ))2

]

+
∫
∂�

M∑
i=1

µi Ji · ν = 0. (3.1)
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130 Blesgen

This is the constitutive equality for the Helmholtz free energy. L∇µ : ∇µ represents the
entropy production due to mass fluxes of constituents 1 to M, V(χ)µv(n, nv, χ)2 is the
production due to the vacancy flux and finally 1

τ̂
(∂χ f(n, nv, χ))2 the production due to

reorganisation of the phases. In Section 5 we will show that 0 < χ < 1 almost everywhere
in �. Thus all production terms are non-negative yielding for a thermodynamically closed
system the crucial estimate d

dt

∫
� F(n(x, t), nv(x, t), χ(x, t)) dx ≤ 0.

4 Existence result for positive mobilities
In this section we study a regularisation of System (2.7)–(2.13) with a mobility V that
is bounded away from zero. In Section 5 we will use this result to generalise to the
regularised system with possibly degenerate mobility. The regularised problem is obtained
after adding an artificial viscosity term κ

2

(∑M
i=1 |∇(ni/N )|2 + |∇(nv/N )|2) to the free

energy for small κ > 0. Later we will derive uniform estimates independent of κ that
allow us to pass to the limit κ ↘ 0.

We apply techniques from [19] and [31], see also [27], originally developed for
the Navier–Stokes equations. Related mathematical methods for estimating degenerate
parabolic equations can be found in [7, 10], and [8].

For a stop time T > 0 let �T := � × (0, T). By Ck(�) we denote the k-times
continuously differentiable functions in � and by Hm(�) = Hm,2(�) for m ∈ N the
Sobolev space of m-times weakly differentiable functions, i.e. the space of functions u
for which ∂αu exists in the Hilbert space L2(�) in the weak sense for any α ∈ Rn with
|α| ≤ m. For later use in Theorem 6.2 we also need to extend this definition of Hs(�)

to general real s > 0. To this end let s = m + σ with m ∈ N and 0 < σ < 1. We then
introduce (see [1, Theorem 7.48] for details)

‖u‖Hs(�) :=
(

‖u‖2
Hm (�) +

∑
|α|=m

∫
�

∫
�

|∂αu(x) − ∂αu(y)|2
|x − y|n+2σ

dx dy

)1/2

such that

Hs(�) := {u ∈ L2(�) | ‖u‖Hs(�) < ∞}.
We are going to impose growth conditions on (compare with (2.2))

f (n, nv, χ) := χ f1(n, nv) + (1 − χ) f2(n, nv) + θW(χ)

and it is convenient to rewrite f by setting

f (n, nv, χ) = f̂
( n

N
,

nv

N
, χ

)
=: f̂ (c, cv, χ)

and state conditions for f̂ . With this definition in mind, we make the following assump-
tions to show existence of weak solutions (a weak solution to (2.7)–(2.13) is defined as
in (4.1)–(4.7) with arbitrary test functions ϕ ∈ H1(�)):

(A0) � ⊂ RD is a bounded domain with Lipschitz boundary.
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Reconstitutive phase transitions 131

(A1) The initial values fulfill n0 ∈ H1(�;RM); χ0, nv0 ∈ H1(�) such that

f(n0, nv0, χ0) + κ

2

( M∑
i=1

∣∣∣∇(ni0

N0

)∣∣∣2 +
∣∣∣∇(nv0

N0

)∣∣∣2
)

< ∞.

(A2) The free energy density f fulfills f ∈ C1(RM × R+ × R;R). Furthermore, for all
δ > 0 there exists a constant Cδ > 0 such that for all (n, nv) with N(n, nv) 
= 0 and
χ ∈ R ∣∣∣∂χ f̂

( n

N
,

nv

N
, χ

)∣∣∣ ≤ δ f̂
( n

N
,

nv

N
, χ

)
+ Cδ.

(A3) V : R→ R
+ is a continuous function and there exist constants v1, v0 > 0 such that

v0 ≤ |V(χ)| ≤ v1 for all χ ∈ R.

(A4) The mobility matrix L is a symmetric, positive definite tensor with constant entries.

We remark that by Assumption (A2) any polynomial growth is allowed for f̂ , whereas
exponential growth is not.
In particular, (A2) with δ = 1 yields the existence of a constant C1 > 0 such that
f ≥ −C1.

Lemma 4.1 Let (A0)–(A4) hold. Then there exists (n, nv, µ,µv, χ) which satisfies (2.7)–
(2.13) in the weak sense such that for any 0 < q < 1

(i) n ∈ L∞(0, T ; H1(�;RM)) ∩ C0([0, T ]; Hq(�;RM)),
∂tn ∈ L2(0, T ; (H1(�;RM))′),

(ii) nv ∈ L∞(0, T ; H1(�)) ∩ C0([0, T ]; Hq(�)), ∂tnv ∈ L2(�T ),

(iii) χ ∈ L∞(0, T ; H1(�)) ∩ C0([0, T ]; Hq(�)), ∂tχ ∈ L2(0, T ; (H1(�))′),

(iv) µ ∈ L2(0, T ; H1(�;RM)), µv ∈ L2(�T ),

(v) (n, nv, χ)(t = 0) = (n0, nv0, χ0).

Proof: Let {ϕi}i∈N be the eigenfunctions of the Laplace operator with Neumann boundary
conditions, i.e. for associated eigenvalues (λi)i∈N ∈ R+

−�ϕi = λiϕi in �,

∇ϕi · ν = 0 on ∂�.

The functions {ϕi}i∈N form an orthogonal system in L2(�) and H1(�). We can normalise
them such that (ϕi, ϕ j)L2(�) = δi j . Additionally we may assume λ1 = 0, ϕ1 = const.
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132 Blesgen

For K ∈ N we consider the Galerkin approach

nK
i (x, t) =

K∑
k=1

αK
ik (t)ϕk(x), µK

i (x, t) =
K∑

k=1

βK
ik (t)ϕk(x), 1 ≤ i ≤ M,

nK
v (x, t) =

K∑
k=1

γ K
k (t)ϕk(x), µK

v (x, t) =
K∑

k=1

δK
k (t)ϕk(x),

χK (x, t) =
K∑

k=1

εK
k (t)ϕk(x).

These functions solve

∫
�

∂tn
K
i ϕl = −

∫
�

M∑
j=1

Li j∇µK
j · ∇ϕl for 1 ≤ i ≤ M, (4.1)

∫
�

µK
i ϕl =

∫
�

∂ f

∂ni
(nK , nK

v , χK )ϕl

+ κ

∫
�

∇(nK
i /N K ) · ∇(ϕl/N K ), (4.2)

∫
�

∂tn
K
v ϕl = −

∫
�

V(χK )µK
v ϕl, (4.3)

∫
�

µK
v ϕl =

∫
�

∂ f

∂nv

(nK , nK
v , χK )ϕl

+ κ

∫
�

∇(nK
v /N K ) · ∇(ϕl/N K ), (4.4)

τ̂

∫
�

∂tχ
Kϕl =

∫
�

ω(nK , nK
v , χK )ϕl −

∫
�

γ∇χK · ∇ϕl, (4.5)

nK
i (0) = �K ni0 :=

K∑
k=1

(ni0, ϕk)L2(�)ϕk, 1 ≤ i ≤ M, (4.6)

nK
v (0) = �K nv0, χK (0) = �Kχ0. (4.7)

Here we introduced the projection �K : L2(�) → span{ϕ1, . . . , ϕK }.
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Reconstitutive phase transitions 133

The coefficient functions αK
il (t), βK

il (t), γ K
l (t), δK

l (t) and εK
l (t) for 1 ≤ i ≤ M, 1 ≤ l ≤ K

solve the following initial value problem for a system of ordinary differential equations

∂tα
K
il = −λl

M∑
j=1

Li jβ
K
jl

∫
�

ϕl, (4.8)

βK
il =

∫
�

∂ f

∂ni

( K∑
j=1

αK
1 jϕ j , . . . ,

K∑
j=1

αK
M jϕ j ,

K∑
j=1

γ K
j ϕ j ,

K∑
j=1

εK
j ϕ j

)
ϕl (4.9)

+κλlα
K
il

[ ∫
�

ϕl

(N K )2 +
( M∑

m=1

αK
ml

)2
∫
�

ϕl

(N K )4 −2
M∑

m=1

αK
ml

∫
�

ϕl

(N K )3

]
,

∂tγ
K

l = −
∫
�

V
( K∑

j=1

εK
j ϕ j

)
δK

l , (4.10)

δK
il =

∫
�

∂ f

∂nv

( K∑
j=1

αK
1 jϕ j , . . . ,

K∑
j=1

αK
M jϕ j ,

K∑
j=1

γ K
j ϕ j ,

K∑
j=1

εK
j ϕ j

)
ϕl (4.11)

+κλlγ
K
il

[ ∫
�

ϕl

(N K )2 +
( M∑

m=1

γ K
ml

)2
∫
�

ϕl

(N K )4 −2
M∑

m=1

γ K
ml

∫
�

ϕl

(N K )3

]
,

τ̂∂tε
K
l =

∫
�

ω
( K∑

j=1

αK
1 jϕ j , . . . ,

K∑
j=1

αK
M jϕ j ,

K∑
j=1

γ K
j ϕ j ,

K∑
j=1

εK
j ϕ j

)
ϕl

−γλlε
K
l , (4.12)

αK
il (0) = (ni0, ϕl)L2(�) for 1 ≤ i ≤ M, (4.13)

γ K
l (0) = (nv0, ϕl)L2(�), εK

l (0) = (χ0, ϕl)L2(�). (4.14)

In (4.10), (4.12) we used the abbreviation

N K = N K (
(αK

il )il
) :=

M∑
m=1

K∑
k=1

αK
mkϕk.

Due to Peano’s theorem this initial value problem has a local solution as the right
hand side depends continuously on the coefficients αK

il , βK
il , γ K

l , δK
l and εK

l .
Equation (3.1) is also valid for the regularised system, where the term

κ

2

( M∑
i=1

|∇(ni/N )|2 + |∇(nv/N )|2
)
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has been added to the energy functional if we adapt µi and µv accordingly. After inte-
gration in time from 0 to t ≤ T we obtain the a-priori estimate

∫
�

(
f(n, nv, χ)+ κ

2

M∑
i=1

∣∣∣∇(ni

N

)∣∣∣2+ κ

2

∣∣∣∇(nv

N

)∣∣∣2)
(t)

+
∫
�t

(
L∇µ : ∇µ+ 1

τ̂
|∂χ f |2 + v0θ|µv|2

)

≤
∫
�

(
f(n0, nv0, χ0)+ κ

2

M∑
i=1

∣∣∣∇(ni0

N0

)∣∣∣2+ κ

2

∣∣∣∇(nv0

N0

)∣∣∣2) ≤ C. (4.15)

With (2.2), the fact that L is positive definite, (A0), (A2) and the Poincaré inequality this
implies

ess sup0≤t≤T

(‖nK (t)‖H1 + ‖nK
v (t)‖H1 + ‖χK (t)‖H1

)
+ ‖µK‖L2(0,T ; H1(�;RM)) + ‖µK

v ‖L2(�T ) ≤ C. (4.16)

Consequently, the coefficients αK
il , βK , γ K , δK and εK are bounded and a global solution

to the initial value problem (4.8)–(4.14) exists.
For ϕ ∈ L2(0, T ; H1(�)) we have

∣∣∣∣
∫
�T

∂tn
K
i ϕ

∣∣∣∣ =
∣∣∣∣
∫
�T

M∑
j=1

Li j∇µK
j · ∇�Kϕ

∣∣∣∣
≤ C sup

1≤ j≤M
‖∇µK

j ‖L2(�T )‖∇�Kϕ‖L2(�T ) ≤ C‖∇ϕ‖L2(�T ),∣∣∣∣
∫
�T

∂tχ
Kϕ

∣∣∣∣ ≤
∫
�T

∣∣∣ω(nK , nK
v , χK )�Kϕ

∣∣∣ + γ

∫
�T

∣∣∣∇χK · ∇�Kϕ

∣∣∣
≤ C‖ϕ‖L2(�T ) + γ‖∇χK‖L2(�T )‖∇ϕ‖L2(�T )

≤ C‖ϕ‖L2(0,T ; H1(�)),∣∣∣∣
∫
�T

∂tn
K
v ϕ

∣∣∣∣ ≤
∫
�T

∣∣∣V(χK )

∣∣∣∣∣∣µK
v �Kϕ

∣∣∣ ≤ C(v1)‖ϕ‖L2(�T ).

This implies

‖∂tn
K‖L2(0,T ; (H1(�; RM ))′) + ‖∂tn

K
v ‖L2(�T ) + ‖∂tχ

K‖L2(0,T ; (H1(�))′) ≤ C. (4.17)

Additionally, the boundedness of ∂tnK
v implies the well-definedness of b(nK , nK

v , χK )

and the boundedness of f yields that expressions like
nK

i
NK are not singular.

The uniform boundedness of the time derivatives allows us to apply compactness
results from [19, 31]. When passing to a subsequence (denoted as the original sequence)
we thus find for 1 ≤ i ≤ M as K → ∞
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Reconstitutive phase transitions 135

nK
i

∗
⇀ ni in L∞(0, T ; H1(�)),

nK
i → ni in C0([0, T ]; Hq(�)) for any q < 1,

∂tnK
i ⇀ ∂tni in L2(0, T ; (H1(�))′).

These statements hold analogously for χK and nK
v (except ∂tnK

v ⇀ ∂tnv in L2(�T )).
Finally we have

µK
i ⇀ µi in L2(0, T ; H1(�)),

µK
v ⇀ µv in L2(�T ).

For a subsequence also nK
i → ni , nK

v → nv and χK → χ almost everywhere in �T . By
(A2), ∂n f , ∂nv f and ∂χ f are continuous, thus

∂n f(nK , nK
v , χK ) → ∂n f(n, nv, χ)

∂nv f(nK , nK
v , χK ) → ∂nv f(n, nv, χ)

∂χ f(nK , nK
v , χK ) → ∂χ f(n, nv, χ)

⎫⎪⎬
⎪⎭ almost everywhere in �T .

The growth condition (A2) on f̂ implies for all δ > 0 and all measurable E ⊂ �∫
E

|∂χ f (nK , nK
v , χK ) =

∫
E

∣∣∣∂χ f̂
( nK

N K
,

nK
v

N K
, χK

)∣∣∣
≤ δ

∫
E

f̂
( nK

N K
,

nK
v

N K
, χK

)
+ Cδ|E|

≤ δC + Cδ|E|.
Therefore

∫
E |∂χ f (nK , nK

v , χK )| → 0 as |E| → 0 uniformly in K and by Vitali’s
theorem, ∂χ f (nK , nK

v , χK ) → ∂χ f (n, nv, χ) in L1(�T ) as K ∈ N tends to infinity.
This convergence property permits to carry out the limit for ω and to pass to K → ∞

in (4.1)–(4.7). The limit (n, nv, µ,µv, χ) is a weak solution of (2.7)–(2.13).
By Parseval’s representation we have �Kw → w in L2(�) for any w ∈ L2(�). Because
of nK

i → ni , nK
v → nv, χK → χ in C0([0, T ]; L2(�)) we find (n, nv, χ)(t = 0) =

(n0, nv0, χ0). �

5 Existence result for degenerate mobility
We exploit the result of the previous section to show existence to the regularised system
with V given by (2.6). The difficulty is that the mobility might vanish and the system
becomes degenerate. Thus we introduce for ε > 0 the extended mobility Vε by

Vε(χ) :=

⎧⎪⎨
⎪⎩

V(χ) if ε < χ < 1 − ε,

V(ε) if χ ≤ ε,

V(1 − ε) if χ ≥ 1 − ε.

(5.1)

This ansatz implies Vε : R→ R>0 and Vε(χ) fulfills (A3) for any χ ∈ R.
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136 Blesgen

For d > 0 we define the convex function

ψ(d ) := d ln d

and for ε > 0 its regularisation (defined for all d ∈ R)

ψε(d ) :=
{

d ln d if d ≥ ε,

d ln ε − ε
2 + d2

2ε
if d < ε

The regularised free energy functional is defined in such a way that ψε ∈ C2 and the
derivative ψ′

ε is monotone increasing. This ansatz goes back to [11].
For later use we introduce ϕε := (ψε)

′. Since ϕε will be singular as ε → 0 we
introduce for r > 0

ϕr
ε(d ) :=

{
ϕε(d )|ϕε(d )|r−1 if ϕε(d ) 
= 0,

0 if ϕε(d ) = 0.

By definition, ϕr
ε ∈ C0(R). For 0 < r < 1, ϕr

ε is not differentiable at the zero point of ϕε.
To overcome this difficulty, for � > 0 we introduce the function ϕ

r,�
ε with ϕ

r,�
ε = ϕr

ε in
R \ [0, 1] and define ϕ

r,�
ε in [0, 1] such that ϕ

r,�
ε is a C1 function, monotone increasing

and ϕ
r,�
ε → ϕr

ε in C0(R) as � ↘ 0.
The definition of ψε allows us to introduce the following regularisation of f ,

fε(n, nv, χ) := kBθ
[ M∑

i=1

(
ψε

(ni

N

)
+

(ni

N

)χE1
i + (1 − χ)E2

i

kBθ

)
+ ψε

(nv

N

)

+
(nv

N

)χE1
0 + (1 − χ)E2

0

kBθ

]
+ θ[ψε(χ) + ψε(1 − χ) − θcχ

2]

+ γ

2
|∇χ|2 + θ

2
|∇nv|2. (5.2)

For the requirements of the logarithmic f we replace the assumptions of Section 4:
(A1’) Assumption (A1) remains valid. Additionally, the initial data n0, nv0, χ0 fulfills

∫
�

ni0 > 0 for 1 ≤ i ≤ M,

∫
�

nv0 > 0,

∫
�

χ0 > 0,

∫
�

(1 − χ0) > 0.

(A2’) f is given by (5.2) with positive constants θ , θc and γ .
(A3’) Vε is defined by (5.1).

For ε < ε0, fε is bounded from below. For a proof see [11, Lemma 2.1]. Thus fε
fulfills all assumptions of Section 4. With the help of Lemma 4.1 we therefore obtain the
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existence of a weak solution (nε, nvε, µε, µvε, χε) to the system

∂tniε = div
( M∑

j=1

Li j∇µ jε

)
, (5.3)

µiε = ∂ fε
∂ni

(nε, nvε, χε) − κ

Nε

�
(niε

Nε

)
, (5.4)

∂tnvε = −Vε(χε)µvε(nε, nvε, χε), (5.5)

µvε = ∂ fε
∂nv

(nε, nvε, χε) − κ

Nε

�
(nvε

Nε

)
, (5.6)

τ̂∂tχε = γ�χε + ωε(nε, nvε, χε) (5.7)

with initial values (2.12) and Neumann boundary conditions (2.13) and where

ωε(nε, nvε, χε) = −θ
[
ϕε(χε) + ϕε(1 − χε) − 2θcχε

]

+
M∑

i=1

(niε

Nε

)
(E2

i − E1
i ) +

(nvε

Nε

)
(E2

0 − E1
0).

Lemma 5.1 Let (A1’)–(A3’), (A4) hold and let ε < ε0.
(i) There exists a weak solution (nε, nvε, µε, µvε, χε) of (5.3)–(5.7) with f given by (5.2).
Further there exists a constant C > 0 independent of ε such that

ess sup0≤t≤T

(‖nε(t)‖H1 + ‖nvε(t)‖H1 + ‖χε(t)‖H1

)
+ ‖µε‖L2(0,T ; H1(�;RM)) + ‖µvε‖L2(�T ) ≤ C,

‖∂tnε‖L2(0,T ; (H1(�; RM))′)+‖∂tnvε‖L2(�T )+‖∂tχε‖L2(0,T ; (H1(�))′) ≤ C.

(ii) One can find subsequences (nε)ε∈P, (nvε)ε∈P, (µε)ε∈P, (µvε)ε∈P, (χε)ε∈P where
P ⊂ (0, ε0) is a countable set with 0 as the only accumulation point such that

niε
∗
⇀ ni , nvε

∗
⇀ nv, χε

∗
⇀ χ in L∞(0, T ; H1(�)),

niε → ni , nvε → nv, χε → χ in C0([0, T ]; Hq(�)) for any q < 1,

niε → ni , nvε → nv, χε → χ a.e. in �T and 0 ≤ ni
N , nv

N , χ ≤ 1,

∂tniε ⇀ ∂tni , ∂tχε ⇀ ∂tχ in L2(0, T ; (H1(�))′),
∂tnvε ⇀ ∂tnv in L2(�T ),
µiε ⇀ µi in L2(0, T ; H1(�)),

µvε ⇀ µv in L2(�T )

as ε ∈ P tends to 0.
(iii) There exists a number s > 1 and a constant C > 0 independent of ε such that

‖ϕε(χε) + ϕε(1 − χε)‖Ls(�T ) ≤ C,

M∑
i=1

∥∥∥ϕε

(niε

Nε

)∥∥∥
Ls(�T )

+
∥∥∥ϕε

(nvε

Nε

)∥∥∥
Ls(�T )

≤ C.
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138 Blesgen

Proof: (i) This follows from Lemma 4.1 and (4.16), (4.17).
(ii) The convergence properties are shown as in the proof of Lemma 4.1. The estimates
0 ≤ ni

N , nv

N , χ ≤ 1 follow from the estimate of fε(nε, nvε, χε), see (4.15) with v0 being
replaced by Vε(χε) > 0, and (A1).
(iii) The weak formulation of (5.7) in �T reads

θ

∫
�T

(
ϕε(χε) + ϕε(1 − χε)

)
η + γ

∫
�T

∇χε · ∇η

= 2θθc

∫
�T

χεη − τ̂

∫
�T

∂tχεη +
∫
�T

[ M∑
i=1

(niε

Nε

)
(E2

i − E1
i ) +

(nvε

Nε

)
(E2

0 − E1
0)

]
η

for test functions η ∈ L2(0, T ; H1(�)). We choose η := ϕ
r,�
ε (χε) + ϕ

r,�
ε (1 − χε) which

is admissible for all 0 < r ≤ 1. Due to (ϕ
r,�
ε )′ ≥ 0 we find∫

�T

γ∇χε · ∇(
ϕr,�

ε (χε) − ϕr,�
ε (1 − χε)

) ≥ 0.

With (i) we thus obtain∫
�T

(
ϕε(χε) + ϕε(1 − χε)

)(
ϕr,�

ε (χε) + ϕr,�
ε (1 − χε)

)
≤ C‖ϕr,�

ε (χε) + ϕr,�
ε (1 − χε)‖L2(�T )

·
(

‖χ‖L2(�T ) + ‖∂tχ‖L2(�T ) +
∥∥∥ M∑

i=1

(niε

Nε

)∥∥∥
L2(�T )

+
∥∥∥(nvε

Nε

)
‖L2(�T )

)
, (5.8)

where the constant C depends on θ , θc and on E1
0, E2

0, E1
1, E2

1, . . . , E1
M, E2

M .
Because of (ii) we have 0 ≤ nvε

Nε
,

niε
Nε

≤ 1, thus the right hand side of (5.8) is bounded
independently of ε. After taking the limit � ↘ 0 we have for the left hand side of (5.8)

C ≥
∫
�T

(
ϕε(χε) + ϕε(1 − χε)

)(
ϕr

ε(χε) + ϕr
ε(1 − χε)

) ≥
∫
�T

|ϕε(χε) + ϕε(1 − χε)|r+1.

In order to show the second part we consider the weak formulation of (5.4) in �T ,∫
�T

µiεξ =
∫
�T

kBθ

Nε

[ M∑
j=1

(
ϕε

(n jε

Nε

)
+ χεE1

j + (1 − χε)E2
j

kBθ

)δi j Nε − n jε

Nε

−
(
ϕε

(nvε

Nε

)
+ χεE1

0 + (1 − χε)E2
0

kBθ

)(nvε

Nε

)]
ξ + κ

∫
�T

∇
(niε

Nε

)
· ∇

( ξ

Nε

)

for ξ ∈ L2(0, T ; H1(�)). We choose ξ := Nεϕ
r,�
ε (niε/Nε) and remark that as above

κ

∫
�T

∇
(niε

Nε

)
· ∇ϕr,�

ε

(niε

Nε

)
≥ 0.
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Due to the uniform boundedness of the terms
n jε
Nε

ϕε

(
n jε
Nε

)
, nvε

Nε
ϕε

(
nvε

Nε

)
we obtain for C =

C(kBθ, ‖µiε‖L2(�T ), ‖ϕr,�
ε (niε/Nε)‖L2(�T ), E1

0, E1
1, . . . , E1

M, E2
0, E2

1, . . . , E2
M) with (ii)

in the limit � ↘ 0

C ≥
∫
�T

ϕε

(niε

Nε

)
ϕr

ε

(niε

Nε

)
≥

∫
�T

∣∣∣ϕε

(niε

Nε

)∣∣∣r+1
.

Equation (5.5) is treated alike, choosing ϕ
r,�
ε (nvε/Nε) as test function. We end up with

C ≥
∫
�T

ϕε

(nvε

Nε

)
ϕr

ε

(nvε

Nε

)
≥

∫
�T

∣∣∣ϕε

(nvε

Nε

)∣∣∣r+1
,

where C = C(kBθ, ‖∂tnv‖L2(�T ), ‖ϕr,�
ε ( nvε

Nε
)‖L2(�T ), E1

0, . . . , E1
M, E2

0, . . . , E2
M). �

Lemma 5.1 (iii) shows in particular 0 < χ < 1, so V(χ) remains positive.

6 The limit equations
It remains to pass to the limit κ → 0. This step is straightforward and is done in much the
same way as before by showing a-priori estimates and employing compactness results.

Lemma 6.1 (a) Let (A0), (A1’)–(A3’), (A4) hold. Then for κ > 0 there exists a weak
solution (nκ, nκ

v, µ
κ,µκ

v, χ
κ) of (5.3)–(5.7) which fulfills for a constant C which is inde-

pendent of κ

ess sup0≤t≤T

(‖nκ‖H1(t) + ‖nκ
v(t)‖H1 + ‖χκ(t)‖H1

)
+ ‖µκ‖L2(0,T ; H1(�;RM)) + ‖µκ

v‖L2(�T ) ≤ C,

‖∂tn
κ‖L2(0,T ; (H1(�; RM))′) + ‖∂tn

κ
v‖L2(�T ) + ‖∂tχ

κ‖L2(0,T ; (H1(�))′) ≤ C.

(b) One can extract subsequences (nκ)κ , (nκ
v)κ , (µκ)κ , (µκ

v)κ and (χκ)κ such that

nκ
i

∗
⇀ ni , nκ

v

∗
⇀ nv, χκ ∗

⇀ χ in L∞(0, T ; H1(�)),

nκ
i → ni , nκ

v → nv, χκ → χ in C0([0, T ]; Hq(�)) for any q < 1,

nκ
i → ni , nκ

v → nv, χκ → χ a.e. in �T and 0 ≤ ni
N , nv

N , χ ≤ 1,

∂tnκ
i ⇀ ∂tni , ∂tχ

κ ⇀ ∂tχ in L2(0, T ; (H1(�))′),
∂tnκ

v ⇀ ∂tnv in L2(�T ),

µκ
i ⇀ µi in L2(0, T ; H1(�)),

µκ
v ⇀ µv in L2(�T )

as κ tends to zero.
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Proof: By Lemma 5.1, a weak solution for fixed κ exists. The estimates are a direct
consequence of Lemma 5.1. Since Fκ(n0, nv0, χ0) can be estimated independently of κ,
the constant C on the right hand side does not depend on κ. This shows (a).
Part(b) is proved by Lemma 5.1. �

The following theorem is now clear.

Theorem 6.2 Let the assumptions (A0), (A1)’, (A2)‘, (A3)’, (A4) hold. Then there exists
a weak solution (n, nv, µ,µv, χ) of (2.7)–(2.13) with the logarithmic free energy given
by (2.2) such that for 1 ≤ i ≤ M

(i) ni, nv, χ ∈ L∞(0, T ; H1(�)) ∩ C0([0, T ]; Hq(�)) for any q < 1,
µi ∈ L2(0, T ; H1(�)), µv ∈ L2(�T ),

(ii) ∂tn, ∂tχ ∈ L2(0, T0; (H1(�))′), ∂tnv ∈ L2(�T ).
(iii) There exists a s > 1 such that ln(n j/N ), ln(nv/N ), ln χ ∈ Ls(�T ) for 1 ≤ j ≤ M,

and in particular 0 <
n j
N , nv

N , χ < 1 almost everywhere in �.

7 Interface dynamics

In this section we are going to analyse the dynamics of the interface � of χ and � of
nvε in the limit γ ↘ 0. For simplicity we will restrict to the two-dimensional case as this
already shows all the interesting features.

Subsequently we study formal expansions of the solution n, nv and χ assuming that
these functions as well as all other functions and functionals are sufficiently regular. For
the analysis we consider the most interesting case where bulk diffusion and movement of
the transition layers occur on the same time scale. Therefore we rescale the problem by
setting γ � ε2, θc = 1

ε
, F � 1

ε
F, Li j := εδi j and set for simplicity τ̂ := 1. We consider

a parabolic scaling where space and time are weighted equally. The dependence of the
solution vector on ε is emphasized in the following by a subscript ε.

So we are concerned with (nε, nvε, χε) solving

ε∂tχε = ε�χε − 1

ε
∂χ H(nε, nvε, χε), (7.1)

ε∂tnvε = ε div(V(χε)θ∇nvε) − 1

ε
b(nε, nvε, χε), (7.2)

ε∂tniε = 1

ε
�∂ni H(nε, nvε, χε). (7.3)

Here we used the definition

H(nε, nvε, χε) := εχε f1(nε, nvε) + ε(1 − χε) f2(nε, nvε) + θW(χε).

System (7.1)–(7.3) is completed with initial values (2.12) and boundary conditions (2.13).
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Reconstitutive phase transitions 141

7.1 Bulk expansion
First we are concerned with the behaviour of the solution in the bulk away from ∂�. We
consider expansions of the form

χε(x, t) = χ(x, t) + εχ(x, t) +O(ε2),

nε(x, t) = n(x, t) + εn(x, t) +O(ε2),

nvε(x, t) = nv(x, t) + εnv(x, t) +O(ε2).

Substituting into (7.1)–(7.3) we find to leading order:

W ′(χ) = 0, b( n, nv, χ) = 0, �µ( n, nv, χ) = 0. (7.4)

Here, as in the first part of this paper, we set

µ(n, nv, χ) := ∂n f(n, nv, χ) = χ∂n f1(n, nv) + (1 − χ)∂n f2(n, nv)

for the chemical potential.

7.2 Expansion close to the interfaces
Now we deal with the asymptotic behaviour of nε, nvε, χε close to the interface �(t) of
χ and the interface �(t) of nv away from ∂�. We allow for possibly anisotropic surface
energies. Therefore we do not only expand the spatial coordinates in the normal directions
of the interfaces, as is done in [26]. Instead we also take the tangential components of
�(t) and �(t) into account.

We introduce arc-length parametrisations σ �→ ϕ(σ, t) of �(t) and � �→ ψ(�, t) of
�(t) for suitable functions ϕ and ψ. In a sufficiently small strip Q(t) around the regular
curves �(t) and �(t) we introduce the two projections

��(t)(x) := ϕ(σ(x, t), t), ��(t)(x) := ψ(�(x, t), t),

mapping x ∈ Q(t) onto �(t) and �(t), respectively.
The unit tangent vectors τ� to �(t) in the point ��(t)(x) and τ� to �(t) in ��(t)(x)

are defined by

τ�(x, t) := ϕ′(σ(x, t), t), τ�(x, t) := ψ′(�(x, t), t).

The unit normal vector ν�(x, t) in ��(t)(x) is the vector orthogonal to τ�(x, t) for which
(ν�(x, t), τ�(x, t)) is positively oriented; the unit normal vector ν�(x, t) to �(t) in ��(t)(x)

is the vector orthogonal to τ�(x, t) for which (ν�(x, t), τ�(x, t)) is positively oriented.
In the strip Q(t) we introduce two sets of new coordinates (u, σ, t) and (v, �, t) that

replace (x, t). We stretch the distance in normal directions setting

u(x, t) := 1

ε
dist(x, �(t)), v(x, t) := 1

ε
dist(x,�(t)). (7.5)

Here, dist(x, �(t)) denotes the Euclidean distance of x to �(t) in the direction of ν� and
dist(x,�(t)) is the Euclidean distance of x to �(t) in the direction of ν� .
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We compute

∇u(x, t) = 1

ε
ν�(x, t), ∇v(x, t) = 1

ε
ν�(x, t), (7.6)

∇σ(x, t) = τ�(x, t) +O(ε), ∇�(x, t) = τ�(x, t) +O(ε). (7.7)

For nε, nvε and χε we consider the expansions

χε(x, t)=χ0(u, σ, t) + εχ1(u, σ, t) +O(ε2), (7.8)

nε(x, t)=n0(v, �, t) + εn1(v, �, t) +O(ε2), (7.9)

nvε(x, t)=n0
v(v, �, t) + εn1

v(v, �, t) +O(ε2). (7.10)

We assume that these expansions are valid in a sufficiently small strip Q(t) around the
interfaces �(t) and �(t).

We insert (7.8)–(7.10) into System (7.1)–(7.3). For the time derivatives we observe

ε
d

dt
χ0(u, σ, t) = ε∂uχ

0(u, σ, t)∂tu + ε∂σχ0(u, σ, t) + ε∂tχ
0(u, σ, t)

= ∂uχ0(u, σ, t) ∂tdist(x, �(t)) +O(ε),

ε
d

dt
n0

(v)(v, �, t) = ∂vn0
(v)(v, �, t) ∂t dist(x,�(t)) +O(ε).

It remains to calculate the spatial derivatives. We start with (7.1). Using (7.6) and (7.7)
we find

ε�χε = ε divx(∇χ0(u(x, t), σ(x, t)) + ε∇χ1(u(x, t), σ(x, t)) +O(ε))

= ε div
(1

ε
∂uχ0ν

�
+ ∂σχ0τ

�
+ ∂uχ1ν

�
+O(ε)

)
.

To compute this further and for later use we observe the identities

div h(u(x), σ(x)) = 1

ε
∂uh(u(x), σ(x))ν� + ∂σ h(u(x), σ(x))τ�,

div h̃(v(x), �(x)) = 1

ε
∂vh̃(v(x), �(x))ν� + ∂�h̃(v(x), �(x))τ�,

which hold for differentiable functions h(u, σ) and h̃(v, �). With these formulas we end
up with

ε�χε = 1

ε
∂uuχ0 + ∂uuχ1 + 2∂uσχ0ν�τ� +O(ε).

In the analogous discussion of the spatial derivatives in (7.2) and (7.3), mixed expressions
arise depending simultaneously on both coordinate systems (u, σ, t) and (v, �, t). In order
to be able to compare both coordinate systems the following structural assumption is
made for the further mathematical treatment:
There exist functions χ̃0 = χ̃0(v, �, t) and χ̃1 = χ̃1(v, �, t) such that

χl(u, σ, t) = χ̃l(v, �, t), l = 1, 2. (7.11)
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Using Taylor expansions of W(χε) and b(nε, nvε, χε), we obtain for (7.1), (7.2) to leading
order O(ε−1)

−∂uuχ0 + θW ′(χ0) = 0, (7.12)

− d

dv
(V(χ̃0)θ∂vn0

v) + b(n0, n0
v, χ̃

0) = 0. (7.13)

The discussion of Equation (7.3) leads in highest order to the trivial statement

d2

dv2 ∂n(θW(χ̃0)) = 0.

To analyse the conditions (7.12), (7.13) near the interface we follow Sternberg [28]
and multiply (7.12) by ∂uχ0. Integration from u = −∞ to u = +∞ yields

θ
[
W(χ0)

]
�

= 1

2

[
(∂uχ0)2

]
�
. (7.14)

Here, the jump [W]� of W across �(t) in direction ν� is defined by

[
W(χ0)

]
�

:=
+∞∫

−∞

d

du
(W(χ0))du.

Multiplying (7.13) by θV(χ̃0)∂vn0
v and integrating from v = −∞ to v = +∞, we obtain

with the help of (2.14) for fixed n0

1

2

[
(V(χ̃0)θ∂vn0

v)
2
]
�

=
+∞∫

−∞
(θV(χ̃0))2

(
χ̃0 d

dv
f1(n

0, n0
v) + (1 − χ̃0)

d

dv
f2(n

0, n0
v)

)
dv.

(7.15)

Identity (7.14) was found before when studying the Allen–Cahn system and is referred
to in the literature as equipartition of energy across the interface, see [21].

The dynamic behaviour of �(t) and �(t) is revealed by considering the next order of
expansions. For Equation (7.3) we have

∂tdist(x,�(t))∂vn0 = d2

dv2 (µ(n0, n0
v, χ̃

0)).

The conditions (7.4) in the bulk provide the boundary conditions d2

dv2 µ = 0 at v = ±∞,

and µ(n0, n0
v, χ̃

0) ≡ const for |v| → ∞. More precisely, since (v = −∞, v = +∞)

is an unbounded domain and from the regularity of µ, we have µ(n0, n0
v, χ̃

0) = 0 for
|v| → ∞. Hence [ d

dv
µ]� = 0 and

∂tdist(x,�(t))
[
n0

]
�

=
[ d

dv
µ(n0, n0

v, χ̃
0)

]
�

= 0. (7.16)
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Below in (7.19) we will see that in general ∂tdist(x,�(t)) 
= 0, therefore (7.16) yields[
n0

]
�

= 0. (7.17)

As ∂vn0 = 0 and f is smooth, µ = ∂ f
∂n does not jump across �(t), in contrast to

µv = ∂ f
∂nv

as we will learn from (7.26).

The expansions of (7.1), (7.2), proceeding as in (7.12) and (7.13), lead in order ε0 to

∂tdist(x, �(t))∂uχ0 = −2∂uσχ0τ�ν� − ∂uuχ1 + θW ′′(χ0)χ1, (7.18)

∂tdist(x,�(t))∂vn0
v = − d

dv
(V(χ̃0)θ∂�n0

v)τ�
ν

�
− d

dv
(V(χ̃0)θ∂vn1

v)

− d

dv
(V ′(χ̃0)θ∂vn0

vχ̃
1)ν� − d

d�
(V(χ̃0)θ∂vn0

v)τ�ν�

+ ∂nb(n0, n0
v, χ̃

0)n1 + ∂nvb(n0, n0
v, χ̃

0)n1
v

+ ∂χb(n0, n0
v, χ̃

0)χ̃1. (7.19)

To further examine the movement of the fronts we again multiply (7.18) by ∂uχ0 and
integrate from u = −∞ to u = +∞. The result is

∂tdist(x, �(t))

+∞∫
−∞

(∂uχ0)2du (7.20)

= −
+∞∫

−∞
2∂uσχ0ν�∂uχ0τ� du −

+∞∫
−∞

∂uuχ1∂uχ0 du +
+∞∫

−∞
θW ′′(χ0)∂uχ0χ1 du.

The last integral on the right hand side of (7.21) can be reformulated. Using Identity (7.12)
and after integration by parts we see

+∞∫
−∞

χ1θ
d

du

(
W ′(χ0)

)
du = −

+∞∫
−∞

∂uχ1∂uuχ0 du =
+∞∫

−∞
∂uuχ1∂uχ0 du. (7.21)

With this result and taking into account that

+∞∫
−∞

2∂uσχ0ν�∂uχ0τ� du = d

dσ

+∞∫
−∞

(∂uχ0)2ν�τ� du,

Equation (7.21) simplifies to

∂tdist(x, �(t))

+∞∫
−∞

(∂uχ0)2 du = − d

dσ

+∞∫
−∞

(∂uχ0)2ν�τ� du. (7.22)
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The last integral on the right can be related to the surface energy s� of �. For a vector
l ∈ R2 \ {0} we set

s�(l) := inf
{ +1∫
−1

2
√

θW(p(z))|p′(z)l|dz
∣∣∣p : [−1,+1]→[0, 1] is Lipschitz continuous

}
.

In this definition, the geodesic curve p connects two minima of W at z = ±1, i.e. two so-
lutions to (7.4). Equation (7.14) implies 2θW(χ0) = (∂uχ0)2, and after reparametrisation
we obtain, see [28] for details,

s�(ν�) :=
+∞∫

−∞

(
∂uχ0ν�

)2
du.

By straightforward calculations we compute

d

dσ

+∞∫
−∞

(∂uχ0)2ν�τ� du = divT Ds� (ν�), (7.23)

where divT is the surface divergence. In two space dimensions, for a differentiable function
h on the interface �(t), the surface divergence is defined by

divT h = (∂σh)τ� .

A well-known fact is the relation of divT Ds�(ν�) to the curvature κ� := divT ν� of �(t).
As is shown for the isotropic case in [28] and [26], it holds

divT Ds�(ν�) = s�κ� . (7.24)

Exploiting (7.23) and (7.24), Equation (7.22) finally reads

∂tdist(x, �(t))

+∞∫
−∞

(∂uχ0)2 du = −s�κ� . (7.25)

Equation (7.25) is an isotropic Gibbs–Thomson law and controls the movement of �(t).
The integral

∫ +∞
−∞ (∂uχ0)2 du defines the surface mobility.

The discussion of (7.19) is very similar to the treatment of (7.18). We multiply (7.19)
by ∂vn0

v and integrate from v = −∞ to v = +∞. Then, analogous to (7.21), we integrate
by parts the term

∫ +∞
−∞ ∂v(V(χ̃0)θ∂vχ̃

1)∂vn0
v dv where we use (7.13). We arrive at

∂tdist(x,�(t))

+∞∫
−∞

(∂vn0
v)

2dv = − d

d�

+∞∫
−∞

(V(χ̃0)θ∂vn0
v)∂vn0

vτ�ν� dv

+
+∞∫

−∞

(
∂nb(n0, n0

v, χ̃
0)n1 + ∂nvb(n0, n0

v, χ̃
0)n1

v

)
∂vn0

v dv.
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We can simplify the last integral. Because of ∂vn0 = 0 and the regularity of f we have

+∞∫
−∞

∂nb(n0, n0
v, χ̃

0)n1∂vn0
v dv =

+∞∫
−∞

V(χ̃0)∂nv ∂n f (n0, n0
v)n

1∂vn0
v dv = 0.

Finally, similar to (7.25), the surface energy of the interface � is given by

s�(ν�) :=
+∞∫

−∞
θV(χ̃0)(∂vn0

vν�)2 dv,

such that the first integral on the right hand side of (7.26) becomes

d

d�

+∞∫
−∞

(V(χ̃0)θ∂vn0
v)∂vn0

vτ�ν� dv = divT Ds�(ν�).

So we obtain, if κ� denotes the curvature of �(t),

∂tdist(x,�(t))

+∞∫
−∞

(∂vn0
v)

2dv = −s�κ� +
+∞∫

−∞
∂nv b(n0, n0

v, χ̃
0)∂vn0

vn1
v dv. (7.26)

Equation (7.26) is the isotropic Gibbs–Thomson law for the interface �(t). The integral
on the right in (7.26) is related to the jump of b = V(χ̃0)∂nv f across �(t). But here we
observe that the source term couples to the other variables and depends on n0

v, n1
v and on

χ̃0 and n0.
In the limit ε ↘ 0, Equation (7.26) states that nv and consequently µv = ∂ f

∂nv
jumps

across �(t).
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