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A hardening model within the framework of finite-strain Cosserat crystal plasticity is extended to dynamic recrystalliza-
tion. The new model includes an Avrami equation to account for softening, a level set equation to represent the prop-
agation of the domain walls, and the Ambrosio-Tortorelli approach inherited from image analysis to identify the grain
dislocation structure. Numerically, flow curves are computed and the Hall-Petch relation is studied.
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1. Introduction

During plastic deformation dislocations are generated, moved, and
finally stored in a crystal which makes itself felt as work hardening. At
low temperatures the dislocation structure is thermodynamically un-
stable but mechanically stable, and thus does not change with time. If
the temperature is raised, diffusion mechanisms are activated and the
crystal can lower its free energy by removing dislocations either by
annihilation and/or rearrangement or by the nucleation of strain-free
grains which expand at the expense of the deformed structure. The for-
mer process is referred to as recovery, the latter is termed recrystal-
lization. If deformation occurs during elevated temperatures, i.e. hot
working, recrystallization is liable to occur during deformation. This
is called dynamic recrystallization (DRX), in contrast to static recrys-
tallization (SRX) which occurs slowly due to diffusion processes after
the deformation.

During hot working of steels or alloys DRX is a common phenom-
enon. Despite its industrial importance and extensive research in the
field, recrystallization and, in particular, DRX, are still not compre-
hensively solved problems of physical metallurgy. The present paper
aims at developing a model that is capable to capture the essential phe-
nomena of dynamic recrystallization and to provide predictions of mi-
crostructure development and mechanical behavior of materials dur-
ing hot working.

There have been many attempts in the past to address DRX. In Ref.
[26], a simple model was introduced where DRX is considered as a
superposition of deformation and static recrystallization on the basis
of Avrami kinetics. This allows to fit measured flow curves and to ex-
plain the occurrence of single and multiple peak flow curves. How-
ever, the controlling quantities like a critical strain have to be derived
from the measured flow curves [37]. Associates the occurrence of sin
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gle and multiple peak flow stress behavior with the tendency to grain
refinement and grain coarsening during DRX, but struggles to explain
why the transition occurred at twice the steady state grain size. A quite
different approach was proposed in [32] on the basis of irreversible
thermodynamics. Therein, the critical strain is defined by the condi-
tion of minimum energy dissipation at maximum energy storage. Us-
ing the one-parameter model of Hart [19], for work hardening, it was
shown in [32] that this point coincides with the point of inflection on
the so-called “Kocks-Mecking-plot’, where the strain hardening rate
is plotted versus the flow stress, [28]. In fact, the evaluation of exper-
imental results shows that the beginning of DRX occurs close to this
point, although a point of inflection can also occur without DRX, e.g.,
during high temperature deformation of high stacking fault energy ma-
terials like aluminum, where a steady state flow stress is obtained by
equilibrium between dynamic recovery and work hardening. There are
many more modeling studies on DRX in literature, but most of them
are based on empirical relations since monotonic dependencies can –
at least piecewise–be approximated by power laws. In Refs. [13] [34],
the dynamically recrystallized grain size was addressed particularly by
making assumptions on the relevant criteria like back stresses at grain
boundaries or imbalance of subgrain size across prior grain bound-
aries, but the issue of mechanical behavior was not touched.

Evidently, despite extensive research during the past decades, the
physical mechanisms of dynamic recrystallization are not yet satisfac-
torily understood. The subject is not only of academic interest but is
also of immense importance for industrial processing, e.g. hot rolling:
dynamic recrystallization offers a powerful tool for microstructure
control and, therefore, a useful way for the optimization of the sheet
properties, [21,33,43].

A numerical study of DRX in two dimensions is available in [17].
The ansatz is based on a level set approach and a rate-equation for the
nucleation of new grains. The treatment of plasticity is simplified and
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the macroscopic plastic strain is assumed to follow the Kocks-Meck-
ing relation.

In [15], based on homogenization techniques, see [44] for a re-
view, the influence of the grain structure on the mechanical proper-
ties is studied. In [3], the viscoplastic case is treated with the help of
higher-order gradients in the hardening law. Surveys of DRX models
are available in Refs. [35,27].

In this article, a variational model is developed which builds on
the finite-strain Cosserat theory of crystal plasticity. It incorporates
the multiple facets of DRX and is thus rather elaborate. The proposed
model extends the analytical and numerical studies in Refs. [8–10]. In
[7], the coupling of plasticity and phase transitions for simpler systems
had been investigated.

This article is organized in the following way. In Section 2, the
physical model is derived. Section 3 outlines details of the numerical
implementation. Section 4 is devoted to simulations. The article ends
with a discussion.

2. The physical model of dynamic recrystallization

For simplicity, the temperature T is assumed constant. The model
developed subsequently consists of two main parts. The first part, for-
mulated within the Cosserat theory of crystal plasticity, is governed by
minimization of the mechanical energy, cf. Section 2.2. For simplicity,
individual dislocations are not resolved, but instead a function κ≤0 is
introduced, the (scalar) hardening parameter of the material. The me-
chanical energy of the stored immobile dislocations is represented by
a potential V without resolving the local distribution of mobile, geo-
metrically necessary and locked dislocations in the solid.

The second part of the model is concerned with softening. It can-
not be formulated by energy minimization as will be explained later.
This part includes recovery due to climbing dislocations as well as the
formation of new grains essentially free of dislocations. This requires
the (automated) identification and computation of the grain structure,
as outlined in Section 2.1. New grains are nucleated if critical condi-
tions are reached, cf. Section 2.4.

Subsequently the main aspects of dynamic recrystallization are col-
lected. The complete model is summarized in Section 2.5.

2.1. Grain orientation and partitioning into subgrains

The simulated material is a polycrystal. As is well known, see
e.g. [16], the grains of a polycrystal are separated by regions oc-
cupying a small volume containing the geometrically necessary dis-
locations as well as redundant dislocations. Fundamentally, it is as-
sumed that neighboring grains differ in their local orientation so that
by knowing the vector of micro-rotations
, a parameterization by Euler angles, the complete (sub-)grain struc-
ture in the entire crystal can be determined. Here, Hm(Ω)⊂L2(Ω) de-
notes the Sobolev space of m-times weakly differentiable square-in-
tegrable functions in Ω⊂ℝ3, the reference state of the material. For
known , the local orientation of the (sub)-grains at a
spatial point x∈Ω is specified by

with the mapping R:[0,2π) given by (cf [10])

For the first time step, g(x):=(g1,g2,g3)(x)∈BV(Ω; [0,2π))3∩L∞(Ω)
are the measured Euler angles, taken from Electron Backscatter Dif-
fraction (EBSD) experiments. Here, BV(Ω) is the space of functions
of bounded variation and L∞(Ω) the essentially bounded functions in
Ω. The input data g is converted into a smoothed field α0 which tends
to be piecewise constant as follows. Following [5] where the Mum-
ford-Shah functional from image analysis is approximated by elliptic
functionals, for l∈{1,2,3}, constants σ>0, τ>0, and with Hd denoting
the d-dimensional Hausdorff measure, the functional

is considered. The first integrand in (2) ensures that
approximates the given gl. The second term favors constant
. When minimizing G, Dl⊂Ω approaches the discontinuities of gl, i.e.
the optimal Dl is the (closed) jump set of .

Instead of optimizing sets, it is more convenient to optimize func-
tions. In the spirit of [5], by applying methods from Γ-convergence, it
can be shown that G for small δ>0 can be approximated by

Here, vl∈[0,1] is a control variable on , representing the geo-
metrically necessary dislocations in the material. In the limit δ↘0,
supp(∇vl) converges to the set of discontinuities of , i.e. to a mini-
mizer Dl of G.

Eqn. (3) is related to the ansatz in Refs. [1,2]. Therein, a two-di-
mensional phase-field model for DRX is proposed with a scalar angle
parameter (analogous to α) and a crystallinity θ (analogous to vl). The
model in Refs. [1,2] is capable of reproducing many features of DRX,
but is only two-dimensional and ignores sub-grain effects. In (3), σ
can be interpreted as an (isotropic) surface energy, while δ, τ are nu-
merical parameters.

After the minimization of G, the actual grain partitioning is
achieved by a least squares algorithm. Given a constant δTOL>0, two
points x1, x2∈Ω are identified to belong to the same grain, if

Noteworthy, the result of this identification process is independent
of the order by which the points xi∈Ω are picked, since the minimizers
α0 of Gδ are piecewise constant.

(1)

(2)

(3)

(4)
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2.2. Plasticity and hardening

The plastic behavior of the solid is modeled within the framework
of the large-strain Cosserat theory of crystal-plasticity. Up to certain
modifications, the ansatz from Refs. [8,9] is re-used. As a fundamen-
tal assumption, it is postulated that if the mechanical properties at time
t=nh are known, where h>0 is a fixed time step and n∈ℕ, the state of
the solid at time t=(n+1)h can be obtained by minimizing the total me-
chanical energy E in suitable spaces, cf. Eqn. (7) below.

Let Ωt=φ(Ω,t) for a family of diffeomorphisms φ(⋅,t) in ℝ3 be the
deformed polycrystal at time t. At the heart of the Cosserat approach,
the deformation tensor F:=Dφ is multiplicatively decomposed,

with Fe, Fp denoting the elastic and plastic deformation tensors,
Ue∈GL(3) the stretching component, and Re∈SO(3) the micro-rota-
tions. In Eqn. (5), Ue need not be symmetric and positive definite, i.e.
the decomposition Fe=ReUe is not the polar decomposition. As in (1),
Re=Re(α)∈SO(3) is parameterized non-uniquely by a vector of Euler
angles α=(α1,α2,α3).

The plastic deformations are assumed to occur along Ip≥1 a-pri-
ori given material-dependent single-slip systems, only. These slip sys-
tems are specified by tensors ma⊗na, where ma denotes the slip vector
and na the slip normal of slip system a for 1≤a≤Ip. These vectors sat-
isfy |ma|=|na|=1 and ma⋅na=0. For , it is thus set

As a result of plastic deformation, due to structural changes within
the material like the increase of immobilized dislocations, hardening
occurs, see e.g. Refs. [12,7]. In the model, κ is a (non-positive) scalar
hardening parameter, with −κ≥0 representing the density of immobi-
lized dislocations. In the model, κ also depends on a recovery parame-
ter κr. This is why the derivation of a formula for κ is postponed to
Section 2.3.

To conclude, for vectors α0, γ0 representing data of the previous
time step, the evolution of a plastically deformed solid in the ab-
sence of surface tractions and surface couples in the Cosserat theory
of rate-independent large-strain crystal-plasticity is governed by the
time-discrete minimization problem

subject to the initial and boundary conditions

The choice in (8) corresponds to Dirichlet boundary conditions for
φ and free boundary conditions for α.

In (7), fext(t), Mext(t) denotes the external volume force densities
and the external volume couples applied to the crystal body; σY>0 is
the yield stress. Eqn. (7) introduces a family of time-discrete mini-
mization problems. The concept goes back to [14], see also [31], and
permits the application of the calculus of variations to plasticity. For
the fixed discrete time step h>0 and known (α0,γ0,κ0) at time t, the
new (φ,α,γ,κ) representing values at time t+h is calculated from (7).
Finally, κ=κ(γ,κr) is computed and (α,γ,κ) are set as the initial values
(α0,γ0,κ0) of the next time step.

The term with μ3>0 differs from the formulation in
Refs. [8,9] and bounds the variation of α in time. It is required to link
the (micro-)rotations of the Cosserat solution to the measured rotation
field.

The definitions of the remaining functionals are taken from Refs.
[8,9]. They are repeated here for convenience. Let Lc>0 be the internal
length scale, μ>0, λ>0 the Lamé parameters, μc≥0 the Cosserat cou-
ple modulus, and . For the energy of stored dislocations, the
simple quadratic ansatz is made,

where ϱ>0 is a constant. The curvature energy due to (micro) rotations
is

and the stretching part of the mechanical stored energy density is, cf.
[30],

Here, , denote the sym-
metric and skew-symmetric parts of a tensor A, respectively,

is the trace operator, ||A||:=tr(AtA) the Frobenius ma-
trix norm. For u, v∈ℝ3, is the inner product in ℝ3.
For tensors A,B∈ℝ3×3, denotes
the inner product in ℝ3×3.

2.3. Softening and the formation of new grains

Two mechanisms are responsible for the softening of the alloy.
Firstly, climbing dislocations continuously lead to a dynamic recovery
of the material. Secondly, on a small length scale, new nuclei essen-
tially free of dislocations are generated perpetually due to thermal ac

(5)

(6)

(7)

(8)

(9)

(10)
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tivation. In the early stages, while its size is below a critical threshold,
the growth of such a nucleus is energetically unfavorable as the gain
in volume energy cannot compensate the loss of surface energy. (This
is the reason why the process is not cast into an energy minimization
formulation.) Consequently, a small nucleus can only grow at the ex-
pense of other, even smaller nuclei and will eventually disappear in
most cases.

In this article, the complicated process of climbing dislocations and
the permanent creation/annihilation of new nuclei on a small scale is
not resolved. Instead, recovery and creation/annihilation of small nu-
clei are modeled by a stochastic Kolmogorov-Johnson-Mehl-Avrami
equation [6,22,23],

This is a family of ordinary differential equations parameterized
by x∈Ω with representing the density of the recov-
ered material acting opposite to hardening. For t≈tx, the increase of κr

is approximately linear. The exponent k≥0, possibly depending on x,
α0, and T, is a statistical growth rate. The array stores the
start time (or age) of the nuclei, set constant in each grain and initial-
ized to a random value near 0 at the beginning of the simulation. By
definition, κr(x,tx)=0.

Let κcrit>0 be the critical dislocation density. If
for some , , around a new spherical grain is generated
with critical radius rcrit. At this point, the new nucleus has overcome
the energy barrier and is energetically favorable. In the new grain ,
it is set

Hence, the orientation of is constant and inherited from ,
the rotation at the nucleation center. By setting , the start time
of the grain is reset and has no faster growth rate than initially for
t=0.

For the rate k≥0 in Eqn. (11), the ansatz

is made, with the weak gradient of the Sobolev function
. Eqn. (13) is motivated by the experimental observation

that the recovery rate is largest at the high-angle grain boundaries
(where |∇α0| is large) and increases as T is increased. In most cases,
a new recrystallized grain will continue to grow at the expense of its
neighbors, since the jump of the dislocation density across the grain
boundary, and hence V(κ), is large, see Eqn. (16) below.

The recovery parameter κr∈ℝ enters in the computation of κ as

In (14), accounts for hardening due to plastic slip along
the a-th slip system. In contrast, (1−e−hk)(κr+1) accounts for softening.

Eqn. (14) is derived from the constraint

which is a consequence of the Karish-Kuhn-Tucker conditions and
which has to be satisfied with equality since the plastic flow occurs at
the boundary of the set of feasible deformations, see, e.g. Refs. [11,8].
Due to Eqn. (11),

As and , this yields Eqn.
(14). The negative part (z)−:=min{z,0} in (14) reflects that recovery
can never exceed hardening and ensures (−κ)≥0 for all t≥0. In the ab-
sence of softening, e.g. if k=0, it holds , in par-
ticular κ≤κ0, and κ is monotonically decreasing.

2.4. Movement of the grain boundaries

The movement of a grain wall is prescribed by the level set equa-
tion

controlling the growth in normal direction. Eqn. (16) does not include
damping (thus no term ∂ttω) and is formulated as the evolution of level
sets to determine the positions of the moving grain boundaries. This
level set approach is very flexible to topological changes. The values
of ω(t=0) are determined by the Ambrosio-Tortorelli approach, Eqn.
(3), with the corresponding jump set

In (16), V(κ) denotes the jump of V(κ) along the interface,
is the surface diffusion, ξ the Hoffmann-Cahn vec-

tor, see Refs. [20,42]. By divT(ξ) diffusion of the wall due to curvature
is represented; m=m(α)≥0 denotes the mobility of the domain wall.
Experimental observations [16], [18], suggest the relationship vn=mp
for the velocity vn in normal direction and the net pressure

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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p=V(κ)+divT(ξ) on the boundary. This leads to (16). Experiments have
demonstrated further that the grain boundary mobility m depends on
both temperature and grain misorientation. The exact dependence may
be quite complicated. Even though systematic investigations seem to
be missing, as a general guide line, m≈0 for small angle boundaries
(angles less than 5°), whereas for large misorientations, an individ-
ual grain may grow rapidly, see [18], Section 5.2.21, and references
therein. These considerations motivate m(α)∼R(α). In this article, the
ansatz

is made for the numerical simulations.

2.5. The complete algorithm

This section ends with a summary of the complete algorithm for
DRX.

0.∗ Initialization. Given the noisy experimental data g, compute with
(3) the smoothened orientations and the jump set D.
Set

Initialize with random values close to 0.

1. Plasticity/Hardening. Compute (φ,γ,α,κ) in by solving (7) for
given (γ0,α0,κ0) and given Dirichlet boundary data representing an
uniaxial compression experiment,

for a real constant 0<β<1.

2. Grain partitioning. For α=α(t+h) computed in Step 1, apply the
grain partitioning algorithm to determine the current grain structure.
3. Recovery/Softening. Compute κr by solving the Avrami equation
(11). Introduce new spherical recrystallized grains of critical radius
rcrit free of dislocations at provided .
4. Propagation of the grain boundaries. Move the grain walls from
time t to time t+h due to (16) with the front tracking algorithm. Update
α accordingly.
5. Loop. Set γ0:=γ, α0:=α, κ0:=κ(γ,κr), t:=t+h. GOTO Step 1.

3. Numerical aspects

3.1. Plasticity and hardening

The computation of the plasticity and hardening part consists in
solving the time-incremental minimization problem (7). This is done
with the limited-memory Broyden-Fletcher-Goldfarb (L-BFGS) algo-
rithm and finite differences developed in [10].

3.2. Front tracking algorithm

The front propagation is computed with a modified version of the
algorithm in [36]. According to Eqn. (16), the normal velocity of an

interface Γij between grains i and j satisfies

where kij denotes the mean curvature of Γij, and ei−ej are bulk energy
differences,

As before, V(κ) denotes the jump of V(κ) across Γij.
Let η>0 be a small time step such that h=Nη for some N∈ℕ, where

h>0 is the fixed time step of the Cosserat minimization (7).
Front tracking algorithm (Propagate the fronts from time t to time

t+h).

1 Initialization: Let r≥2 grains be present initially. FOR i=1,…,r: Set
ωi(x,t) as the characteristic function of the i-th grain. Set j:=1.

2

DiffusionSet

For i=1,…,r: Compute by solving the first time step of the
diffusion problem

3 Sharpening: For each x∈Ω

Let , where , ,
are the three largest values of . Set

Set ωi(x,t+jη):=0 for all i∈{1,…,r}∖{l,m,n}.

4 Loop: Set j:=j+1. WHILE j<N+1 GOTO Step 2
The regions R1, R2, R3 introduced in Eqn. (22) are displayed in Fig.

1. The transition points pij are defined in (23).
For any time s≥0, the moving grain boundaries are determined by

In Eqn. (22), π:[0,1]3→Σ denotes the projection of to barycen-
tric coordinates of the projection triangle, i.e.

The projector π replaces the transfer function f in [36] for general
diffusion problems which is required when the diffusion constants in
(21) differ. Eqn. (22) states that by the projection triangle algorithm,

(18)

(19)

(20)

(21)

(22)
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Fig. 1. Projection triangle Σ with (solid) and without (dotted) bulk components ej.

every ω∈Ri is mapped to the corner of Ri (i.e. to (0,0,1), (1,0,0) or
(0,1,0)).

The transition points pij∈R3 are defined by

These definitions induce a CFL–condition: η>0 must be small
enough (or N∈N in h=Nη must be large enough) to ensure pij∈Σ.

In the presence of multiple grains, the level set approach may lead
to topological errors, i.e. voids may form or neighboring level sets
may overlap. To avoid this, as explained in [29], in regular intervals,
a correction step is necessary. Every 10th step, the level sets are rede-
fined by setting

The parabolic problem (21) is discretized in time with the implicit
Euler scheme

where the stiffness matrix S is a block matrix originating from the spa-
tial discretization of −△ with free boundary conditions in R3. The dis-
crete system (24) is solved with a (preconditioned) conjugate-gradient
method.

4. Simulations

In the simulations, a 3D specimen is deformed plastically accord-
ing to Eqn. (20). Of interest are the resulting grain distribution and the
mechanical properties of the polycrystal. All computations are dimen-
sionless since for finite-strain Cosserat media it is usually impossible
to identify the correct Cosserat parameters corresponding to experi-
mental data, see Refs. [30,24].

Unless stated otherwise, the simulations share the parameters

Here, ε is the regularization parameter of |⋅|, see Eqn. (14) in Ref.
[10].

Five different initial grain distributions have been used in the sim-
ulations, obtained from experimental measurements with varying spa-
tial resolutions. Table 1 Gives an overview and shows the correspond-
ing numerical costs for the solution of one time step of (7).

Fig. 2 renders exemplary one grain distribution obtained from mea-
surements for the iron-nickel-chromium austenitic alloy 800H. The
slip systems for this material are taken from [41]. Fig. 3shows exem-
plary two cross-sections of the computed grain structure starting from
distribution “G4’.

The first important result of the simulations concerns the long-time
behavior of the grain distribution, as outlined in Fig. 4.

As can be seen, basically two different states occur. The first
state, at the beginning of the simulations, is characterized by the
absence of newly recrystallized grains. The grain structure steadily

Table 1
Comparison of different initial grain structures. “time’ lists the computation time for the
solution of the first time step of (7) with the L-BFGS algorithm (single desktop PC; In-
tel Dual-Core E7400 (2.8 GHz) and 4 GB RAM).

Name Reference domain Resolution Grains Nodes Unknowns Time

G1 Ω=(0,1)3 16×16×7 62 1792 10180 2.5 s
G2 Ω=(0,1)2×(0,2) 16×16×16 92 4096 24616 13.4 s
G3 Ω=(0,2)2×(0,1) 32×32×7 121 7168 42172 34.2 s
G4 Ω=(0,2)3 32×32×15 183 15360 96540 121 s
G5 Ω=(0,2)2×(0,4) 32×32×32 328 32768 212072 319 s

Fig. 2. Four cross sections of the initial grain distribution “G1’ computed from experi-
mental data of the alloy 800H with 62 grains and resolution16×16×7.

(23)

(24)

(25)
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Fig. 3. Cross-section of the computed grain structure at z=0.5 for the initial distribution “G4’ and t=0.45 (left), t=0.95 (right).

Fig. 4. Long-time behavior of the simulated grain distribution for lattice geometries G1-G5 of Table 1. Left: Number of grains. Right: Average grain size D.

coarsens and there is one distinct configuration where the total number
of grains is minimal (and the average size D is maximal). In the tran-
sition from the first to the second state, recrystallization kicks in. New
recrystallized grains of smaller size are formed and D decreases. This
second state is characterized by oscillations which become smaller and
smaller until remarkably, up to small deviations, D is constant.

The two different states also manifest themselves in the computed
flow curves, Fig. 5. An initial hardening period is followed by a pe-
riod with smaller and smaller oscillations that tend toward a steady
state. The computations also demonstrate that σ decreases when T is
increased.

Fig. 4 suggests that the equilibrium average grain size D in the
third state is a universal quantity, possibly depending only on global
parameters kept fixed during the simulations. These considerations
motivate to study the law

between the yield stress σY and the average grain size D, where p
is a suitable exponent. For , Eqn. (26) relates to the famous
Hall-Petch relation.

Fig. 5. Computed component σ33 of the 1. Piola Kirchhoff stress for dif-

ferent temperatures and geometry G5.

In order to study (26), for N≥2 simulations and input values
(all other parameters are unchanged), the average grain

(26)
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sizes for large t are computed numerically. The exponent p
is computed by the formula

Fig. 6 has the details. As can be seen, the simulations predict an ex-
ponential dependence of p on σY (with certain changes depending on
the chosen geometry). However, p also depends on the parameter δTOL
from Eqn. (4), since this parameter is crucial for the number of grains
identified by the algorithm.

5. Discussion

In this article, a new model for dynamic recrystallization is pro-
posed. It combines the Ambrosio-Tortorelli functional from image
analysis with the Cosserat theory of crystal plasticity to derive an algo-
rithm that automatically identifies the grain structure of the polycrys-
tal. The micro-rotations of the Cosserat model determine the orienta-
tions and wall mobilities of the new recrystallized grains. The model
is completed with an Avrami equation to model softening and a level
set method to propagate the grain walls.

The simulations demonstrate that after a first initialization period
where the initial grain structure changes and the material hardens,
there is a second oscillatory period with smaller and smaller fluctua-
tions tending for large t toward a stable equilibrium with an (almost)
constant average grain size D.

The proposed method differs significantly from the approach in
[15] where homogenization techniques are applied to a periodic grain
structure with fixed connectivity to simulate the small-strain kinemat-
ics of elasto-plastic Cosserat crystals. In this article, the partitioning

into (sub-) grains is achieved directly from the local deformations and
rotation fields of the Cosserat equations, allowing the grain topology
and the connectivity of the grains to be non-periodic and to change
with time.

At present, the proposed method still has some severe shortcom-
ings. Firstly, the spatial resolution of the experimental grain data in
z-direction is low, affecting the precision of the simulations. Secondly,
the simulations are non-dimensional and depend on finite size effects.
The choice of the parameters δTOL in Eqn. (4), σ, τ, δ in Eqn. (3), the
critical radius rcrit, the growth rate of the newly recrystallized grains,
the Cosserat parameter μ2, and the softening law all influence the com-
putations. Clearly, the computed exponent p depends on δTOL, as Fig.
6 indicates. The oscillatory second part in the curves of Fig. 5 depends
in a complicated way on the total dislocation density and the number/
geometry of the grains present (hence also on δTOL). For a more com-
plete understanding of DRX, it would be very desirable to understand
in detail the complicated mechanisms involved here.

Alternative to the Ambrosio-Tortorelli approach, several other
methods have been developed that can potentially be used in an auto-
matic grain identification process. One may resort to algebraic topol-
ogy [4], or apply mesh-free Hamiltonian functionals in the spirit of
[25]. Another possibility is stochastic methods, e.g. stochastic homog-
enization, [39].

Uncited references
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Fig. 6. Growth exponent p as a function of σY for the 5 different lattice geometries of Table 1. Left: δTOL=0.005. Right: δTOL=0.002.
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