Modulhandbuch

Angewandte Bioinformatik (B.Sc.)
(Prüfungsordnung von 2012)

Stand 23. September 2019
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>1</th>
<th>Mathematisch-Naturwissenschaftliche Grundlagen</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mathematik (B-BI-MN01)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Mathematik für Bioinformatiker (B-BI-MN02)</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Biowissenschaften (B-BI-MN03) (bis SoSe 2017)</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Biowissenschaften (B-BI-MN03) (nur WiSe 2017)</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Genetik (B-BI-MN04)</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Allgemeine Chemie (B-BI-MN05)</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Statistik (B-BI-MN06)</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Pflichtveranstaltungen Informatik</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Grundlagen der Informatik 1 (B-BI-PI01)</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Grundlagen der Informatik 2 (B-BI-PI02)</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Objektorientierte Programmierung (B-BI-PI03)</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Algorithmen und Datenstrukturen (B-BI-PI04)</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Datenbanken (B-BI-PI05)</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Software Engineering (B-BI-PI08)</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>IT-Sicherheit (B-BI-PI10)</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Theoretische Informatik (B-BI-PI11)</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Pflichtveranstaltungen Bioinformatik</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Bioinformatische Datenanalyse (B-BI-PI06)</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Algorithmische Bioinformatik (B-BI-PI07)</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Systembiologie (B-BI-PI09)</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Pflichtveranstaltungen Biotechnik</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Zellbiologie (B-BI-PB02)</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Gentechnik (B-BI-PB03)</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Mikrobiologie (B-BI-PB04)</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Biochemie 1 und Einführung in die Biotechnik (B-BI-PB05)</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Biochemie 2 (B-BI-PB01)</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Pflichtveranstaltungen Übergreifende Inhalte</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Englisch (B-BI-PU01)</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>Seminar Bioinformatik (B-BI-PU02)</td>
<td>54</td>
</tr>
<tr>
<td>5.3</td>
<td>Betriebswirtschaftslehre (B-BI-PU03)</td>
<td>56</td>
</tr>
<tr>
<td>5.4</td>
<td>Wissenschaftliches Arbeiten und Schreiben (B-BI-PU04)</td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Wahlpflichtveranstaltungen Informatik</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Parallele Datenverarbeitung (B-BI-WI01)</td>
<td>60</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

6.2 Administration (B-BI-WI02) ... 62
6.3 Betriebssysteme (B-BI-WI03) ... 64
6.4 Rechnersystem-Infrastrukturen (B-BI-WI04) 66
6.5 Mobile Computing (B-BI-WI08) 68
6.6 Web-Technologien (B-BI-WI09) 70

7 Wahlpflichtveranstaltungen Bioinformatik 72
7.1 Microarrayanalyse mit R (B-BI-WI07) 72
7.2 Current Bioinformatics (B-BI-WI10) 75
7.3 Neuronale Netze (B-BI-WI05) 77
7.4 Evolutionäre Algorithmen (B-BI-WI06) 79
7.5 Studienarbeit (B-BI-WI11) .. 81

8 Wahlpflichtveranstaltungen Biotechnik 82
8.1 Biochemie 3 (B-BI-WB01) .. 82
8.2 Mikrobiologie 2 (B-BI-WB02) 84
8.3 Grüne Gentechnik (B-BI-WB03) 86
8.4 Angewandte Klinische Forschung in der Biotechnologie (B-BI-WB04) 88
8.5 Giftige Inhaltsstoffe in Pflanzen (B-BI-WB05) 91
8.6 Biotechnologie 1 (B-BI-WB06) 93
8.7 Proteinfaltung 1 (B-BI-WB07) 95
8.8 Proteinfaltung 2 (B-BI-WB08) 96
8.9 Biowissenschaftliches Projekt (B-BI-WB??) 98

9 Praxisphase (B-BI-PP01) ... 100

10 Bachelorarbeit (B-BI-BA01) ... 102

23. September 2019

Angewandte Bioinformatik (B.Sc.)
Mathematisch-Naturwissenschaftliche Grundlagen

1.1 Mathematik (B-BI-MN01)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-MN01</td>
<td>180h</td>
<td>9</td>
<td>WSA: 1.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- Ingenieurmathematik 1
 - Kontaktzeit: 8 SWS / 120h
 - Selbststudium: 60h

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- mathematische Grundkonzepte (Vektoroperationen, Gaußsches Eliminationsverfahren, Determinantenrechnung, Matrixalgebra, Interpolationsverfahren, Ableitung und Integration elementarer Funktionen einer und mehrerer unabhängiger Variablen sowie zusammengesetzter Ausdrücke) wiederzugeben und anzuwenden
- komplexe naturwissenschaftliche Zusammenhänge mathematisch zu modellieren

3 Inhalte
- Gleichungen, lineare Gleichungssysteme, Determinanten
- Folgen und Reihen
- Grundlagen der Gruppentheorie, Permutationsgruppen
- Komplexe Zahlen
- Vektorräume, Matrixalgebra
- Funktionen, Interpolationsverfahren
- Differenzialrechnung für Funktionen einer und mehrerer Variablen
- Integralrechnung (Riemannisches Integral) für Funktionen einer und mehrerer Variablen

4 Lehrform
- 4 SWS Vorlesung, 4 SWS begleitende parallele Übungen

5 Teilnahmemvorraussetzungen
Formal: keine
Inhaltlich: Schulmathematik: Mengen, Zahlenbereiche, sicheres Umgehen mit Termumformungen, Trigonometrie
<table>
<thead>
<tr>
<th></th>
<th>Mathematisch-Naturwissenschaftliche Grundlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Prüfungsformen</td>
</tr>
<tr>
<td></td>
<td>Klausur (120 Minuten, Deutsch)</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
</tr>
<tr>
<td></td>
<td>Bestandene Modulklausur; erfolgreiche Teilnahme an den Übungen (Studienleistung)</td>
</tr>
<tr>
<td>8</td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
</tr>
<tr>
<td></td>
<td>Bachelor Biotechnik (B-BT-PM04), Bachelor Energie- und Prozesstechnik (B-EP-PM05)</td>
</tr>
<tr>
<td>9</td>
<td>Stellenwert der Note für die Endnote</td>
</tr>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
</tr>
<tr>
<td></td>
<td>Dr. Thorsten Riedel</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
<tr>
<td></td>
<td>Sprache: Deutsch</td>
</tr>
</tbody>
</table>
1.2 Mathematik für Bioinformatiker (B-BI-MN02)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-MN02</td>
<td>90h</td>
<td>3</td>
<td>WSA: 2.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 - Mathematik für Bioinformatiker

2. **Lernergebnisse (learning outcomes) / Kompetenzen**

3. **Inhalte**
 - Lineare Algebra (Fortsetzung); Lineare Abbildungen und Matrizen; Determinanten
 - Eigenwerte und Eigenvektoren, Diagonalisierbarkeit, Jordansche Normalform, Hauptachsentransformation
 - Gewöhnliche Differentialgleichungen; Grundbegriffe und elementare Lösungsmethoden
 - Lineare Differentialgleichungen erster und höherer Ordnung
 - Systeme von linearen Differentialgleichungen

4. **Lehrform**
 - 2 SWS Vorlesung, 2 SWS Übung

5. **Teilnahmevoraussetzungen**
 - **Formal:** keine
 - **Inhaltlich:** Modul Mathematik

6. **Prüfungsformen**
 - Klausur

7. **Voraussetzungen für die Vergabe von Leistungspunkten**
 - Bestandene Modulklausur

8. **Verwendung des Moduls** (in anderen Studiengängen)

9. **Stellenwert der Note für die Endnote**
 - Gewichtung nach Leistungspunkten

23. September 2019

Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th></th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dr. Thorsten Riedel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Ansorge, Oberle, Rothe, Sonar: Mathematik für Ingenieure, Band 1 u. 2, Wiley-VCH</td>
</tr>
<tr>
<td></td>
<td>Arens, Hettlich, Karpfinger, Kockelkorn, Lichtenegger, Stachel: Mathematik, Spektrum Verlag</td>
</tr>
<tr>
<td></td>
<td>Brill: Mathematik für Informatiker, Hanser Verlag</td>
</tr>
<tr>
<td></td>
<td>Stingl: Mathematik für Fachhochschulen, Hanser Verlag</td>
</tr>
<tr>
<td></td>
<td>Wolff, Hauck, Küchlin: Mathematik für Informatik und Bioinformatik, Springer Verlag</td>
</tr>
</tbody>
</table>
1.3 Biowissenschaften (B-BI-MN03) (bis SoSe 2017)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-MN03</td>
<td>180h</td>
<td>6</td>
<td>WSA: 1.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botanik, Zoologie, Mikrobiologie</td>
<td>7 SWS / 105h</td>
<td>75h</td>
<td>Vorlesung ca. 30, Praktikum 6-8 Studierende</td>
</tr>
</tbody>
</table>

2. Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- den Aufbau und die Funktion der Organismen (Pflanzen, Tiere und Mikroorganismen) aufzuzählen
- die Organismen histologisch, morphologisch und funktionell darzustellen
- die Ansprüche der Mikroorganismen an Nährstoffe und Umweltbedingungen zuzuordnen
- das Konzept der Hygiene mit den Teilbereichen Sterilisation, Desinfektion und Konservierung zu beschreiben
- die Basistechniken mikrobiologischen Arbeitens und des sicheren Umgangs mit Mikroorganismen anzuwenden

3. Inhalte
Vorlesung, 1 SWS Botanik Prof. Rademacher: Vom Urknall zum Organismus, Einteilung der Botanik, Aufbau einer Pflanzenzelle, Phylogenie der Pflanzen, Organe der Kormophyten, Wurzel, Sprossachse, Laubblatt, Blüte, Fruchtbildung und Früchte
Vorlesung, 1 SWS Mikrobiologie Prof. Lehmann: Einführung in die Zelle, chemische Bestandteile der Zelle, Moleküle und Makromoleküle der Zelle, Unterschiede Prokaryonten - Eukaryonten, Aufbau der Bakterienzellen (Prokaryonten)
| 4 | Lehrform
5 SWS Vorlesung, 2 SWS Praktikum |
|---|---|
| 5 | Teilnahmeverbesserungen
Formal: keine
Inhaltlich: keine |
| 6 | Prüfungsformen
Klausur (150min) |
| 7 | Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulklausur, Praktikum erfolgreich abgeschlossen |
| 8 | Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik (B-BT-PM03) |
| 9 | Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten |
| 10 | Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Kai Muffler
weitere Lehrende: Prof. Rademacher, Prof. Lehmann, Frau Dipl.-Ing. Vosseberg-Hammel |
| 11 | Sonstige Informationen
Sprache: Deutsch
Literatur: Skript zur Vorlesung Botanik und Zoologie
Folien zur Vorlesung Mikrobiologie
H.Cypionka, Grundlagen der Mikrobiologie, Springer Verlag, ISBN: 978-3-642-05095-4
Wallhäuser, K.H.: Praxis der Sterilisation - Desinfektion - Konservierung; Georg Thieme Verlag Stuttgart |
1.4 Biowissenschaften (B-BI-MN03) (nur WiSe 2017)

<table>
<thead>
<tr>
<th>Biowissenschaften (BIOW)</th>
<th>Life Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
<td>B-BI-MN03</td>
</tr>
<tr>
<td>Arbeitsbelastung</td>
<td>180h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>SSA: 2.Sem</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>nur Wintersemester 2017/18</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung, Praktikum</td>
<td>V: 4 SWS / 60h</td>
<td>90h</td>
<td>Vorlesung ca. 50</td>
</tr>
<tr>
<td></td>
<td>P: 2 SWS / 30h</td>
<td></td>
<td>Studierende,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Praktikum:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gruppen mit 6-8 Studierenden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lernergebnisse (learning outcomes) / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden sind nach Abschluss des Moduls in der Lage:</td>
</tr>
<tr>
<td></td>
<td>- den Aufbau pro- und eukaryotischer Mikroorganismen zu beschreiben und</td>
</tr>
<tr>
<td></td>
<td>grundlegende mikrobielle Stoffwechselprozesse zu erläutern</td>
</tr>
<tr>
<td></td>
<td>- das Wachstum von Mikroorganismen zu quantifizieren</td>
</tr>
<tr>
<td></td>
<td>- Nährmedien für technische Fermentationen zu gestalten und Substrate auszuwählen</td>
</tr>
<tr>
<td></td>
<td>- das Konzept der Hygiene (Sterilisation, Desinfektion, Konservierung) zu</td>
</tr>
<tr>
<td></td>
<td>beschreiben</td>
</tr>
<tr>
<td></td>
<td>- die Besonderheiten industrieller Mikroorganismen wiederzugeben</td>
</tr>
<tr>
<td></td>
<td>- Verfahren der Stammbeschaffung/-optimierung und Stammhaltung/-konservierung</td>
</tr>
<tr>
<td></td>
<td>zu erläutern</td>
</tr>
<tr>
<td></td>
<td>- grundlegende Techniken der Mikroskopie zu beschreiben und praktisch umzusetzen</td>
</tr>
<tr>
<td></td>
<td>- die Basistechniken mikrobiologischen Arbeitens und des sicheren Umgangs mit</td>
</tr>
<tr>
<td></td>
<td>Mikroorganismen anzuwenden</td>
</tr>
</tbody>
</table>
1. Mathematisch-Naturwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (3 SWS), Angewandte Mikrobiologie, Prof. Dr.-Ing. K. Muffler:</td>
<td></td>
</tr>
<tr>
<td>- Aufbau pro- und eukaryotischer Mikroorganismen, chemische Bestandteile der Zelle</td>
<td></td>
</tr>
<tr>
<td>- Systematik, Wachstum und Stoffwechsel von Mikroorganismen</td>
<td></td>
</tr>
<tr>
<td>- Kontrolle des mikrobiellen Wachstums (Sterilisation, Desinfektion, Konservierung), steriles Arbeiten</td>
<td></td>
</tr>
<tr>
<td>- Anforderungen an industrielle Produktionsstämmle</td>
<td></td>
</tr>
<tr>
<td>- Entwicklung von Hochleistungsstämmen</td>
<td></td>
</tr>
<tr>
<td>- Stammhaltung/Konservierung von Mikroorganismen/Produktionsstämmen</td>
<td></td>
</tr>
<tr>
<td>Vorlesung mit Laborübung (1 SWS), Mikroskopie, Prof. Dr. M. J. Lehmanna:</td>
<td></td>
</tr>
<tr>
<td>- Physikalische Grundlagen des Lichts</td>
<td></td>
</tr>
<tr>
<td>- Abbildungsfehler</td>
<td></td>
</tr>
<tr>
<td>- Auflösungsvermögen optischer Systeme nach Abbe, numerische Apertur</td>
<td></td>
</tr>
<tr>
<td>- Aufbau eines Lichtmikroskops</td>
<td></td>
</tr>
<tr>
<td>- Lichtmikroskopie (Köhlersche Beleuchtung, Hell- und Dunkelfeld, Phasenkontrast)</td>
<td></td>
</tr>
<tr>
<td>- Moderne lichtmikroskopische Verfahren (Fluoreszenz-, STED-Mikroskopie)</td>
<td></td>
</tr>
<tr>
<td>- Fluoreszenz-Korrelations-Spektroskopie</td>
<td></td>
</tr>
<tr>
<td>- Elektronenmikroskopie</td>
<td></td>
</tr>
<tr>
<td>- Praktische Übungen am Lichtmikroskop</td>
<td></td>
</tr>
<tr>
<td>Praktikum (2 SWS), Mikrobiologisches Arbeiten, Frau Dipl.-Ing. Vosseberg-Hammel:</td>
<td></td>
</tr>
<tr>
<td>- Herstellen von Nährmedien</td>
<td></td>
</tr>
<tr>
<td>- sterile Arbeitstechniken</td>
<td></td>
</tr>
<tr>
<td>- Nachweis von Mikroorganismen in der Luft und auf Oberflächen</td>
<td></td>
</tr>
<tr>
<td>- Verfahren zur Bestimmung von Zellzahl und Zellmasse</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS Vorlesung, 2 SWS Praktikum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: keine</td>
<td></td>
</tr>
<tr>
<td>Inhaltlich: keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandene Modulklausur, erfolgreich absolviertes Praktikum (Studienleistung)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung nach Leistungspunkten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Kai Muffler</td>
<td></td>
</tr>
<tr>
<td>weitere Lehrende: Prof. Dr. M. Lehmanna, Frau Dipl.-Ing. Vosseberg-Hammel</td>
<td></td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
11 | Sonstige Informationen

Sprache: Deutsch

E. Bast, Mikrobiologische Methoden, Spektrum Akademischer Verlag 2010
R. Renneberg, V. Berkling, Biotechnologie für Einsteiger, 4. Aufl., Springer Verlag 2013
1.5 Genetik (B-BI-MN04)

<table>
<thead>
<tr>
<th>Genetik (GENE)</th>
</tr>
</thead>
</table>

| Kenn- |
nummer	Arbeits-	Leistungs-	Studien-	Häufigkeit des
B-BI-MN04	belastung	punkte	semester	Angebots
90h	3	WSA: 4.Sem	Sommer- semester	1 Semester

| 1 | Lehrveranstaltungen | Kontaktzeit | Selbststudium | Geplante Gruppengröße |
| 2 SWS / 30h | 60h | Vorlesung ca. 30 Studierende |

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- den molekularen Aufbau und die Funktion des Erbmaterials zu beschreiben
- die Genwirkungen und das Zusammenspiel von Genotyp und Umwelt zu erklären
- die genetischen Vererbungsmechanismen zu charakterisieren

3 Inhalte
Lokalisation der Erbsubstanz, Genexpression, Gen- und Genomstrukturen, extrachromosomales Erbmaterial, genetische Regulation, Veränderung des Erbmaterials, Genwirkung, Genotyp und Umwelt, Prinzipien der Vererbung, Einführung in die Populationsgenetik, Einführung in die Quantitative Genetik

4 Lehrform
2 SWS Vorlesung

5 Teilnahmeveranlassungen
Formal: keine
Inhaltlich: Schulbiologie

6 Prüfungsformen
Klausur (90min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulklausur

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik (B-BT-PM20)

9 Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

10 Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Claus-Heinrich Stier
11 Sonstige Informationen

Sprache: Deutsch

Literatur:
- Graw: Genetik. 5. Aufl., Springer Verlag, 2010

Folienvorlagen zur Vorlesung
1. Mathematisch-Naturwissenschaftliche Grundlagen

1.6 Allgemeine Chemie (B-BI-MN05)

<table>
<thead>
<tr>
<th>Kennnummer B-BI-MN05</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180h</td>
<td>6</td>
<td>WSA: 1.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chemie 1</td>
<td>6 SWS / 90h</td>
<td>90h</td>
<td>Vorlesung ca. 50, Praktikum á 8 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- Grundbegriffe, Definitionen sowie die Formelsprache der Chemie sicher zu verwenden
- chemische Reaktionsgleichungen auszugleichen
- grundlegende Prinzipien der chemischen Bindung und des Atombaus wiederzugeben
- Gleichgewichtsbetrachtungen bei Säure-/Base und Redoxreaktionen anzustellen
- chemische Reaktionen kinetisch zu betrachten

3 Inhalte
- Chemische Grundbegriffe und Definitionen
- Stöchiometrie von Formeln und Reaktionsgleichungen
- Atomaufbau und Einflussgrößen der chemischen Bindungen
- Massenwirkungsgesetz sowie die physikalisch/chemischen Einflussgrößen
- Säuren/Basen
- Elektrochemische Grundlagen
- Reaktionskinetik und Katalyse
- Praktikum: Säure-Base-Titration, elektrolytische Wasserzersetzung

4 Lehrform
4 SWS Vorlesung mit integrierten Übungen, 2 SWS Praktikum

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Schulmathematik, Vorkurs Chemie

6 Prüfungsformen
Klausur (90 min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
erfolgreich absolviertes Praktikum und bestandene Modulklausur

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik B-BT-PM02

23. September 2019
Angewandte Bioinformatik (B.Sc.)
| 9 | **Stellenwert der Note für die Endnote**
 Gewichtung nach Leistungspunkten |
| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende**
 Prof. Dr. Clemens Weiß |
| 11 | **Sonstige Informationen**
 Sprache: Deutsch
 Literatur: T. L. Brown, H. Eugene LeMay, Bruce E. Bursten Chemie ”Pearson Studium”, jeweils neueste Auflage |
1. Mathematisch-Naturwissenschaftliche Grundlagen

1.7 Statistik (B-BI-MN06)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-MN06</td>
<td>180h</td>
<td>6</td>
<td>WSA: 3.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lehrveranstaltungen Statistik</td>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
<td>Geplante Gruppengröße</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 SWS</td>
<td>60h</td>
<td>Vorlesung ca. 90, Praktikum ca. 15 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen

Am Ende dieses Moduls sind die Studierenden in der Lage:
- die Grundbegriffe der Statistik zuzuordnen und diese in weiterführender Literatur oder bei der Kommunikation mit Experten zu identifizieren
- einfache Statistiken nach ihrer Aussagekraft zu bewerten
- gegebenen Daten die korrekte Datenart zuzuordnen und daraufhin geeignete Streu- und Lageparameter sowie Verteilungen auszuwählen
- ein- und zweidimensionale Datensätze (wie sie z.B. in Praktika und Abschlussarbeiten erhoben werden) mit den grundlegenden statistischen Verfahren auszuwerten und in geeigneter Weise grafisch auszuwerten

3 Inhalte

Vorlesung:
Beschreibende Statistik:
Grundbegriffe, ein- und zweidimensionale Häufigkeitsverteilungen, Streu- und Lageparameter, Kovarianz, Korrelation, lineare und quasilineare Regression, Zeitreihen
Wahrscheinlichkeitsrechnung:
Schließende Statistik:
Stichproben, Punktschätzungen, Intervallschätzungen, Hypothesentests
Praktikum:
Umsetzung der Inhalte der Vorlesung in praxisbezogenen Übungen insbesondere mit Hilfe von verbreiteten Tabellenkalkulationsprogrammen, Auswertung und Aufbereitung von Daten

4 Lehrform

4 SWS Vorlesung mit Übungen und 2 SWS Praktikum am Rechner

23. September 2019
Angewandte Bioinformatik (B.Sc.)
1. Mathematisch-Naturwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th></th>
<th>Teilnahmevoraussetzungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Formal: keine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: Mathematik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prüfungsformen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Klausur (90min)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Bestandene Modulklausur und vollständige Praktikumstestate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Bachelor Umweltschutz B-UW-PM09</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stellenwert der Note für die Endnote</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Gewichtung nach Leistungspunkten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Prof. Dr. Cornelia Lorenz-Haas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sonstige Informationen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Sprache: Deutsch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literatur: Vorlesungsunterlagen, M. Sachs, Wahrscheinlichkeitsrechnung und Statistik, Hanser, ISBN 978-3-446-42045-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einführende Literatur zur Statistik mit dem jeweils ausgewählten Tabellenkalkulationsprogramm (z.B. RRZN-Handbücher der Leibniz Universität Hannover)</td>
<td></td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
2 Pflichtveranstaltungen Informatik

2.1 Grundlagen der Informatik 1 (B-BI-PI01)

<table>
<thead>
<tr>
<th>Grundlagen der Informatik 1 (IGRU1)</th>
<th>Introduction to Computer Science 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
<td>B-BI-PI01</td>
</tr>
<tr>
<td>Arbeitsbelastung</td>
<td>180h</td>
</tr>
<tr>
<td>Leistungs- Punkte</td>
<td>6</td>
</tr>
<tr>
<td>Studien- semester</td>
<td>WSA: 1.Sem SSA: 1.Sem</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>Sommer- und Wintersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- Grundlagen der Informatik 1

| **Kontaktzeit** | 75h |
| **Selbststudium** | 105h |

Geplante Gruppengröße
- 70 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen
- Kenntnis von Grundzügen der Geschichte der Informatik
- Kenntnis von Gebieten und Methoden der Logik
- Fähigkeit logische Methoden anzuwenden, d.h. Zusammenhänge logisch formal zu erfassen und anschließend in verschiedene Form zu bringen
- Kenntnis von Zahlensystemen und -darstellungen, insbesondere das Abbilden von Werten in Zahlensysteme, das Umrechnen zwischen Zahlensystemen sowie das Rechnen in verschiedenen Zahlensystemen
- Verständnis von Rundungs- und Rechenfehlern
- Verständnis des Aufbaus und der Funktion eines Von Neumann Rechners und Fähigkeit, dies auf aktuelle Rechnerarchitekturen sowie auf Programmabläufe zu übertragen
- Fähigkeit, einfache maschinennahe Programme zu erstellen und zu analysieren

3 Inhalte
- Geschichte der Informatik
- Logik: Boolesche-, Prädikaten-, Schaltalgebra
- Zahlensysteme und -darstellungen
- von Neumann-Architektur
- Spezifikation
- Assembler

4 Lehrform
- 3 SWS Vorlesung, 2 SWS begleitende Übung
Teilnahmevoraussetzungen

Formal: keine
Inhaltlich: keine

Prüfungsformen

Klausur

Voraussetzungen für die Vergabe von Leistungspunkten

Bestandene Prüfungsleistung

Verwendung des Moduls (in anderen Studiengängen)

Bachelor Informatik (B-IN-IG01), Bachelor Mobile Computing (B-MC-MN03)

Stellenwert der Note für die Endnote

Gewichtung nach Leistungspunkten

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr.-Ing. Maximilian Mengel, Prof. Dr. Thomas Marx

Sonstige Informationen

Sprache: Deutsch, einzelne Abschnitte in Englisch
Literatur: Gumm, H.P.; Sommer, M. Einführung in die Informatik. Oldenbourg Verlag 2010.
Rausch, P. Informatik für Ingenieure, Vieweg.
2. Pflichtveranstaltungen Informatik

2.2 Grundlagen der Informatik 2 (B-BI-PI02)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI02</td>
<td>180h</td>
<td>6</td>
<td>WSA: 3.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSA: 4.Sem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Grundlagen der Informatik 2
Kontaktzeit: 5 SWS / 75h
Selbststudium: 105h
Gruppengröße: 70 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen

- Kenntnisse von Grundbegriffen der Graphentheorie
- Einblick in Prinzipien von Programmiersprachen
- Fähigkeit, formale Sprachen mittels Grammatiken zu definieren und anzuwenden (z.B. bei der Konstruktion von Automaten)
- Grundkenntnisse von Modellen zur Berechenbarkeit, z.B. Turingmaschine. Grenzen der Berechenbarkeit und Beispiele von NP-vollständigen Problemen
- Grundbegriffe der diskreten Wahrscheinlichkeitsrechnung
- Kenntnis von Grundbegriffen der Informationstheorie
- Datenkompression: Fähigkeit Redundanz zu erkennen und zu vermeiden. Anwendung von verlustfreien Codierungsverfahren zur Verringerung der Redundanz
- Verlustbehaftete Kompression: Kenntnisse von Verfahren, Daten mit kaum merkbarem Verlust zu komprimieren
- Kenntnisse von Verfahren der Fehlererkennung und -korrektur
- Grundkenntnisse der Kryptographie

3 Inhalte

- Graphentheorie und Modellbildung
- Konzepte von Programmiersprachen, Anwendung von Rekursion
- Formale Sprachen
- Berechenbarkeitstheorie
- Komplexitätstheorie
- Diskrete Wahrscheinlichkeitsrechnung
- Informationstheorie, Entscheidungsbäume
- Datenkompression (verlustfrei)
- Verlustbehaftete Kompression
- Fehlererkennung und -korrektur
- Kryptographie: Symmetrische und asymmetrische Verfahren

23. September 2019
Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th></th>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3 SWS Vorlesung, 2 SWS begleitende Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Teilnahmeveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Formal: keine</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Schriftliche Prüfung (90 Minuten, in Deutsch)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Prüfungsleistung (Bestandene Modulklausur)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Bachelor Informatik (B-IN-IG03), Bachelor Mobile Computing (B-BI-IG01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Prof. Dr. Frank Mehler, Prof. Dr. Antje Krause</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Sprache: Deutsch, einzelne Abschnitte in Englisch</td>
</tr>
<tr>
<td></td>
<td>Literatur: H.-P. Gumm, M. Sommer: Einführung in die Informatik. Verlag Oldenbourg, München</td>
</tr>
<tr>
<td></td>
<td>H. Herold, B. Lurz, J. Wohlrab, Grundlagen der Informatik, Verlag Pearson, München</td>
</tr>
<tr>
<td></td>
<td>Uwe Schöning, Ideen der Informatik: Grundlegende Modelle und Konzepte der Theoretischen Informatik, München</td>
</tr>
<tr>
<td></td>
<td>Peter Rechenberg, Gustav Pomberger: Informatik Handbuch, Verlag Hanser: München, Wien</td>
</tr>
<tr>
<td></td>
<td>P. Becker, Mathematische Grundlagen für die Informatik, Graphentheorie, ZFH Koblenz</td>
</tr>
</tbody>
</table>
2.3 Objektorientierte Programmierung (B-BI-PI03)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI03</td>
<td>180h</td>
<td>6</td>
<td>WSA: 3.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Programmieren 1</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>75h</td>
<td>105h</td>
<td>50 Studierende</td>
<td></td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen

3 Inhalte

- Einführung in die Programmiersprachen, prozedurale und objektorientierte Programmierung
- Arithmetik und Variablen, primitive Datentypen, Wertebereiche
- Kontrollstrukturen (Sequenz, Selektion, Iteration, Rekursion)
- Klassen, Referenztypen, Werte- und Referenzsemantik
- Zeichen und Zeichenketten
- Felder
- Generalisierung, Spezialisierung, Interfaces
- Assertions und Exceptions

4 Lehrform

3 SWS Vorlesung, 2 SWS begleitende Übung

5 Teilnahmevoraussetzungen

Formal: keine
Inhaltlich: Schulmathematik

6 Prüfungsformen

Klausur

7 Voraussetzungen für die Vergabe von Leistungspunkten

Prüfungsleistung (Bestandene Modulklausur) und bestandene Studienleistung

8 Verwendung des Moduls (in anderen Studiengängen)

Bachelor Informatik (B-IN-IG02) , Bachelor Mobile Computing (B-MC-IG02)

9 Stellenwert der Note für die Endnote

Gewichtung nach Leistungspunkten
| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende**
 | Prof. Dr.-Ing. Volker Luckas |
| 11 | **Sonstige Informationen**
 | **Sprache:** Deutsch, einzelne Abschnitte in Englisch
2. Pflichtveranstaltungen Informatik

2.4 Algorithmen und Datenstrukturen (B-BI-PI04)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI04</td>
<td>180h</td>
<td>6</td>
<td>WSA: 2.Sem</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen Algorithmen und Datenstrukturen</th>
<th>Kontaktzeit 75h</th>
<th>Selbststudium 105h</th>
<th>Geplante Gruppengröße 60 Studierende</th>
</tr>
</thead>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen
Die Studierenden verstehen das Konzept abstrakter Datentypen. Sie kennen elementare Datenstrukturen sowie darauf arbeitende Algorithmen und verstehen deren Vor- und Nachteile.

3 Inhalte
- Algorithmus, Datenstruktur, abstrakter Datentyp
- Listen, Stacks, Queues
- Suchen, Sortieren
- Komplexität
- Bäume, Graphen, Speichern und Traversierung von Bäumen und Graphen, Balancierte Bäume, dynamisches Balancieren
- Rekursive Algorithmen / Iterative Algorithmen
- Elementare Algorithmen für Graphen, Fluss- und Wegeprobleme
- Problemlösungsstrategien (Greedy, Backtracking, …)
- Ausgewählte Probleme (Traveling Salesman, Knapsack-Problem, …)
- Hashing
- Hierarchisierung und Strukturierung komplexer Problemstellungen

4 Lehrform
2 SWS Vorlesung, 3 SWS begleitende Übung
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 5 | **Teilnahmeverpflichtungen**
Formal: keine
Inhaltlich: keine |
| 6 | **Prüfungsformen**
Klausur |
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
Bestandene Modulklausur (Prüfungsleistung) und bestandene Studienleistung |
| 8 | **Verwendung des Moduls** (in anderen Studiengängen)
Bachelor Informatik (B-IN-IG04), Bachelor Mobile Computing (B-MC-IG04) |
| 9 | **Stellenwert der Note für die Endnote**
Gewichtung nach Leistungspunkten |
| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende**
Prof. Dr. Hans-Christian Rodrian, Prof. Dr. Thomas Marx, Prof. Dr. Antje Krause |
| 11 | **Sonstige Informationen**
Sprache: Deutsch, einzelne Abschnitte in Englisch
Ottmann, Widmayer: Algorithmen und Datenstrukturen; Spektrum Akademischer Verlag, 4. Auflage
R. H. Gütting, S. Dieker: Datenstrukturen und Algorithmen, Teubner Verlag, 2. Auflage
G. Saake, K.-U. Sattler: Algorithmen und Datenstrukturen – Eine Einführung mit Java, dpunkt Verlag, 2. Auflage |
2. Pflichtveranstaltungen Informatik

2.5 Datenbanken (B-BI-PI05)

<table>
<thead>
<tr>
<th>Datenbanken (DABA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Systems</td>
</tr>
</tbody>
</table>

Kenn-	Arbeits-	Leistung-	Studien-	Häufigkeit des	Dauer
nummer	belastung	punkte	semester	Angebots	
				Wintersemester	Semester
B-BI-PI05	180h	6	WSA: 3.Sem	SSA: 4.Sem	1 Semester

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>75h</td>
<td>105h</td>
<td>70 Studierende</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- Datenbanken
Kontaktzeit: 75h
Selbststudium: 105h
Geplante Gruppengröße: 70 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen

3 Inhalte
Entwurf von Datenbanken:
- ER-Modell, Relationales Modell, Entwurf von relationalen Datenbanken, SQL
Datenbankprogrammierung:
- SQL, Stored Procedures und Trigger
- DB Interfaces zu Programmiersprachen z.B. JDBC
Datenbankmanagementsysteme:
- Grundlagen der physischen Datenorganisation
- Überblick Transaktionskonzept und seiner Implikationen: ACID
- Mehrbenutzersynchronisation
- Autorisierung, Sicherheitsaspekte

4 Lehrform
3 SWS Vorlesung, 2 SWS begleitende Übung

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Grundlagen der Informatik I, Objektorientierte Programmierung

6 Prüfungsformen
Klausur

7 Voraussetzungen für die Vergabe von Leistungspunkten
Prüfungsleistung (Bestandene Modulklausur) und bestandene Studienleistung

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Informatik (B-IN-IG06), Bachelor Mobile Computing (B-MC-IG06)

23. September 2019
Angewandte Bioinformatik (B.Sc.)
| 9 | Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten |
|----|---|
| 10 | Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Michael Schmidt |
| 11 | **Sonstige Informationen**
Sprache: Deutsch, einzelne Abschnitte in Englisch
Literatur: Skript zur Vorlesung
Kemper, A.: Datenbanksysteme, 10. Auflage, 2015, Oldenbourg
Saake, Sattler, Heuer: Datenbanken - Konzepte und Sprachen, 5. Auflage, 2013, Mitp-Verlag |
2. Pflichtveranstaltungen Informatik

2.6 Software Engineering (B-BI-PI08)

<table>
<thead>
<tr>
<th>Software Engineering (SENG)</th>
<th>Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenn-</td>
<td>Arbeits-</td>
</tr>
<tr>
<td>nummer B-BI-PI08</td>
<td>belastung 180h</td>
</tr>
<tr>
<td></td>
<td>Leistungs-</td>
</tr>
<tr>
<td></td>
<td>punkte 6</td>
</tr>
<tr>
<td></td>
<td>Studien-</td>
</tr>
<tr>
<td></td>
<td>semester WSA: 4.Sem</td>
</tr>
<tr>
<td></td>
<td>SSA: 3.Sem</td>
</tr>
<tr>
<td></td>
<td>Häufigkeit des</td>
</tr>
<tr>
<td></td>
<td>Angebots Sommer-</td>
</tr>
<tr>
<td></td>
<td>semester</td>
</tr>
<tr>
<td></td>
<td>Dauer 1 Semester</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>Software Engineering</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit 60h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120h</td>
</tr>
<tr>
<td></td>
<td>Geplante Gruppengröße</td>
</tr>
<tr>
<td></td>
<td>Vorlesung 100, Übung 30</td>
</tr>
<tr>
<td></td>
<td>Studierende</td>
</tr>
</tbody>
</table>

2. Lernergebnisse (learning outcomes) / Kompetenzen

Die Studierenden entwickeln Verständnis für die Softwareentwicklung als Prozess.
Die Studierenden kennen wichtige Vorgehensmodelle und Beschreibungsformen für Artefakte. Sie entwickeln die Fähigkeit, Softwaresysteme auf verschiedenen Abstraktionsebenen zu beschreiben.
Die Studierenden besitzen die Fähigkeit zum systematischen Entwurf von Softwaresystemen von der Anforderung bis zur Implementation. Sie haben Kenntnisse der Grundkonzepte der objektorientierten Softwareentwicklung.

3. Inhalte

- Überblick über wichtige Gebiete des Software Engineerings
- Softwareentwicklung: Phasen und Vorgehensmodelle
- Systemanalyse und Anforderungsfestlegung
- Software-Entwurf und Software-Architekturen
- Implementierung
- Testen und Integration
- Installation, Abnahme und Wartung
- Softwareergonomie
- Aufwandsschätzung von IT-Projekten.

4. Lehrform

2 SWS Vorlesung, 2 SWS begleitende Übung

5. Teilnahmeveraussetzungen

Formal: keine
Inhaltlich: keine

6. Prüfungsformen

Klausur
Voraussetzungen für die Vergabe von Leistungspunkten
Prüfungsleistung (Bestandene Modulklausur) und Studienleistung (erfolgreiche Teilnahme an den Übungen)

Verwendung des Moduls (in anderen Studiengängen)
Bachelor Informatik (B-IN-IG07), Bachelor Mobile Computing (B-MC-PI08)

Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Cornelius Wille

Sonstige Informationen

Sprache: Deutsch, einzelne Abschnitte in Englisch

Literatur:
- Grechenig T. u.a.: Softwaretechnik, Pearson Studium, ISBN 978-3-8694-007-7
- UML 2.0 Das umfassende Handbuch, Galileo Computing, ISBN 3-89842-573-8, 2005
2. Pflichtveranstaltungen Informatik

2.7 IT-Sicherheit (B-BI-PI10)

<table>
<thead>
<tr>
<th>Kenn-nummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI10</td>
<td>180h</td>
<td>6</td>
<td>WSA: 5.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. Lehrveranstaltungen

- IT-Sicherheit

Kontaktzeit: 60h
Selbststudium: 120h
Geplante Gruppengröße: 60 Studierende

2. Lernergebnisse (learning outcomes) / Kompetenzen

- Die Studierenden haben fundierte Kenntnisse über Arten der Sicherheitsbedrohungen an IT-Systemen und Maßnahmen zur Abwehr.
- Die Studierenden kennen die wesentlichen Begriffe, Konzepte und Technologien der IT-Sicherheit.
- Studierende erwerben die Fähigkeit, Angriffe und Defekte zu erkennen und zu klassifizieren.
- Studierende können Systeme (Clients, Server, mobile) mit den wesentlichen Grundschutzmechanismen versehen.
- Studierende kennen verschiedene softwaretechnische Konzepte zur Erstellung sicherer Software als auch für den sicheren Betrieb.
- Sie haben vertiefte Kenntnisse in der Anwendung der modernen Kryptographie.
- Die Studierenden besitzen Kenntnis der Prinzipien zum Entwurf, Umsetzung und Betrieb sicherer Informationssysteme.
- Sie kennen die Bedeutung der IT-Sicherheit für die Gesellschaft und kritische Infrastrukturen. Die Studierenden verstehen das einer Public-Key-Infrastruktur zugrunde liegende Vertrauensmodell und können die Vertrauensstufe in einer PKI bewerten.
- Die Studierenden sind mit den rechtlichen Grundlagen für IT-Systeme (Bundesdatenschutzgesetz, Strafgesetzbuch, Bürgerliches Gesetzbuch) vertraut und können zwischen den Persönlichkeitsrechten von Mitarbeitern und dem Schutzbedürfnis des Arbeitgebers abwägen.

23. September 2019
Angewandte Bioinformatik (B.Sc.)
Inhalte
- IT Sicherheit: Zielsetzungen, Einsatzbereiche, Basisbegriffe, Sicherheitsdienste
- Kryptologie: Sichronne und asynchrone Verfahren, Einsatzgebiete und Algorithmen, Public-Private-Key Verfahren und Infrastrukturen
- Rechtliche Aspekte: Gesetze, Durchsetzung, Datenschutzbeauftragte/Organisation

Lehrform
2 SWS Vorlesung (Beamer+Tafel), 2 SWS flankierenden Laborübungen (Theorie und Praxis am Rechner) sowie Vorträge zu aktuellen Themen

Teilnahmeveranlassungen
Formal: keine
Inhaltlich: Grundlagen Programmieren

Prüfungsformen
schriftliche oder mündliche Prüfung; Prüfungsform wird zu Beginn der Veranstaltung festgelegt

Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Prüfungsleistung

Verwendung des Moduls (in anderen Studiengängen)
Bachelor Informatik (B-IN-V05), Bachelor Mobile Computing (B-MC-IG08)

Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Thomas Marx

Sonstige Informationen
Sprache: Deutsch, einzelne Abschnitte in Englisch
Literatur: Skript zur Vorlesung
Buchmann, Johannes. Einführung in die Kryptographie, 5. Auflage. Springer. 2010
2. Pflichtveranstaltungen Informatik

2.8 Theoretische Informatik (B-BI-PI11)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI11</td>
<td>180h</td>
<td>punkte</td>
<td>semester</td>
<td>Angebots</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>WSA: 6.Sem</td>
<td>Sommer-semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSA: 5.Sem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
<td>Geplante</td>
<td>70 Studierende</td>
</tr>
<tr>
<td></td>
<td>Theoretische Informatik</td>
<td>4 SWS / 60h</td>
<td>120h</td>
<td>Gruppengröße</td>
<td></td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen

- Tiefere Kenntnis der Automatentheorie.
- Fähigkeit verschiedene Automaten zu analysieren und Probleme darin zu formulieren.
- Sie beherrschen reguläre Sprachen und sind mit der Theorie der Turing-Maschinen vertraut, inklusive deren Beweise und Charakteristika.
- Die Studierenden kennen die wichtigsten Komplexitätsklassen von Algorithmen und können Lösungsalgorithmen für typische Problemstellungen der Informatik hinsichtlich ihrer Effizienz bewerten.
- Sie kennen das Prinzip formaler Sprachen und können sie in typischen Anwendungsszenarien einsetzen

3 Inhalte

- Automatentheorie: Turing-Maschinen (deterministische, indeterminierte, universelle), Entscheidbarkeit, aufzählbar vs abzählbar, Registermaschinen (LOOP, WHILE, GOTO), Mächtigkeit
- Komplexitätstheorie: Komplexitätsklassen, vollständige und harte Probleme, Satz von Cook, Nachweisbarkeit von NP-Vollständig
- Berechenbarkeit: Berechenbarkeitsmodelle, Semi-Entscheidbarkeit, Gödelisierung, my-rekursive Funktionen, Lambda-Kalkül

4 Lehrform

2 SWS Vorlesung, 2 SWS begleitende Übung

5 Teilnahmevoraussetzungen

Formal: keine
Inhaltlich: Logik, Grundlagen zu formalen Sprachen

6 Prüfungsformen

schriftliche oder mündliche Prüfung; Prüfungsform wird zu Beginn der Veranstaltung festgelegt
2. Pflichtveranstaltungen Informatik

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung (Bestandene Modulklausur)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor Informatik (B-IN-V06)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Thomas Marx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch einzelne Abschnitte in Englisch</td>
</tr>
</tbody>
</table>
3 Pflichtveranstaltungen Bioinformatik

3.1 Bioinformatische Datenanalyse (B-BI-PI06)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI06</td>
<td>180h</td>
<td>6</td>
<td>WSA: 2.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatische Datenanalyse</td>
<td>75h</td>
<td>105h</td>
<td>ca. 30 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- problemangepasste Algorithmen und Datenstrukturen auszuwählen und in einer Skriptsprache (Perl oder Python) zu implementieren
- einfache Programmierhilfen einzusetzen
- Module aus Bibliotheken (z.B. CPAN, PyPI) einzusetzen und einfache Anwendungen mit ihnen zu entwickeln
- unter einem Unix-Betriebssystem zu arbeiten
- biologische Datenbanken und ihrer Formate einzuordnen und im Internet zu nutzen
- Anwendungen zu entwickeln, die biologische Daten verarbeiten (insb. Sequenzdaten)
Inhalte

Der Kurs umfasst folgende Themen:

- Perl oder Python: Dokumentation, Sprache, Anwendung anhand typischer Bioinformatikprobleme
- Einfache Entwicklungsumgebungen
- Grundlagen des Umgangs mit einem Unix-Betriebssystem
- Implementierung von Algorithmen und Datenstrukturen anhand von Beispielen mit Bioinformatikrelevanz
- Biologische Sequenzen (DNA, RNA, Proteine)
- Einführung in einfache Fragestellungen der Biologie
- Informationssysteme und Datenbanken von NCBI und EBI
- Spezielle Datenbanken (UniProt, ENA, PDB usw.) und ihre Datenformate
- Quantifizierung von Sequenzähnlichkeit, Scorematrizen, Alignmentstatistik
- Paarweise Alignments (global, lokal) und Alignment-Methoden (Dynamische Programmierung, Needleman-Wunsch, Smith-Waterman)
- Datenbanksuchverfahren (Blast, Psi-Blast, Phi-Blast usw.)

Lehrform

3 SWS Vorlesung, 2 SWS begleitende Übung

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: keine

Prüfungsformen

Klausur (90 Min) und Programmierprojekt

Voraussetzungen für die Vergabe von Leistungspunkten

Bestandene Modulprüfung

Studienleistung: erfolgreiche Durchführung des Programmierprojektes

Verwendung des Moduls (in anderen Studiengängen)

Stellenwert der Note für die Endnote

Gewichtung nach Leistungspunkten

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Antje Krause
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch, einzelne Abschnitte in Englisch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Präsentationsfolien und Aufgabensammlung zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>A.B. Downey, Programmieren lernen mit Python, O’Reilly (eBook)</td>
</tr>
<tr>
<td></td>
<td>M. Weigend, Python 3 - Lernen und professionell anwenden, mitp-Verlag (eBook)</td>
</tr>
<tr>
<td></td>
<td>R. Steyer, Programmierung in Python - Ein kompakter Einstieg für die Praxis, Springer-Verlag (eBook)</td>
</tr>
<tr>
<td></td>
<td>T. Theis, Einstieg in Python, Rheinwerk Computing</td>
</tr>
<tr>
<td></td>
<td>B. Klein, Einführung in Python 3: Für Ein- und Umsteiger, Hanser</td>
</tr>
<tr>
<td></td>
<td>L. Wall, T. Christiansen, J. Orwant, R. Schwartz, Programming Perl, Programmieren mit Perl, O’Reilly</td>
</tr>
<tr>
<td></td>
<td>J.D. Tisdall, Einführung in Perl für Bioinformatik, O’Reilly</td>
</tr>
<tr>
<td></td>
<td>J.D. Tisdall, Beginning Perl for Bioinformatics, O’Reilly</td>
</tr>
<tr>
<td></td>
<td>J.D. Tisdall, Mastering Perl for Bioinformatics, O’Reilly</td>
</tr>
<tr>
<td></td>
<td>C. Gibas, P. Jambeck, Developing Bioinformatics Computer Skills, O’Reilly</td>
</tr>
<tr>
<td></td>
<td>M.D. LeBlanc, B.D. Dyer, Perl for Exploring DNA, Oxford University Press</td>
</tr>
<tr>
<td></td>
<td>D.W. Mount, Bioinformatics: sequence and genome analysis, CSHL Press</td>
</tr>
<tr>
<td></td>
<td>P.M. Selzer, R.J. Marhöfer, O. Koch, Angewandte Bioinformatik - Eine Einführung, Springer-Verlag (eBook)</td>
</tr>
<tr>
<td></td>
<td>T. Dandekar, M. Kunz, Bioinformatik - Ein einführendes Lehrbuch, Springer-Verlag (eBook)</td>
</tr>
<tr>
<td></td>
<td>M.-Th. Hätt, M. Dehnert, Methoden der Bioinformatik - Eine Einführung zur Anwendung in Biologie und Medizin, Springer-Verlag (eBook)</td>
</tr>
</tbody>
</table>
3. Pflichtveranstaltungen Bioinformatik

3.2 Algorithmische Bioinformatik (B-BI-PI07)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungs-</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI07</td>
<td>180h</td>
<td>6</td>
<td>WSA: 4.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSA: 3.Sem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
<th>ca. 30 Studierende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmische Bioinformatik</td>
<td>4 SWS / 60h</td>
<td>120h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- geeignete Algorithmen zur Lösung bioinformatischer Fragestellungen zu bewerten und zu implementieren
- Bioinformatische Softwarepakete zu installieren, zu vergleichen und zu beurteilen
- Methoden zur Verarbeitung biologischer Daten problemorientiert auszuwählen

3 Inhalte
Der Kurs umfasst folgende Themen
- Sequenzierung und Assemblierung
- Phylogenie, vergleichende Genomik
- Profile und positionsabhängige Scorermatrizen
- Hidden Markov Modelle
- Strukturvorhersage von Proteinen
- Sekundärstrukturvorhersage von RNA
- Anwendung von bioinformatischen Softwarepaketen

4 Lehrform
2 SWS Vorlesung, 2 SWS begleitende Übung

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Modul Bioinformatische Datenanalyse, Modul Algorithmen und Datenstrukturen

6 Prüfungsformen
Klausur (120 Min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulprüfung
Studienleistung: erfolgreiche Durchführung einer praktischen Projektarbeit

8 Verwendung des Moduls (in anderen Studiengängen)

9 Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten
3. Pflichtveranstaltungen Bioinformatik

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Antje Krause</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Präsentationsfolien und Aufgabensammlung zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>R. Merkl und S. Waack, Bioinformatik Interaktiv: Algorithmen und Praxis, Wiley-VCH</td>
</tr>
<tr>
<td></td>
<td>H.-J. Böckenhauer und D. Bongartz, Algorithmische Grundlagen der Bioinformatik-Modelle, Methoden und Komplexität, Teubner</td>
</tr>
<tr>
<td></td>
<td>G. Steger, Bioinformatik. Methoden zur Vorhersage von RNA- und Proteinstruktur, Birkhäuser</td>
</tr>
<tr>
<td></td>
<td>D.W. Mount, Bioinformatics: sequence and genome analysis, CSHL Press</td>
</tr>
</tbody>
</table>
3. Pflichtveranstaltungen Bioinformatik

3.3 Systembiologie (B-BI-PI09)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PI09</td>
<td>90h</td>
<td>3</td>
<td>WSA: 4.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

Systembiologie

2 Lernergebnisse (learning outcomes) / Kompetenzen

Am Ende dieses Moduls sind die Studierenden in der Lage:
- aktuelle Entwicklungen in der Systembiologie zu bewerten und einzuordnen
- biologische Objekte in Beziehung zueinander zu stellen und als Gesamtsystem zu charakterisieren
- grundlegende Methoden und Datensammlungen der Systembiologie zu erklären
- Software und Daten für systembiologische Fragestellungen problemorientiert auszuwählen

3 Inhalte

Der Kurs umfasst folgende Themen
- Einführung in die Systembiologie
- vom Genotyp zum Phänotyp
- Analyse von Hochdurchsatzdaten
- Modellierung und Modularität
- Regulatorische und metabolische Netzwerke
- Molekulare Interaktionen
- Komplexität und Robustheit zellulärer Systeme
- mathematische Modellierungsmethoden
- Software, Datenbanken und Datenformate

4 Lehrform

2 SWS Vorlesung

5 Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Modul Bioinformatische Datenanalyse, Modul Algorithmen und Datenstrukturen, Modul Biowissenschaften

6 Prüfungsformen

Klausur

7 Voraussetzungen für die Vergabe von Leistungspunkten

Bestandene Modulprüfung

8 Verwendung des Moduls (in anderen Studiengängen)

23. September 2019

Angewandte Bioinformatik (B.Sc.)
| | Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten |
|---|---|
| 10 | Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Antje Krause |
| 11 | Sonstige Informationen
Sprache: Deutsch, einzelne Abschnitte in Englisch
Literatur: Präsentationsfolien und Aufgabensammlung zur Vorlesung
S. Eckstein, Informationsmanagement in der Systembiologie, Springer, Berlin
U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman and Hall/CRC
4 Pflichtveranstaltungen Biotechnik

4.1 Zellbiologie (B-BI-PB02)

<table>
<thead>
<tr>
<th>Zellbiologie (ZEBI)</th>
<th>Cell Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenn-</td>
<td>Arbeits-</td>
</tr>
<tr>
<td>nummer</td>
<td>belastung</td>
</tr>
<tr>
<td>B-BI-PB02</td>
<td>180h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Zellbiologie

<table>
<thead>
<tr>
<th>1</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 SWS / 75h</td>
<td>105h</td>
<td>Vorlesung ca. 30, Praktikum 6 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen

Am Ende dieses Moduls sind die Studierenden in der Lage:
- die Komplexität des Aufbaus und der Funktion der eukaryontischen Zellen herzuleiten
- die Evolutionsmechanismen zuzuordnen
- die Methoden der Zellbiologie zu vergleichen und zu beurteilen
- die zellulären Kompartimente mit ihren spezialisierten Funktionen zu identifizieren
- die Mechanismen des Transports zwischen den Kompartimenten in Bezug zu setzen
- die Mechanismen der Kommunikation zwischen Zellen zu begründen
- die komplexen Netzwerke der Kommunikation und der Stoffwechselwege zu verknüpfen
- die komplexen Vorgänge einer Zelle nachzuvollziehen und die Defekte in diesen Systemen zu erkennen
- durch einen Seminarvortrag zu beweisen, dass sie zellbiologische Aspekte nachvollziehen können
- die mikroskopischen Verfahren zu bewerten
<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung: Organisationsprinzipien lebender Systeme</td>
<td></td>
</tr>
<tr>
<td>- Organisation der Eukaryontenzelle, sowie Evolutionsgedanken zur Entwicklung vom Prokaryonten zum Eukaryonten</td>
<td></td>
</tr>
<tr>
<td>- Grundlagen der Entwicklung vom Einzeller zum Vielzeller</td>
<td></td>
</tr>
<tr>
<td>- Grundlagen zellbiologischer Methoden</td>
<td></td>
</tr>
<tr>
<td>- Kompartimente in der Zelle, ihre Morphologie und ihre Funktion</td>
<td></td>
</tr>
<tr>
<td>- Transportmechanismen von „kleinen“ und „großen“ Molekülen aus dem extrazellulären Raum und zwischen den verschiedenen Kompartimenten</td>
<td></td>
</tr>
<tr>
<td>- Signalübertragung in der Zelle</td>
<td></td>
</tr>
<tr>
<td>Praktikum: Kultur tierischer Zellen unter sterilen Bedingungen; Mikroskopieren, Beobachten und Zeichnen von ausgewählten histologischen Dauerpräparaten; Anfertigen eigener Präparate mit anschließender mikroskopischer Untersuchung; Vitalfärbung; Phasenkontrast- und Fluoreszenzmikroskopie; Mikroskopie in Echtzeit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS Vorlesung, Praktikum und Seminarvortrag aus einer aktuellen englischen Veröffentlichung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: keine</td>
<td></td>
</tr>
<tr>
<td>Inhaltlich: Module Mikrobiologie und Biochemie 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (120 Min)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandene Modulklausur sowie erfolgreicher Vortrag des Seminars und Praktikumsbericht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Biotechnik (B-BT-PM21)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung nach Leistungspunkten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Maik Lehmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache: Deutsch, Seminarliteratur in Englisch</td>
<td></td>
</tr>
<tr>
<td>Literatur: Folien zu der Vorlesung</td>
<td></td>
</tr>
</tbody>
</table>

23. September 2019
4. Pflichtveranstaltungen Biotechnik

4.2 Gentechnik (B-BI-PB03)

Kenn-	Arbeits-	Leistung-	Studien-	Häufigkeit des	Dauer
nummer	belastung	punkte	semester	Angebots	
B-BI-PB03	180h	6	WSA: 6.Sem	Sommer-semester	1 Semester
			SSA: 5.Sem		

1 Lehrveranstaltungen
Gentechnik

Kontaktzeit
6 SWS / 90h

Selbststudium
90h

Geplante Gruppengröße
Vorlesung ca. 25, Praktikum á 8 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- die Methoden der Gentechnik anzuwenden
- die wichtigen Zielsetzungen und Anwendungsgebiete der Gentechnik zuzuordnen
- Chancen und Gefahren der Gentechnik differenziert zu beurteilen
- aktuelle Entwicklungen der Gentechnik zu verstehen und ihre Relevanz einzuordnen
- gentechnische Methoden praktisch anzuwenden

3 Inhalte
Genomanalyse, Genkartierung, Sequenzierung von Genomen, Gendiagnose Besondere Anwendungsgebiete der Gentechnik in Landwirtschaft und Umweltschutz
Praktikum: Anwendung gentechnischer Methoden im Rahmen von Versuchsansätzen zur Klionierung eines Genkomplexes für Biolumineszenz sowie zur Genomanalyse

4 Lehrform
4 SWS Vorlesung, 2 SWS Praktikum (Blockveranstaltung)

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Modul Genetik

6 Prüfungsformen
Klausur (90 min), Praktikumsprotokoll

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulprüfung
Studienleistung: erfolgreiche Teilnahme am Praktikum

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik (B-BT-PM27)

23. September 2019
Angewandte Bioinformatik (B.Sc.)
4. Pflichtveranstaltungen Biotechnik

<table>
<thead>
<tr>
<th></th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Claus-Heinrich Stier</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
<tr>
<td></td>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Brown: Gentechnologie für Einsteiger. Spektrum Akad. Verlag, 6. Aufl., 2011</td>
</tr>
<tr>
<td></td>
<td>Folienvorlagen zur Vorlesung, Praktikumsvorschriften</td>
</tr>
</tbody>
</table>
4. Pflichtveranstaltungen Biotechnik

4.3 Mikrobiologie (B-BI-PB04)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungs punkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PB04</td>
<td>270h</td>
<td>9</td>
<td>WSA: 2.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsentwicklung</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrobiologie 1</td>
<td>6 SWS / 90h</td>
<td>180h</td>
<td>Vorlesung ca. 30, Praktikum á 6 Studierende</td>
</tr>
</tbody>
</table>

Lernergebnisse (learning outcomes) / Kompetenzen

Am Ende dieses Moduls sind die Studierenden in der Lage:
- die Besonderheiten industrieller Mikroorganismen wiederzugeben
- die Grundlagen von Stammentwicklung und Stammkonservierung zu benennen
- den Ablauf von Infektionen - Angriff der Bakterien und Abwehr des Wirtes aufzählen
- die Prinzipien der Übertragung von infektiösen Partikeln zu nennen
- die Vielfalt der Organismen im Bereich der Mikroorganismen kennenzulernen
- die Bedeutung von Stammbäumen zuzuordnen
- die Systematik der Organismen zu nennen und beschreiben zu können
- die Teilgebiete der Systematik (Taxonomie, Klassifizierung und Nomenklatur) zu charakterisieren
- die Grundprinzipien des mikrobiellen Stoffwechsels wiederzugeben
- die molekularbiologischen Grundlagen der Mikroorganismen zu verstehen
- die Bedeutung von Katabolismus und Anabolismus zuzuordnen sowie deren thermodynamischen Grundprinzipien zuzuordnen
- die Grundzüge der Regulationsprinzipien des Stoffwechsels zu nennen
- Versuchsprotokolle naturwissenschaftlich darzustellen
Inhalte
Vorlesung Mikrobiologie 2 SWS Teil Prof. Muffler:
1. Industrielle Mikroorganismen - Suche nach neuen Wirkstoffen (Screening);
 Hochleistungs-Mikroorganismen (Stammenteilung); Konservierung von
 Produktionsstämmen (Stammhaltung). 2. Pathogene Mikroorganismen - Normale
 Flora; Mechanismen der Pathogenität; Übertragungswege bei Infektionen;
 Opportunistische Erreger; Beispiele bakterieller Infektionen
Vorlesung Mikrobiologie 3 SWS, Teil Prof. Lehmann:
Kenntnisse zum Aufbau von Viren und Pilzen, Überblick zur Systematik der
Organismen. Grundlagen zum Stoffwechsel. Prinzipien der Bioenergetik. Einige
Stoffwechselwege der Mikroorganismen: Glycolyse und der Katabolismus der
Kohlenhydrate, Citratzyklus, Atmungskette, Gärungen. Zu diesen Teil der Vorlesung
werden theoretische Übungen als Hausarbeiten ausgegeben.
Praktikum Mikrobiologie, 1 SWS, Verständnis zu der Wirkungsweise von Antibiotika,
Agardiffusionstest. Aufbau und Eigenschaften der bakteriellen Zellwand, lysieren
Grampositiver und Gramnegativer Keime, Identifizierung von Keimen, praktisch und
theoretisch mit Erstellung eines phylogenetischen Stammbaumes.

Lehrform
4 SWS Vorlesung begleitende Übungen, 1 SWS Praktikum

Teilnahmebedingungen
Formal: Modul Biowissenschaften, Praktikum erfolgreich abgeschlossen, Klausur
teilgenommen
Inhaltlich: Modul Biowissenschaften

Prüfungsformen
Klausur (120 Min)

Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulklausur und erfolgreiche Teilnahme am Praktikum und Übungen

Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik (B-BT-PM07)

Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. rer. nat. Maik Lehmann, Prof. Dr. Ing. Kai Muffler
4. Pflichtveranstaltungen Biotechnik

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Folien zur Vorlesung</td>
</tr>
</tbody>
</table>
4. Pflichtveranstaltungen Biotechnik

4.4 Biochemie 1 und Einführung in die Biotechnik (B-BI-PB05)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PB05</td>
<td>180h</td>
<td>6</td>
<td>WSA: 3.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- Einführung in die Biotechnik
- Biochemie 1
 - Kontaktzeit: 5 SWS / 75h

Selbststudium: 105h

Geplante Gruppengröße: Vorlesung ca. 30, Praktikum á 6 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- die Anwendungsbereiche der Biotechnik zu erklären
- die Spezialgebiete bzw. die Vertiefungsmöglichkeiten der Biotechnik zu verstehen und zu beschreiben
- die Grundlagen der Biochemie wiederzugeben
- biochemische Reaktionen zuzuordnen
- die Bedeutung von Konfiguration und Konformation für ein Makromolekül zu charakterisieren
- den Aufbau eines Proteins zu erklären
- die Methoden zur Aufreinigung von Proteinen aufzuzeigen
- die Funktion von Proteinen und Enzymen zu erklären

3 Inhalte
- Vorlesung Biochemie I: Eigenschaften von Biomolekülen; Biochemische Reaktionen; Eigenschaften der Aminosäuren, der Peptide und der Proteine; Grundlegendes Verständnis zur dreidimensionalen Struktur der Proteine; Proteinkonformationen: Primär-, Sekundär-, Tertiär und Quartärstrukturen von Proteinen; Funktion von Proteinen und Enzymen; Enzymkinetik
- Praktikum Biochemie: Aufreinigung eines Proteins, Nachweis der Reinigung und Aktivitätsbestimmung der Aufreinigungsfraktionen, Enzymkinetik
- Übung Biotechnik: theoretische Ausarbeitung eines kleinen Projekts

4 Lehrform
- 3 SWS Vorlesung Biochemie, 1 SWS Vorlesung Einführung in die Biotechnik, 1 SWS Praktikum Biochemie, Hausarbeit Projekt Biotechnik

23. September 2019
Angewandte Bioinformatik (B.Sc.)
4. Pflichtveranstaltungen Biotechnik

<table>
<thead>
<tr>
<th></th>
<th>Teilnahmeveranlassungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: keine</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: Modul Biowissenschaften und Modul Mikrobiologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur (120 Min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestandene Modulklausur und erfolgreiche Teilnahme am Praktikum, Abgabe Hausarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor Biotechnik (B-BT-PM11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. rer. nat. Maik Lehmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Folien zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>R.Renneberg, Biotechnologie für Einsteiger, Spektrum, ISBN: 3-8274-1538-1</td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
4. Pflichtveranstaltungen Biotechnik

4.5 Biochemie 2 (B-BI-PB01)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PB01</td>
<td>180h</td>
<td>6</td>
<td>WSA: 5.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemie 2</td>
<td>5 SWS / 75h</td>
<td>105h</td>
<td>Vorlesung ca. 30 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- Interaktion und Funktion von Makromolekülen (Proteine/DNA/RNA) in Abhängigkeit von ihrer Konformation zu erklären
- dynamische Konformationen der DNA zu charakterisieren
- die Bedeutung der DNA-Polymerasen während der Replikation aufzuzeigen
- die Wichtigkeit von DNA-Reparaturmechanismen für eine mutationsfreie Weitergabe der genetischen Information zu analysieren
- Mechanismen der Rekombination zu identifizieren
- Mechanismen der Transkription und Translation in ihrer Komplexität zu begründen

3 Inhalte
DNA-Aufbau; Eigenschaften, Struktur, Gene und Chromosomen; DNA-Stoffwechsel: Replikation, Reparatur, Rekombination; RNA-Stoffwechsel: Transkription, Processing; Proteinstoffwechsel: der genetische Code, Proteinsynthese

4 Lehrform
4 SWS Vorlesung, 1 SWS begleitende Übungen

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Modul Biochemie 1

6 Prüfungsformen
Klausur (120 Min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulklausur und erfolgreiche Teilnahme an den Übungen

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik (B-BT-PM26)

9 Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

10 Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. rer. nat. Maik Lehmann

23. September 2019
Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch, Lesen von englischen Veröffentlichungen</td>
</tr>
<tr>
<td></td>
<td>Literatur: Folien zur Vorlesung</td>
</tr>
</tbody>
</table>
5 Pflichtveranstaltungen Übergreifende Inhalte

5.1 Englisch (B-BI-PÜ01)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PÜ01</td>
<td>90h</td>
<td>3</td>
<td>WSA: 2.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- English for Engineers
 - Kontaktzeit: 30h
 - Selbststudium: 60h

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- Vokabular aus den Bereichen Informationstechnologie, Biologie, Physik, Ingenieurwesen und Wirtschaft einzusetzen
- sprachlichen Mittel zum Beschreiben, Erörtern, Argumentieren, Schildern, logischen Verknüpfen und Moderieren anzuwenden
- sich Wissen, Vokabular und Strukturen mittels englischer Texte/Artikel anzueignen und daraufhin zu kommentieren, weiter- und wiederzugeben, zu evaluieren
- die englische Sprache grammatikalisch richtig zu verwenden

3 Inhalte
- Vokabular in oben genannten technischen und ökologischen Bereichen - mittels Fachartikel und englischer Originalquellen
- Souveräner schriftlicher und mündlicher Ausdruck durch workshops: academic writing, presenting, conversation
- Idiomatische Ausdrucksweise
- Sprachrichtigkeit
- Kommunikationstraining - language is a tool

4 Lehrform
Seminaristisches Sprachtraining mit Vorlesungsphasen, mündlichen Kommentaren, Moderationen, schriftlichen Ausarbeitungen

5 Teilnahmeveranlassungen
Formal: keine
Inhaltlich: Sprachkenntniss auf B1/B2 Niveau nach CEF empfohlen
5. Pflichtveranstaltungen Übergreifende Inhalte

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 6 | **Prüfungsformen**
Klausur, mündliche Ergänzungsprüfung (max. 10 min) nach der Klausur
(Notenanteil 25 %) |
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
Bestandene Modulklausur und mündliche Ergänzungsprüfung |
| 8 | **Verwendung des Moduls** (in anderen Studiengängen) |
| 9 | **Stellenwert der Note für die Endnote**
Gewichtung nach Leistungspunkten |
| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende**
Mag. phil. Birgit Hoess |
| 11 | **Sonstige Informationen**
Sprache: Vorlesung findet in englischer Sprache statt
Literatur: aktuelle Lehrbücher Technical English, aktuelle Fachartikel,
Pressequellen (e.g. The Guardian, The Independent, The New York Times, Scientific American), BBC documentaries etc. |
5. Pflichtveranstaltungen Übergreifende Inhalte

5.2 Seminar Bioinformatik (B-BI-PÜ02)

<table>
<thead>
<tr>
<th>Kenn- nummer</th>
<th>Arbeits- belastung</th>
<th>Leistungspunkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PÜ02</td>
<td>90h</td>
<td>3</td>
<td>WSA: 1.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbstdstudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bioinformatik- Seminar</td>
<td>3 SWS / 45h</td>
<td>45h</td>
<td>ca. 30 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lernergebnisse (learning outcomes) / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Am Ende dieses Moduls sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td></td>
<td>- verbale, paraverbale und nonverbale Fertigkeiten für eine wirkungsvolle Selbstdarstellung, Rede und Präsentation einzuordnen</td>
</tr>
<tr>
<td></td>
<td>- Präsentationen mit verschiedenen Medien optisch ansprechend aufzubereiten</td>
</tr>
<tr>
<td></td>
<td>- Methoden, um mit Angst und Lampenfieber beim Präsentieren umzugehen, einzuordnen</td>
</tr>
<tr>
<td></td>
<td>- Präsentationen zu halten</td>
</tr>
<tr>
<td></td>
<td>- komplexe fachlich Zusammenhänge auf Wesentliches zu reduzieren</td>
</tr>
<tr>
<td></td>
<td>- Fachdiskussionen zu führen</td>
</tr>
<tr>
<td></td>
<td>- Schriftliche Zusammenfassungen zu erstellen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundlagen der Präsentation:</td>
</tr>
<tr>
<td></td>
<td>- gezielter Einsatz von verbalen, paraverbalen und nonverbalen Mitteilungen bei Selbstdarstellung, Reden, Präsentationen</td>
</tr>
<tr>
<td></td>
<td>- Visualisierungsmöglichkeiten und Einsatz verschiedener Medien</td>
</tr>
<tr>
<td></td>
<td>- Umgang mit Angst und Lampenfieber bei Präsentationen</td>
</tr>
<tr>
<td></td>
<td>- Protokolle, Poster, Handout</td>
</tr>
<tr>
<td></td>
<td>Seminar:</td>
</tr>
<tr>
<td></td>
<td>- Inhalte werden ausgewählt aus aktuellen Trends in den Lebenswissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lehrveranstaltungen, Gruppenarbeit, Arbeitsblätter, Übungen</td>
</tr>
<tr>
<td></td>
<td>Seminar: Eigene Vorträge der Studierenden mit Videoprojektion und Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: keine</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung: erfolgreich bearbeitete Übungen</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung: Seminarvortrag</td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
5. Pflichtveranstaltungen Übergreifende Inhalte

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung und bestandene Prüfung</td>
</tr>
<tr>
<td></td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
</tr>
<tr>
<td></td>
<td>Stellenwert der Note für die Endnote</td>
</tr>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td></td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Antje Krause</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Präsentieren:</td>
</tr>
<tr>
<td></td>
<td>Albert Thiele: Präsentieren Sie einfach, Frankfurter Allgemeine Buch.</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Mentzel: Rhetorik: Sicher und erfolgreich sprechen, dtv.</td>
</tr>
<tr>
<td></td>
<td>Josef W. Seifert: Visualisieren, Präsentieren, Moderieren, Gabal.</td>
</tr>
<tr>
<td></td>
<td>Albert Thiele: Die Kunst zu überzeugen: Faire und unfaire Dialektik, Springer.</td>
</tr>
<tr>
<td></td>
<td>Vera Birkenbihl: Signale des Körpers: Körpersprache verstehen, mvg-Verlag.</td>
</tr>
<tr>
<td></td>
<td>Seminar: Fachzeitschriften (Bioinformatics, PloS, BioMedCentral) u.ä.</td>
</tr>
</tbody>
</table>
5. Pflichtveranstaltungen Übergreifende Inhalte

5.3 Betriebswirtschaftslehre (B-BI-PÜ03)

<table>
<thead>
<tr>
<th>Betriebswirtschaftslehre (BEWI)</th>
<th>Business Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer: B-BI-PÜ03</td>
<td>Arbeitsbelastung: 180h</td>
</tr>
<tr>
<td>Häufigkeit des Angebots: Sommersemester</td>
<td>Dauer: 1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Betriebswirtschaftslehre
Kontaktzeit: 4 SWS / 60h
Selbststudium: 120h
Geplante Gruppengröße: 70 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen
- Allgemeiner Überblick über die Teilgebiete der Betriebswirtschaftslehre und betrieblicher Funktionen
- Verständnis wesentlicher Verknüpfungspunkte der kaufmännischen Aspekte zu den technischen Bereichen des Unternehmens
- Kenntnisse grundlegender Methoden der Betriebswirtschaftslehre in unterschiedlichen Bereichen des Unternehmens
- Fähigkeiten, grundlegende Problemstellungen von Unternehmen mit betriebswirtschaftlichen Entscheidungskriterien zu lösen

3 Inhalte
- Gegenstand der Betriebswirtschaftslehre
- Aufbau des Betriebes inkl. betrieblicher Produktionsfaktoren, Wahl der Rechtsform
- Einblick externes und internes Rechnungswesen
- Grundlagen der Produktion und Produktionsplanung
- Grundzüge von Vertrieb und Marketing mit typischen absatzpolitischen Instrumenten
- Statische und dynamische Verfahren der Investitionsrechnung, Quellen der Finanzierung

4 Lehrform
4 SWS Vorlesung mit integrierter Übung mittels Beamer und Tafel

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: keine

6 Prüfungsformen
Klausur (90min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulklausur
5. Pflichtveranstaltungen Übergreifende Inhalte

| 8 | **Verwendung des Moduls** (in anderen Studiengängen)
Bachelor Informatik (B-IN-BW01), Bachelor Mobile Computing (B-MC-BW01) |
|---|---|
| 9 | **Stellenwert der Note für die Endnote**
Gewichtung nach Leistungspunkten |
| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende**
Prof. Dr. Frank Mehler |
| 11 | **Sonstige Informationen**
Sprache: Deutsch
Literatur: Präsentationsfolien und Aufgabensammlung zur Vorlesung
Wöhe, Günter, Einführung in die Allgemeine Betriebswirtschaftslehre, Verlag Vahlen, München
Thommen, Jean-Paul / Achleitner, Ann-Kristin, Allgemeine Betriebswirtschaftslehre, Gabler Verlag |

23. September 2019

Angewandte Bioinformatik (B.Sc.)
5. Pflichtveranstaltungen Übergreifende Inhalte

5.4 Wissenschaftliches Arbeiten und Schreiben (B-BI-PÜ04)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-PÜ04</td>
<td>90h</td>
<td>3</td>
<td>WSA: 2.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSA: 1.Sem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissenschaftliches Arbeiten und Schreiben</td>
<td>2 SWS / 30h</td>
<td>60h</td>
<td>ca. 30 Studierende</td>
</tr>
</tbody>
</table>

2. Lernergebnisse (learning outcomes) / Kompetenzen

Am Ende dieses Moduls sind die Studierenden in der Lage:
- zu einer vorgegebenen Aufgabenstellung selbständig geeignete wissenschaftlich-technische Methoden zur Bearbeitung auszuwählen und zu verwenden
- grundlegender Methoden des Lernens, des aktiven Lesens, der Literaturrecherche, des Zeitmanagements und der Selbstorganisation anzuwenden
- eines wissenschaftlich-technischen Text zu erstellen
- geeigneter persönlicher Mechanismen zum Umgang mit Schreibblockaden zu entwickeln und einzusetzen

3. Inhalte

Der Kurs umfasst folgende Themen
- Grundlagen des Lernvorgangs im Gehirn, individuelle Fähigkeiten des Wissenserwerbs
- Literaturrecherche
- aktives Lesen von Fachliteratur (z.B. "Querlesen")
- Aufarbeiten von Gelesenem (z.B. Exzerpieren, Mind Maps)
- Arbeits- und Zeitplanung
- strukturiertes Schreiben (z.B. Abbau von Schreibblockaden)
- Zitieren, Literaturverwaltung (z.B. BibTex)
- Charakteristika wissenschaftlich-technischer Texte
- Aufbau von Bachelor-, Master- und Doktorarbeiten
- Sicherung guter wissenschaftlicher Praxis (entsprechend DFG)

4. Lehrform

2 SWS Vorlesung mit integrierter Übung

5. Teilnahmevoraussetzungen

Formal: keine
Inhaltlich: keine
5. Pflichtveranstaltungen Übergreifende Inhalte

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 6 | **Prüfungsformen**
| | Hausarbeit |
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
| | Bestandene Modulprüfung
| | Studienleistung: erfolgreich bestandene Übungen |
| 8 | **Verwendung des Moduls** (in anderen Studiengängen) |
| 9 | **Stellenwert der Note für die Endnote**
| | Gewichtung nach Leistungspunkten |
| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende**
| | Prof. Dr. Antje Krause |
| 11 | **Sonstige Informationen**
| | **Sprache:** Deutsch
| | **Literatur:** Präsentationsfolien und Aufgabensammlung zur Vorlesung
| | H. Esselborn-Krumbiegel: Von der Idee zum Text - Eine Anleitung zum wissenschaftlichen Schreiben, Schöningh UTB
| | N. Franck & J. Stary: Die Technik wissenschaftlichen Arbeitens, Schöningh UTB
| | P. Schlager & M. Thibud: Wissenschaftlich mit Latex arbeiten, Pearson Verlag
| | P. Rechenberg: Technisches Schreiben (nicht nur) für Informatiker, Hanser Verlag
| | O. Kruse: Keine Angst vor dem leeren Blatt - ohne Schreibblockaden durchs Studium, campus concret
| | C. Grüning: Garantiert erfolgreich lernen - Wie Sie Ihre Lese- und Lernfähigkeit steigern, Verlag Grüning
| | K. Samac, M. Prenner, H. Schwetz: Die Bachelorarbeit an Universität und Fachhochschule: Ein Lehr- und Lernbuch zur Gestaltung wissenschaftlicher Arbeiten, facultas wuv UTB Stuttgart
| | F. Vester: Denken, Lernen, Vergessen, dtv |
6 Wahlpflichtveranstaltungen Informatik

6.1 Parallele Datenverarbeitung (B-BI-WI01)

<table>
<thead>
<tr>
<th>Parallele Datenverarbeitung (PARA)</th>
<th>Parallel Data Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenn-</td>
<td>Arbeits-</td>
</tr>
<tr>
<td>nummer</td>
<td>belastung</td>
</tr>
<tr>
<td>B-BI-WI01</td>
<td>180h</td>
</tr>
<tr>
<td></td>
<td>Leistungspunkte</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Studien-</td>
</tr>
<tr>
<td></td>
<td>semester</td>
</tr>
<tr>
<td></td>
<td>WSA: 6.Sem</td>
</tr>
<tr>
<td></td>
<td>SSA: 5.Sem</td>
</tr>
<tr>
<td></td>
<td>Häufigkeit des</td>
</tr>
<tr>
<td></td>
<td>Angebots</td>
</tr>
<tr>
<td></td>
<td>Sommer-</td>
</tr>
<tr>
<td></td>
<td>semester</td>
</tr>
<tr>
<td></td>
<td>Dauer</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parallele</td>
<td>60h</td>
<td>120h</td>
<td>70 Studierende</td>
</tr>
<tr>
<td></td>
<td>Datenverarbeitung</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen

3 Inhalte

Begriffe der Parallelverarbeitung
Architektur paralleler Plattformen
Parallele Programmiermodelle
Laufzeitanalyse
Message Passing
Threads
Cluster Computing
Grid Computing

4 Lehrform

2 SWS Vorlesung, 2 SWS begleitende Übung

5 Teilnahmevoraussetzungen

Formal: keine
Inhaltlich: Objektorientierte Programmierung

6 Prüfungsformen

Schriftliche Prüfung
6. Wahlpflichtveranstaltungen Informatik

| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten** |
| | Prüfungsleistung (Bestandene Modulklausur), bestandene Studienleistung |

| 8 | **Verwendung des Moduls** (in anderen Studiengängen) |
| | Bachelor Informatik (B-IN-IG08), Bachelor Mobile Computing (B-MC-IG10) |

| 9 | **Stellenwert der Note für die Endnote** |
| | Gewichtung nach Leistungspunkten |

| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende** |
| | Prof. Dr.-Ing. Volker Luckas |

| 11 | **Sonstige Informationen** |
| | **Sprache:** Deutsch, einzelne Abschnitte in Englisch |
6.2 Administration (B-BI-WI02)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WI02</td>
<td>180h</td>
<td>6</td>
<td>5. oder 6.Sem</td>
<td>wechselnd</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen Administration</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>60h</td>
<td>120h</td>
<td>25 Studierende</td>
</tr>
</tbody>
</table>

1 Lernergebnisse (learning outcomes) / Kompetenzen

- Konzeption und Administrativen Umgang mit Netzwerk- und Rechnerdiensten verstehen, anwenden und auf neue Aufgabenstellungen übertragen können
- Wichtige Aufgaben bei der Administration von vernetzten Arbeitsumgebungen verstehen und durchführen
- Typische netzwerkweite Dienste kennen und konfigurieren
- Diensteverwaltung in vernetzten Umgebungen verstehen und einsetzen

2 Inhalte

- Exemplarisches Kennenlernen wichtiger Dienste im Netz
- DNS
- Verzeichnisdienste
- Mailarchitektur
- Netzwerksicherheit
- Netz- und System-Management

3 Lehrform

- 4 SWS Vorlesung, Projektarbeit und Vortrag

4 Teilnahmeveranstaltungen

- **Formal:** keine
- **Inhaltlich:** keine

5 Prüfungsformen

- Klausur

6 Voraussetzungen für die Vergabe von Leistungspunkten

Prüfungsleistung: Bestandene Modulklausur

7 Verwendung des Moduls (in anderen Studiengängen)

- Bachelor Informatik (B-IN-WP02), Bachelor Mobile Computing (B-MC-WP02)

8 Stellenwert der Note für die Endnote

Gewichtung nach Leistungspunkten

9 Modulbeauftragte/r und hauptamtlich Lehrende

- Prof. Dr. Klaus Lang

23. September 2019

Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache: Deutsch, einzelne Abschnitte in Englisch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Folienunterlagen</td>
</tr>
<tr>
<td></td>
<td>Literatur abhängig von Projektthemen</td>
</tr>
</tbody>
</table>
Betriebssysteme (B-BI-WI03)

Kennnummer B-BI-WI03

<table>
<thead>
<tr>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>180h</td>
<td>6</td>
<td>WSA: 5.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. Lehrveranstaltungen

Betriebssysteme

Kontaktzeit 75h

Selbststudium 105h

Geplante Gruppengröße 70 Studierende

2. Lernergebnisse (learning outcomes) / Kompetenzen

3. Inhalte

Betriebssysteme:
- Architektur, Aufgaben, Konzepte und Grundlagen von Betriebssystemen
- Systemschnittstelle
- Die Unix Shell
- Betriebssystemarten
- Prozess- und Betriebsmittelsteuerung
- Synchronisationskonzepte
- Interprozesskommunikation
- Speicherverwaltung
- Dateisysteme und Ein-/Ausgabe

4. Lehrform

3 SWS Vorlesung, 2 SWS begleitende praktische Übung

5. Teilnahmever有这样的satzung

Formal: keine

Inhaltlich: Schulmathematik

6. Prüfungsformen

Klausur

7. Voraussetzungen für die Vergabe von Leistungspunkten

Prüfungsleistung (Bestandene Modulklausur) und bestandene Studienleistung

8. Verwendung des Moduls (in anderen Studiengängen)

Bachelor Informatik (B-IN-IG10), Bachelor Mobile Computing (B-MC-IG04)

23. September 2019

Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th></th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Michael Schmidt</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
<tr>
<td></td>
<td>Sprache: Deutsch, einzelne Abschnitte in Englisch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Skript zur Vorlesung</td>
</tr>
</tbody>
</table>
6.4 Rechnersystem-Infrastrukturen (B-BI-WI04)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WI04</td>
<td>180h</td>
<td>6</td>
<td>5. oder 6.Sem</td>
<td>wechselnd</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 - Rechnersystem-Infrastrukturen
 - Kontaktzeit: 75h
 - Selbststudium: 105h
 - Geplante Gruppengröße: 25 Studierende

2. **Lernergebnisse (learning outcomes) / Kompetenzen**
 - Konzeptionen von Speichern, Speichersystemen und Speicherhierarchien verstehen, anwenden und bewerten
 - Konzeption von Speichernetzwerken verstehen
 - Konzepte und Technologien von SAN und NAS-Speichern verstehen, anwenden und bewerten
 - Virtualisierte Infrastrukturen verstehen

3. ** Inhalte**
 - Speichermedien, RAID, Speichersysteme
 - Speichernetze
 - NAS und weitere Arten von Datenspeichern
 - Backup, Replikationen, Snapshots
 - Sicherheit und Management von Speichersystemen
 - Virtualisierung und Cloud Computing

4. **Lehrform**
 - 4 SWS Vorlesung und Übungen, 1 SWS Labor

5. **Teilnahmevoraussetzungen**
 - Formal: keine
 - Inhaltlich: Rechnerarchitektur, Kommunikationssysteme

6. **Prüfungsformen**
 - Klausur

7. **Voraussetzungen für die Vergabe von Leistungspunkten**
 - Prüfungsleistung: Bestandene Modulklausur

8. **Verwendung des Moduls** (in anderen Studiengängen)
 - Bachelor Informatik (B-IN-WP01), Bachelor Mobile Computing (B-MC-WP01)

9. **Stellenwert der Note für die Endnote**
 - Gewichtung nach Leistungspunkten

10. **Modulbeauftragte/r und hauptamtlich Lehrende**
 - Prof. Dr. Klaus Lang
<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache:</td>
<td>Deutsch, Unterlagen vollständig Englisch</td>
</tr>
<tr>
<td>Literatur:</td>
<td>EMC Education Service: Information Storage and Management</td>
</tr>
<tr>
<td></td>
<td>Troppens, Erkens, Müller: Speichernetze</td>
</tr>
</tbody>
</table>
6.5 Mobile Computing (B-BI-WI08)

<table>
<thead>
<tr>
<th>Kenn-</th>
<th>Arbeits-</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>nummer</td>
<td>belastung</td>
<td>punkte</td>
<td>semester</td>
<td>Angebots</td>
<td></td>
</tr>
<tr>
<td>B-BI-WI08</td>
<td>180h</td>
<td>6</td>
<td>5. oder</td>
<td>wechselnd</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.Sem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Mobile Computing
Kontaktzeit 60h
Selbststudium 120h
Geplante Gruppengröße 25 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen

3 Inhalte
- Grundlagen, Techniken und Protokolle für mobile Vernetzungen
- Konzepte und technische Grundlagen der Programmierung mobiler Endgeräte
- Entwicklungsschritte mobiler Applikationen
- Layoutgestaltung von Apps entsprechend den visuellen Richtlinien
- Mobile Anwendungen als Verteilte Systeme (Client-Server Sicht)
- Verfahren zur Positionsbestimmung (GPS)
- Entwicklung von Anwendungen mit Ortsbezogenheit
- Mobiles Internet und seine Anwendungen
- Ad-hoc-Vernetzung
- Sicherheit mobiler Anwendungen

4 Lehrform
2 SWS Vorlesung, 2 SWS begleitende Übung

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: keine

6 Prüfungsformen
Praxisprojekt und Ausarbeitung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Prüfungsleistung (erfolgreich bearbeitetes Projekt, Referatsvortrag und schriftliche Ausarbeitung)

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Informatik (B-IN-WP04)
<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Cornelius Wille</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
<tr>
<td></td>
<td>Sprache: Deutsch, einzelne Abschnitte in Englisch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Skript zur Vorlesung</td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
6. Wahlpflichtveranstaltungen Informatik

6.6 Web-Technologien (B-BI-WI09)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WI09</td>
<td>180h</td>
<td>6</td>
<td>WSA: 6.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSA: 5.Sem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

Web-Technologien

Kontaktzeit 60h
Selbststudium 120h

Geplante Gruppengröße 25 Studierende

2 Lernergebnisse (learning outcomes) / Kompetenzen

Studierende kennen
- Architekturen web-basierter verteilter Anwendungssysteme
- Aktuelle Paradigmen, Standards, Werkzeuge und Technologien zur Erstellung web-zentrierter Anwendungen

Sie sind in der Lage
- Selbstständig unter Nutzung entsprechender Frameworks webbasierte verteilte Anwendungssysteme zu erstellen
- Die Möglichkeiten, Grenzen und Entwicklungsperspektiven aktueller Werkzeuge und Technologien einzuschätzen

3 Inhalte

- Verteilte Systeme (Architektur moderner Web-Anwendungen, Client/Server Architektur, Middleware)
- Konzepte der J2EE Plattformarchitektur und Technologiebestandteile
- Enterprise Java Beans (EJB Architektur, Entity-, Session-, Message Driven Beans, EJB-Transaktionen, EJP-Entwurf, JDBC)
- Java Server Pages und Servlets (Servlets, JSP, MVCParadigma, Jakarta Struts)
- Corba, Java Naming and Directory Interface JNDI, Java Message Service JMS
- Web Services (SOAP, UDDI, WSDL, Apache Axis, XML-RPC)
- Java & XML (XML Schema, Java Architecture for XML Binding JAXB, Java API for XML Processing JAXP, DOM/SAX/XSLT)
- JBoss, Apache, Tomcat, Axis
- Transaktionskonzepte, Sicherheit

4 Lehrform

2 SWS Vorlesung, 2 SWS begleitende Übung

5 Teilnahmeverordnungen

Formal: keine
Inhaltlich: keine

6 Prüfungsformen

Klausur

23. September 2019
Angewandte Bioinformatik (B.Sc.)
6. Wahlpflichtveranstaltungen Informatik

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Thema</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
<td>Prüfungsleistung: Bestandene Modulklausur</td>
</tr>
<tr>
<td>8</td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
<td>Bachelor Informatik (B-IN-IV01), Bachelor Mobile Computing (B-MC-MC02)</td>
</tr>
<tr>
<td>9</td>
<td>Stellenwert der Note für die Endnote</td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
<td>Prof. Dr. Hans-Christian Rodrian</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
<td>Sprache: Deutsch, einzelne Abschnitte in Englisch</td>
</tr>
<tr>
<td></td>
<td>Literatur: Ramin Assisi: J2EE mit Eclipse 3 und JBoss, Hanser Fachbuchverlag, ISBN: 3-446-22739-3</td>
<td></td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
7 Wahlpflichtveranstaltungen Bioinformatik

7.1 Microarrayanalyse mit R (B-BI-WI07)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microarrayanalyse mit R</td>
<td>4 SWS / 60h</td>
<td>120h</td>
<td>ca. 25 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lernergebnisse (learning outcomes) / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Am Ende dieses Moduls sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td></td>
<td>- grundlegende Methoden zur Analyse von Microarraydaten in der medizinischen Diagnostik einzuordnen und anzuwenden</td>
</tr>
<tr>
<td></td>
<td>- die gesamte Verarbeitungskette ausgehend von der Bildverarbeitung bis zur medizinischen Diagnose zu beschreiben</td>
</tr>
<tr>
<td></td>
<td>- selbständig kleinere Programme in der statistischen Programmiersprache R zu schreiben</td>
</tr>
<tr>
<td></td>
<td>- vorhandene Programmpakete (R, Bioconductor) anzuwenden</td>
</tr>
<tr>
<td></td>
<td>- statistische Methoden zur Datenanalyse auszuwählen und deren Ergebnisse zu interpretieren</td>
</tr>
</tbody>
</table>
Inhalte
Der Kurs umfasst folgende Themen
- Einführung in die medizinische Diagnostik mit Microarrays und Expressionsdaten
- Einführung in Software zur Erkennung und Verarbeitung von Microarraybildldaten
- Durchführung von Normalisierungen, um verschiedene Experimente vergleichbar zu machen
- Messung und Bewertung von Variabilität in biologischen Daten
- Analyse von Beziehungen zwischen Genen, Geweben, Behandlungen, Experimenten usw.
- Reduktion großer Datenmengen, Auswahl relevanter Daten
- Umgang mit (zu kleinen) Stichproben, Bootstrapping
- Distanzen und Korrelationskoeffizienten
- Clustering und Klassifikation, Grundlagen des Data Mining
- Visualisierung von Ergebnissen (Boxplot, Heat-Map, Dendrogramm usw.)
- Datenstandards und Datenbanken
- Grundlagen der statistischen Programmiersprache R

Lehrform
2 SWS Vorlesung, 2 SWS begleitende Übung

Teilnahmeveranlagungen
Formal: keine
Inhaltlich: Modul Statistik, Modul Bioinf. Datenanalyse

Prüfungsformen
Schriftliche Prüfung (90 Min, in Deutsch) und Projektarbeit

Voraussetzungen für die Vergabe von Leistungspunkten
Prüfungsleistung: Bestandene Modulprüfung
Studienleistung: erfolgreich durchgeführte Projektarbeit

Verwendung des Moduls (in anderen Studiengängen)

Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Antje Krause

23. September 2019
Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache:</td>
<td>Deutsch, einzelne Abschnitte in Englisch</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Präsentationsfolien und Aufgabensammlung zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Adler, J.: R in a Nutshell, O'Reilly, 2010</td>
</tr>
<tr>
<td></td>
<td>Statistische Programmiersprache R (http://www.r-project.org/) Bioconductor – Sammlung von Softwarepaketen zur Analyse biologischer Daten mit R (http://www.bioconductor.org/)</td>
</tr>
</tbody>
</table>
7. Wahlpflichtveranstaltungen Bioinformatik

7.2 Current Bioinformatics (B-BI-W10)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-W10</td>
<td>180h</td>
<td>6</td>
<td>WSA: 5.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Bioinformatics</td>
<td>4 SWS / 60h</td>
<td>120h</td>
<td>ca. 25 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- aktuelle Probleme und Lösungsverfahren aus der Bioinformatik zu bewerten
- umfassende Bioinformatikprobleme zu analysieren und Lösungen zu skizzieren
- in Fachliteratur zu recherchieren
- existierende Bioinformatiksysteme zu analysieren und ihre Stärken und Schwächen zu beurteilen
- im Team Bioinformatikfragestellungen zu bearbeiten
- aktuelle Resultate aus Forschung und Entwicklung zu beurteilen und zu präsentieren

3 Inhalte
Die Lehrinhalte werden jeweils nach dem aktuellen Stand der Forschung und Entwicklung zusammengestellt.
Beispiele:
1. Automatische Funktionsannotation
2. Datenanalyse in der Medizinischen Diagnostik
3. Experimentelle Bioinformatik
4. Analyse von Next-Generation-Sequencing-Daten

4 Lehrform
2 SWS Vorlesung und 2 SWS Übung

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Modul Bioinformatische Datenanalyse, Modul Algorithmische Bioinformatik, Modul Datenbanken

6 Prüfungsformen
Projektarbeit und englischsprachiger Vortrag

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulprüfung
Studienleistung: erfolgreich durchgeführte Projektarbeit

23. September 2019
Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th></th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Stellenwert der Note für die Endnote</td>
</tr>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Antje Krause</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
<tr>
<td></td>
<td>Sprache: Englisch</td>
</tr>
</tbody>
</table>
7.3 Neuronale Netze (B-BI-WI05)

Neuronale Netze (NEUR)
Neural Networks

<table>
<thead>
<tr>
<th>Kenn-</th>
<th>Arbeits-</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>nummer</td>
<td>belastung</td>
<td>punkte</td>
<td>semester</td>
<td>Sommer-semester</td>
<td></td>
</tr>
<tr>
<td>B-BI-WI05</td>
<td>90h</td>
<td>3</td>
<td>WSA: 6.Sem SSA: 5.Sem</td>
<td></td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuronale Netze</td>
<td>2 SWS / 30h</td>
<td>60h</td>
<td>35 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen

- Beherrschen der grundlegenden Funktionsweise neuronaler Netze
- Verständnis der verschiedenen Lernverfahren mit ihren Vor- und Nachteilen
- Verständnis der notwendigen Datenaufbereitung und Versuchsplanung
- Kennenlernen der Beurteilung trainierter Netze
- Überblick über Anwendungsbereiche der verschiedenen Netztypen

3 Inhalte

Netzmodelle: Schwellenwertelement, Perzepton, vorwärtsgerichtete Netze, sensorische und motorische Karten.
Lernverfahren: Hebbsches Lernen, Gradientenabstieg, Levenberg-Marquardt
Beurteilung der Netze und Versuchsplanung
Anwendungen: Klassifizierungen, Wegeoptimierung, Funktionapproximation, Prozesskontrolle und -optimierung, Erkennen von Molekularstrukturen

4 Lehrform

2 SWS seminaristischer Unterricht mit integrierten Übungen (Tafel, Projektion, Rechnervorführungen, -praktikum)

5 Teilnahmeveranlassungen

Formal: keine
Inhaltlich: Mathematik

6 Prüfungsformen

Mündliche Prüfung oder Klausur (60 min)

7 Voraussetzungen für die Vergabe von Leistungspunkten

Bestandene Modulprüfung

8 Verwendung des Moduls (in anderen Studiengängen)

9 Stellenwert der Note für die Endnote

Gewichtung nach Leistungspunkten

10 Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Dieter Kilsch

23. September 2019

Angewandte Bioinformatik (B.Sc.)
Sonstige Informationen

Sprache: Deutsch, einzelne Abschnitte in Englisch
Literatur: Skript neuronale Netze in elektronischer Form
Zupan, J. and J. Gasteiner: Neuronal Networks in Chemistry and Drug Design.
7.4 Evolutionäre Algorithmen (B-BI-WI06)

Evolutionäre Algorithmen (EVOL)
Evolutionary Algorithms

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WI06</td>
<td>90h</td>
<td>3</td>
<td>WSA: 6.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. Lehrveranstaltungen
- Evolutionäre Algorithmen
 - Kontaktzeit: 2 SWS / 300h
 - Selbststudium: 60h

2. Lernergebnisse (learning outcomes) / Kompetenzen

- Überblick über klassische Optimierungsaufgaben
- Beherrschen des Mutations-Selektions-Verfahrens, sowie der Simulated-Annealing-, der Threshold-Accepting- und der Sintflut-Methode
- Verständnis der Genetischen Operationen
- Fähigkeit zur Anwendung der Genetischen Algorithmen und der Genetischen Programmierung
- Überblick über Evolutionsstrategien

3. Inhalte

- Klassische Optimierungsverfahren
- Mutations-Selektions-Verfahren
- Genetische Algorithmen
- Evolutionsstrategien
- Genetische Programmierung

4. Lehrform

- 2 SWS seminaristischer Unterricht mit integrierten Übungen (Tafel, Projektion, Rechnervorführungen)

5. Teilnahmevoraussetzungen

- Formal: keine
- Inhaltlich: Mathematik

6. Prüfungsformen

- Mündliche Prüfung oder Klausur (60 min)

7. Voraussetzungen für die Vergabe von Leistungspunkten

- Bestandene Modulprüfung

8. Verwendung des Moduls (in anderen Studiengängen)

9. Stellenwert der Note für die Endnote

- Gewichtung nach Leistungspunkten

10. Modulbeauftragte/r und hauptamtlich Lehrende

- Prof. Dr. Dieter Kilsch
11 Sonstige Informationen

Sprache: Deutsch, einzelne Abschnitte in Englisch

7. Wahlpflichtveranstaltungen Bioinformatik

7.5 Studienarbeit (B-BI-WI11)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WI11</td>
<td>180h</td>
<td>6</td>
<td>5. oder 6.Sem</td>
<td>wechselnd</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Individuelle Profilbildung
Kontaktzeit: 30h
Selbststudium: 150h
Geplante Gruppengröße: 1 Studierende/r

2 Lernergebnisse (learning outcomes) / Kompetenzen
Das Wahlfach zielt auf die individuelle Profilbildung der Studierenden. Sie sollen im Rahmen einer frei definierten Aufgabe zeigen, dass sie komplexe Probleme mit begrenzter Unterstützung durch den Betreuer weitgehend selbstständig lösen können. Es wird erwartet, dass die Studierenden sich eigenständig in die erforderlichen Techniken zur Lösung des gestellten Problems einarbeiten. Die zu bearbeitenden Probleme sollen so gestellt sein, dass sie nicht komplett mit Mitteln aus Pflichtvorlesungen gelöst werden können.

3 Inhalte

4 Lehrform
2 SWS Konsultationen

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: keine

6 Prüfungsformen
Projektarbeit

7 Voraussetzungen für die Vergabe von Leistungspunkten
Prüfungsleistung (schriftliche Hausarbeit und praktische Projektarbeit)

8 Verwendung des Moduls (in anderen Studiengängen)

9 Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

10 Modulbeauftragte/r und hauptamtlich Lehrende
Alle am Studiengang beteiligten Professoren

11 Sonstige Informationen
Sprache: Deutsch oder Englisch
Literatur: Bücher zum jeweiligen Themengebiet.

23. September 2019
Angewandte Bioinformatik (B.Sc.)
8 Wahlpflichtveranstaltungen Biotechnik

8.1 Biochemie 3 (B-BI-WB01)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB01</td>
<td>90h</td>
<td>3</td>
<td>WSA: 6.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biochemie 3</td>
<td>2 SWS / 30h</td>
<td>60h</td>
<td>ca. 25 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lernergebnisse (learning outcomes) / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Am Ende dieses Moduls sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td></td>
<td>- die Grundprinzipien der Genregulation herzuleiten</td>
</tr>
<tr>
<td></td>
<td>- die Regulation der Genexpression zu analysieren</td>
</tr>
<tr>
<td></td>
<td>- die Methoden der Gentherapie zu diskutieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regulation der Genexpression; Gentherapie; aktuelle ausgewählte Themen der Biochemie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS Vorlesung, Hausarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: keine</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: Modul Biochemie 1 und Modul Biochemie 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur (60 Min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestandene Modulklausur und erfolgreiche Teilnahme an der Hausarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor Biotechnik (B-BT-WP19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. rer. nat. Maik Lehmann</td>
</tr>
</tbody>
</table>

83
Sonstige Informationen

Sprache: Deutsch, Lesen von englischen Veröffentlichungen

Literatur: Folien zur Vorlesung
aktuelle englische Artikel zu den Themen
8.2 Mikrobiologie 2 (B-BI-WB02)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB02</td>
<td>90h</td>
<td>3</td>
<td>WSA: 5.Sem</td>
<td>Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrobiologie 2</td>
<td>2 SWS / 30h</td>
<td>60h</td>
<td>ca. 25 Studierende</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- die spezielle Stoffwechselleistung der Mikroorganismen zu erklären
- die Vielfalt der Stoffwechselwege der Mikroorganismen in Abhängigkeit des Lebensraumes zu identifizieren
- komplexe und aktuelle Stoffwechselleistungen im Vortrag zu präsentieren

3 Inhalte
Spezielle mikrobiologische Stoffwechselwege:
Zellwand Biosynthese, Sporenbildung, Chemolithotropie, Anaerobe Atmung, spezielle aktuelle Kapitel des mikrobiellen Stoffwechsels

4 Lehrform
Vorlesung und Seminar

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Modul Biowissenschaften und Modul Mikrobiologie

6 Prüfungsformen
Seminarvortrag

7 Voraussetzungen für die Vergabe von Leistungspunkten
Erfolgreicher Seminarvortrag

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik (B-BT-WP20)

9 Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

10 Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. rer. nat. Maik Lehmann
<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache:</td>
<td>Deutsch, Fachliteratur in Englisch</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Folien zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>G.Fuchs (Hrsg.) Allgemeine Mikrobiologie, Thieme Verlag, ISBN: 978-3-13-444608-1</td>
</tr>
<tr>
<td></td>
<td>aktuelle englische Artikel zu den Themen</td>
</tr>
</tbody>
</table>
8. Wahlpflichtveranstaltungen Biotechnik

8.3 Grüne Gentechnik (B-BI-WB03)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB03</td>
<td>90h</td>
<td>3</td>
<td>WSA: 6.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS / 30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

2 Lernergebnisse (learning outcomes) / Kompetenzen

Am Ende dieses Moduls sind die Studierenden in der Lage:
- Risiko-Evaluierung transgener Pflanzen zu debattieren
- Anwendungsbereiche transgener Pflanzen herzuleiten
- Transformationstechniken zu erklären
- Lösungsvorschläge für die Anwendung transgener Pflanzen wissenschaftlich zu erarbeiten
- epigenetische Regulationsvorgänge zu verstehen

3 Inhalte

Anbautechnischer und gesetzlicher Hintergrund der Produktion mit gentechnisch veränderten Pflanzen
Morphologie und Systematik der Pflanzen
Pflanzenentwicklung
Gewebekultur als Werkzeug der Gentechnik
Transformationstechniken (Agrobakterientransfer, Partikelbeschuss)
Design und Anaqlyse transgener Pflanzen
Phytopathologie mit Schwerpunkt Etablierung rekombinanter Schaderreger-Resistenzen (Viren, Pilze, Bakterien, Insekten)
Pflanzenviren
Grundlagen Epigenetics
Molecular Farming

4 Lehrform

2 SWS Vorlesung mit Tafel und Beamerprojektion

5 Teilnahmeveraussetzungen

Formal: keine
Inhaltlich: Grundkenntnisse Genetik und Molekularbiologie

6 Prüfungsformen

Klausur (90 Min)

7 Voraussetzungen für die Vergabe von Leistungspunkten

Bestandene Modulklausur

8 Verwendung des Moduls (in anderen Studiengängen)

Bachelor Biotechnik (B-BT-WP09)
8. Wahlpflichtveranstaltungen Biotechnik

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Stichpunkt</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Stellenwert der Note für die Endnote</td>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
<td>Prof. Dr. Gabi Krczal</td>
</tr>
</tbody>
</table>
| 11 | Sonstige Informationen | **Sprache:** Deutsch, einzelne Abschnitte in Englisch
Literatur: Skript zur Vorlesung
Bücher-Empfehlung:
8.4 Angewandte Klinische Forschung in der Biotechnologie (B-BI-WB04)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB04</td>
<td>180h</td>
<td>6</td>
<td>WSA: 5.Sem</td>
<td>Wintersemester</td>
<td>2 Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSA: 6.Sem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Lehrveranstaltungen
 - Angewandte Klinische Forschung in der Biotechnologie
 - Kontaktzeit: 4 SWS / 60h
 - Selbststudium: 120h
 - Geplante Gruppengröße: ca. 25 Studierende

2. Lernergebnisse (learning outcomes) / Kompetenzen
 Am Ende dieses Moduls sind die Studierenden in der Lage:
 - die Grundlagen und Methoden der klinischen Forschung zur Zulassung von biotechnologischen Produkten und Medizin Produkten einzuordnen
 - den vollen Ablauf einer klinischen Erprobung zu verstehen
 - ein Verständnis für die praktische Herangehensweise an ein klinisches Forschungsprojekt zu entwickeln
 - den gegebenen gesetzlichen und ethischen Rahmen der Durchführung klinischer Studienprojekte am Menschen und die dafür notwendigen Dokumente und Voraussetzungen aufzuzeigen
 - die Grundlagen der GMP anzuwenden
 - die gegebenen gesetzlichen und ethischen Rahmen der Herstellung von Arzneimitteln und Medizinprodukten einschließlich der dafür notwendigen Dokumente und Voraussetzungen einzuordnen

23. September 2019
Angewandte Bioinformatik (B.Sc.)
3 Inhalte
- Grundlagen der klinischen Forschung
- rechtliche und ethische Rahmenbedingungen
- GCP (Gute Klinische Praxis)
- Verantwortlichkeiten im Rahmen klinischer Studien
- Praktische Studiendurchführung
- Inhalte des Studienprotokolls
- Inhalte der Prüfarztinformation
- Ethikanträge und Behördenmeldungen
- Monitoring klinischer Prüfungen
- Datenmanagement
- Biometrie
- Methoden und Techniken der klinischen Forschung
- Anforderungen an QM-Systeme
- Aufbau von QM-Systemen
- ISO 13485
- ISO 9001
- Grundlagen für die Herstellung von Arzneimitteln und Medizinprodukten
- Besondere Anforderungen an die Hygiene im GMP

4 Lehrform
2 * 2 SWS Vorlesung

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: keine

6 Prüfungsformen
Klausur (90 Min bzw. 30 Min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
- Bestandene Modulklausur

8 Verwendung des Moduls (in anderen Studiengängen)
- Bachelor Biotechnik (B-BT-PM28)

9 Stellenwert der Note für die Endnote
- Gewichtung nach Leistungspunkten

10 Modulbeauftragte/r und hauptamtlich Lehrende
- Prof. Dr. Dr. Andreas Pfützner
11 Sonstige Informationen
Sprache: Deutsch, einzelne Abschnitte in Englisch
Literatur: Gesetzliche Regelungen (Arzneimittelgesetz)
ISO 9001:2008
ISO 13485:2003
Good Clinical Practice Guidelines
Cleophas: Statistics Applied to Clinical Trials; Kluwer-Academic-Publishers
Gute Hygiene Praxis; Pharma Technologie Journal (2. Auflage), ISSN 0931-9700.
Concept, Heidelberg
8.5 Giftige Inhaltsstoffe in Pflanzen (B-BI-WB05)

<table>
<thead>
<tr>
<th>Kenn-</th>
<th>Arbeits-</th>
<th>Leistung-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>nummer</td>
<td>belastung</td>
<td>punkte</td>
<td>semester</td>
<td>Angebots</td>
<td>1 Semester</td>
</tr>
<tr>
<td>B-BI-MN01</td>
<td>90h</td>
<td>3</td>
<td>WSA: 6.Sem</td>
<td>Sommer-semester</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
<td>Geplante Gruppengröße</td>
<td>ca. 25 Studierende</td>
</tr>
<tr>
<td></td>
<td>Giftige Inhaltsstoffe in Pflanzen</td>
<td>2 SWS / 30h</td>
<td>60h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lernergebnisse (learning outcomes) / Kompetenzen</td>
<td>Am Ende dieses Moduls sind die Studierenden in der Lage:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- giftige Pflanzeninhaltsstoffe in chemische Stoffklassen einzuordnen</td>
<td>- Anzucht, Vermehrung und Hauptinhaltsstoffe der Pflanzen zu beschreiben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- die besprochenen Pflanzen geschichtlich und ethnologisch-medizinisch zuzuordnen</td>
<td>- Symptome bei Vergiftungen mit Pflanzen zu identifizieren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inhalte</td>
<td>Pflanzeninhaltsstoffe mit Giftwirkung klassifizieren</td>
<td>Giftklassen</td>
<td>Wirkungsmechanismen bei Giften</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>heimische Giftpflanzen</td>
<td>Ethnobotanik und Ethnomedizin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anzucht diverser Giftpflanzen, Extraktion einiger Inhaltsstoffe</td>
<td>Aufklärung von Wirkungsmechanismen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lehrform</td>
<td>2 SWS Vorlesung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Teilnahmevergütungen</td>
<td>Formal: keine</td>
<td>Inhaltlich: Grundlagen der Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Prüfungsformen</td>
<td>werden am Anfang des Semesters festgelegt, in der Regel eine Klausur (90 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
<td>Bestandene Modulklausur oder bestandene andere Prüfungsform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
<td>Bachelor Biotechnik (B-BT-WP26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Stellenwert der Note für die Endnote</td>
<td>Gewichtung nach Leistungspunkten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
<td>Dipl.-Ing. agr. Beate Reichhold-Appel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
Sonstige Informationen

Sprache: Deutsch
Literatur: Roth, Daunnderer, Kormann, Gift-Pflanzen-Gifte; NIKOL Verlagsgesellschaft mbH & Co. KG
Hausen, Vieluf, Allergiepflanzen; NIKOL Verlagsgesellschaft mbH & Co. KG
8.6 Biotechnologie 1 (B-BI-WB06)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB06</td>
<td>180h</td>
<td>6</td>
<td>WSA: 6.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnologie 1</td>
<td>5 SWS / 75h</td>
<td>105h</td>
<td>Vorlesung ca. 50, Praktikum á 6 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernergebnisse (learning outcomes) / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am Ende dieses Moduls sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td>- grundlegende Techniken biotechnologischer Verfahren zuzuordnen</td>
</tr>
<tr>
<td>- Optimierungsmethoden von Verfahren aufzuzeigen</td>
</tr>
<tr>
<td>- die Methoden der Zellimmobilisierung aufzuzeigen</td>
</tr>
<tr>
<td>- Sicherheitsaspekte in Labor und Produktion anzuwenden</td>
</tr>
<tr>
<td>- das GMP-Konzept (Good Manufacturing Practice) zu beschreiben</td>
</tr>
<tr>
<td>- Optimierungen mit Hilfe statistischer Modelle durchzuführen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienoptimierung</td>
</tr>
<tr>
<td>Bioprozessanalytik</td>
</tr>
<tr>
<td>Prozessoptimierung</td>
</tr>
<tr>
<td>Sicherheit und Auflagen</td>
</tr>
<tr>
<td>Zell-Immobilisierung</td>
</tr>
<tr>
<td>GMP</td>
</tr>
<tr>
<td>Aufarbeitung</td>
</tr>
<tr>
<td>Praktikum zur Medienoptimierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SWS Vorlesung, 2 SWS Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmeveruaissetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: keine</td>
</tr>
<tr>
<td>Inhaltlich: Modul Mikrobiologie und Modul Biochemie 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (90 min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandene Modulklausur, erfolgreiche Teilnahme am Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Biotechnik (B-BT-PM15)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
</tbody>
</table>

23. September 2019

Angewandte Bioinformatik (B.Sc.)
Modulbeauftragte/r und hauptamtlich Lehrende
Prof. Dr. Kai Muffler

Sonstige Informationen
Sprache: Deutsch, Literatur z.T. in Englisch
8.7 Proteinfaltung 1 (B-BI-WB07)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB07</td>
<td>90h</td>
<td>3</td>
<td>WSA: 6.Sem</td>
<td>Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Proteinfaltung 1

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- die Theorien physikalischer Strukturbestimmungsmethoden zu beschreiben und diese konkret zu bewerten
- Faltungspfade zu diskutieren und die Folgerungen aus Fehlfaltungen von Proteinen einzuschätzen

3 Inhalte
Ableitung grundlegender Struktureigenschaften von Biopolymeren
Röntgenstrukturanalyse
NMR- und IR- Spektroskopie
Zelleigene Faltungshilfen
Fehlfaltungen und ihre medizinische Relevanz

4 Lehrform
2 SWS Vorlesung

5 Teilnahmevoraussetzungen
Formal: keine
Inhaltlich: Grundlagen der Chemie und Mathematik

6 Prüfungsformen
werden am Anfang des Semesters festgelegt, in der Regel eine Klausur (90 min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestandene Modulklausur oder bestandene andere Prüfungsform

8 Verwendung des Moduls (in anderen Studiengängen)
Bachelor Biotechnik (B-BT-WP25)

9 Stellenwert der Note für die Endnote
Gewichtung nach Leistungspunkten

10 Modulbeauftragte/r und hauptamtlich Lehrende
Dr. Mrosek

11 Sonstige Informationen
Sprache: Deutsch
Literatur: Aktuelle Publikationen des Fachgebiets

23. September 2019
8.8 Proteinfaltung 2 (B-BI-WB08)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB08</td>
<td>90h</td>
<td>3</td>
<td>WSA: 6.Sem</td>
<td>Sommer-Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteinfaltung 2</td>
<td>2 SWS / 30h</td>
<td>60h</td>
<td>ca. 25 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernergebnisse (learning outcomes) / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am Ende dieses Moduls sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td>- anhand der Grundlagen der Polymerchemie und des physikalischen Verhaltens von Proteinen in gelartigen Umgebungen durch Analogieschlüsse aus Aminosäuresequenzen Sekundär- und Tertiärstrukturvorhersagen zu bewerten</td>
</tr>
<tr>
<td>- die theoretischen Grundlagen bei der Betrachtung von Protein-Protein-Wechselwirkungen sowie die gängigen Verfahren und Werkzeuge der Molekülmechanik zur Strukturvorhersage bei Proteinen zu beschreiben und anzuwenden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellsysteme für Proteine</td>
</tr>
<tr>
<td>Theoretische Ableitung von Strukturinformationen aus der Aminosäuresequenz</td>
</tr>
<tr>
<td>Protein-Protein-Wechselwirkungen</td>
</tr>
<tr>
<td>Molekülmechanik</td>
</tr>
<tr>
<td>ab initio und semiempirische Methoden zur Strukturvorhersage von Molekülen und Makromolekülen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS Vorlesung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmeveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: keine</td>
</tr>
<tr>
<td>Inhaltlich: Grundlagen der Chemie und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>werden am Anfang des Semesters festgelegt, in der Regel eine Klausur (90 min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandene Modulklausur oder bestandene andere Prüfungsform</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Biotechnik (B-BT-WP27)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung nach Leistungspunkten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Mrosek</td>
</tr>
</tbody>
</table>

23. September 2019
| 11 | **Sonstige Informationen**
Sprache: Deutsch
Literatur: Aktuelle Publikationen des Fachgebietes |
8.9 Biowissenschaftliches Projekt (B-BI-WB??)

<table>
<thead>
<tr>
<th>Kenn-nummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-WB??</td>
<td>90h</td>
<td>3</td>
<td>SSA: 2.Sem</td>
<td>nur Wintersemester 2017/18</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristische Einheiten, Gruppenarbeit</td>
<td>1 SWS / 15h</td>
<td>75h</td>
<td>Gruppen mit 6-8 Studierenden aus Biotechnologie und Bioinformatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Lernergebnisse (learning outcomes) / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am Ende dieses Moduls sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td>- fachübergreifend mit Studierenden anderer Studiengänge ein Fachthema inhaltlich wiederzugeben</td>
</tr>
<tr>
<td>- im Team eine biotechnische Problemstellung zu erfassen, Lösungsvorschläge zu diskutieren und vorzustellen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektarbeit / Einführungsprojekt Biotechnologie:</td>
</tr>
<tr>
<td>- kritische Auseinandersetzung mit einem biotechnischen Thema in Kleingruppen unter Anleitung eines Hochschullehrers (Prof. Dr. M. J. Lehmann, Prof. Dr.-Ing. K. Muffler oder Prof. Dr. C. Weiß)</td>
</tr>
<tr>
<td>- Vorstellung der Ergebnisse vor einem Publikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminare, Gruppenarbeit, Diskussionen, Vortrag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Teilnahmeveraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: keine</td>
</tr>
<tr>
<td>Inhaltlich: keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreich absolvierte Präsentation (Vortrag und Poster) der Projektarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>unbenotetes Modul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Modulbeauftragte/r und hauptamtlich Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Themengebende Dozenten</td>
</tr>
</tbody>
</table>

23. September 2019
Angewandte Bioinformatik (B.Sc.)
<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprache:</td>
</tr>
<tr>
<td></td>
<td>Literatur:</td>
</tr>
</tbody>
</table>
9 Praxisphase (B-BI-PP01)

<table>
<thead>
<tr>
<th>Praxisphase (BIPP)</th>
<th>Practical Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
<td>B-BI-PP01</td>
</tr>
<tr>
<td>Arbeitsbelastung</td>
<td>450h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>15</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>7.Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>12 Wochen</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- Praxisphase
 - Kontaktzeit: 15h
 - Selbststudium: 435h
 - Geplante Gruppengröße: 1 Studierende/r

2 Lernergebnisse (learning outcomes) / Kompetenzen
Am Ende dieses Moduls sind die Studierenden in der Lage:
- Technische und organisatorische Zusammenhänge in einem Unternehmen oder einer Forschungseinrichtung einzuordnen
- umfassende Arbeiten unter betrieblichen Gegebenheiten eigenständig, im Team oder leitend durchzuführen
- Praktische Arbeiten im Berufsfeld der Bioinformatik und angrenzenden Gebieten durchzuführen
- Theoretisches Wissen aus dem Studium in betrieblichen bzw. Forschungsprojekten praktisch einsetzen können

3 Inhalte
- Struktur des Betriebes bzw. der Forschungseinrichtung
- Unmittelbares Arbeitsumfeld
- Arbeitsmittel, -Methoden und -Formen der betrieblichen bzw. Forschungsarbeit, insbesondere Team- und Einzelarbeit
- Spezifische Aufgabenstellung des Studierenden
- Spezifische Lösung und Dokumentation der Aufgabe

4 Lehrform
- Betreuung: 15h
- Projektbearbeitung inkl. Dokumentation und Präsentation: 435h

5 Teilnahmevoraussetzungen
- Formal: Alle Module der ersten sechs Semester
- Inhaltlich: Stoff des Bachelorstudiums, Schwerpunkte je nach Thema

6 Prüfungsformen
- Präsentation von ausgewählten Tätigkeiten und Ergebnissen während der Praxisphase auf einem Poster, das auch den größeren Projektzusammenhang erläutert

7 Voraussetzungen für die Vergabe von Leistungspunkten
- Bestandene Modulprüfung
9. Praxisphase (B-BI-PP01)

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>
| 9 | **Stellenwert der Note für die Endnote**
 Gewichtung nach dem 2/5-fachen der Leistungspunkte |
| 10 | **Modulbeauftragte/r und hauptamtlich Lehrende**
 Alle am Studiengang Bioinformatik beteiligten Professoren |
| 11 | **Sonstige Informationen**
 Sprache: Deutsch, einzelne Abschnitte in Englisch
 Literatur: Leitbild und Leitsätze des betreuenden Betriebs
 Fachliche Quellen im Unternehmen oder in der Forschungseinrichtung |
10 Bachelorarbeit (B-BI-BA01)

Bachelor-Arbeit und Kolloquium (BIBA)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Arbeitsbelastung</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-BI-BA01</td>
<td>450h</td>
<td>15</td>
<td>7.Semester</td>
<td>jedes Semester</td>
<td>12 Wochen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>Geplante Gruppengröße</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelorarbeit und Kolloquium</td>
<td>15h + Kolloquium</td>
<td>435h</td>
<td>1 Studierende/r</td>
<td></td>
</tr>
</tbody>
</table>

Lernergebnisse (learning outcomes) / Kompetenzen

Die Bachelorarbeit ist eine schriftliche Prüfungsarbeit. In ihr soll die Kandidatin oder der Kandidat zeigen, dass sie/er in der Lage ist, innerhalb einer vorgegebenen Frist ein Problem aus ihrem/seinem Fachgebiet selbständig nach wissenschaftlichen Methoden zu bearbeiten und die gewonnenen Ergebnisse verständlich und folgerichtig darzustellen.

Im Kolloquium präsentiert der/die Studierende die Ergebnisse der Bachelor-Arbeit. Das Kolloquium dient auch dazu, die Eigenständigkeit der Leistung des/der Studierenden zu überprüfen.

Inhalte

Lehrform

Teilnahmevoraussetzungen

Formal: siehe Prüfungsordnung

Inhaltlich: Alle Studieninhalte, Schwerpunkte je nach Themengebiet

Prüfungsformen

Die Gesamtnote ergibt sich aus der Bewertung der Bachelorarbeit und des Kolloquiums durch die Gutachter

Voraussetzungen für die Vergabe von Leistungspunkten

Bestandene Bachelorarbeit inkl. erfolgreich durchgeführtem Kolloquium

Verwendung des Moduls (in anderen Studiengängen)
<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>Stellenwert der Note für die Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>Modulbeauftragte/r und hauptamtlich Lehrende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alle am Studiengang Bioinformatik beteiligten Professoren</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprache: Deutsch oder Englisch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Literatur: In Abhängigkeit vom jeweiligen Themengebiet</td>
</tr>
</tbody>
</table>