Mechanics of Materials 213 (2026) 105561

journal homepage: www.elsevier.com/locate/mecmat

Contents lists available at ScienceDirect

Mechanics of Materials

MECHANICS
IMATERIALS

Research paper

Global existence and uniqueness of weak solutions for a Willis-type model of

elastodynamics™

Thomas Blesgen *#>1 | Patrizio Neff !
a Bingen University of Applied Sciences, Berlinstrafse 109, D-55411 Bingen, Germany

Y Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Strafe 9, D-45127 Essen, Germany

ARTICLE INFO ABSTRACT

Keywords:

Willis model

Willis coupling
Metamaterials

Existence of weak solutions

The existence and uniqueness of weak solutions is shown for a system related to the Willis model of
elastodynamics. Both the whole space case and the case of a bounded smooth domain are studied. To this end
the equations are reformulated as a linear symmetric hyperbolic system of first order and the existing theory
for such systems is applied. If the initial and boundary data is regular enough, classical solutions are obtained.
The possibility to transform the problem to a linear symmetric hyperbolic system hinges on a new symmetry

condition on the Willis coupling tensor S, not yet considered in the literature. This condition demands that .S
is a totally symmetric third-order tensor.

1. The Willis model in elastomechanics

The Willis model, see Willis (1981, 2009, 2011) and Milton and
Willis (2007), is an extension of classical elastodynamics with the aim
to better reproduce wave propagation in metamaterials. The latter
topic is of high current interest, see, e.g., Rizzi et al. (2024), Gattin
et al. (2025). In fact, metamaterials (or architected materials) show
uncommon dispersion relations that are impossible to predict with
classical linear elastodynamics. In the Willis type models, the balance
of linear momentum is modified, together with a coupling equation.
The system reads

Dive =4,
o = Cypp.s5ymDu + Seep it, m
u = SeTff.sym Du + 0c¢¢ 1t

Moreover, Cer¢ : Sym(3) — Sym(3), Serr : R? — Sym(3) ¢ R¥3, ST -
Sym(3) — R3 have a formal character, but should be determined by
some ‘homogenization’ procedure. For S, = 0, we have just s = gy ii.
The (symmetric) Cauchy stress tensor is denoted by o, the displacement
isu: QcR >R and y : 2 c R?® > R3 is the linear momentum
density.

In index notation, the system (1) is equivalent to (using summation
convention)

ajo'fj = ﬂ,’» (2)

oij = Cotpdijrr €t + Seer)ijk Uks 3)
i = (Serdrii €xt + Octt Uj- 4

We show existence and uniqueness of (weak) solutions under the two
symmetry assumptions on the Willis coupling tensor

Sijk = Sk for 1 <i,j,k<n, (5)

Sy =Sy for1<ij.k<n. (6)

While the first symmetry (5) is naturally associated to the symmetry
of the Cauchy stress o, the second condition (6) appears to be new
and is related to the possibility to transform the problem to a linear
symmetric hyperbolic system. Combined, the conditions (5) and (6)
imply that S is a totally symmetric third-order tensor, having at most
10 independent coefficients in dimension 3, see Itin and Reches (2025).
Due to the term (ST.);; = (See)g; in (4), the material exhibits reci-
procity, see Muhlestein et al. (2016), independently of the symmetry
assumption (6).

We would like to thank Prof. G. Rosi (University Paris — Est Créteil)
for sharing the following observation.

Remark 1. Assume that o, C;j, and S;;, are constants independent
of (x,1). Differentiating (3) w.r.t. j and (4) w.r.t. t, we obtain for i €
(1,2,....n}

Cijki 9;0kuy + Sijx 0,0;uy = 0,05, )
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S ki 00y + 002u; = 0, ;. €)

Due to Eq. (2), the right hand sides of (7), (8) are equal such that

00%u; = Cyjpy 0,051 + (Syjy — i) 0,0, 9)

[ i

If .S satisfies the symmetry (6), the term in brackets on the right disap-
pears and Eq. (9) simplifies to the common linear elasticity equation

2
007u; = (C,-jk, 0; 0k

showing no Willis coupling. Hence, total symmetry of .S excludes Willis
coupling for constant coefficients. However, in general, the coupling
tensor S is space and time dependent in which case the studied Willis
problem is non-trivial in the sense that it departs considerably from
classical linear elasticity. In addition, even for constant ¢, C and S, the
Willis coupling does not disappear on 042 (related to the normal compo-
nent o;;n; of the stress). Also note that for materials whose underlying
microstructure shows centro-symmetry (inversion symmetry), the third-
order Willis coupling tensor .S must vanish. This is not at odds with
assuming that .S is totally symmetric as both conditions are different.

1.1. Background for the Willis approach

Unusual dynamic properties of certain classes of composite ma-
terials (architected materials, metamaterials) necessitate to introduce
new systems of equations, extending classical linear elasticity. One
direction is to explore generalized continua, see. e.g. Madeo et al.
(2016), Rizzi et al. (2024), with additional kinematic descriptor fields.
Another direction is to change the structure of the equations. In the
latter case, the Willis model aims to provide effective constitutive
equations for ensemble averages of quantities of interest, i.e. Cauchy
stress o versus displacement u or velocity v = i. Hence, the usefulness
of the Willis approach depends crucially on the assumption that an
ensemble average is a reasonable descriptor of the given (periodic)
microstructure of the medium.

Let the fully resolved microstructure of the medium obey classical
linear elasticity, i.e.

Dive = g = %(ou) (10)
together with the constitutive law

o = C(x).g, € = symDu. an
Ensemble averaging (10) we obtain

Div(c) = (#)

for the averaged quantities (o) and (). The infinitesimal strain tensor
is likewise ensemble averaged as

() = symD{(u). 12)

However, ensemble averaging the constitute law (11); is not directly
achievable since

(o) = (Clx).e) # (C(x))(e) 13)

and (u) # (o) - (u) because in general the product of averages differs
from the average of the product. Therefore, the Willis equations provide
simple constitutive closure relations in the form

(o) 1= Cpr(€) + Sepp- (1),
() = ST (€) + Ocsr (1),

where Cg¢, Seit, 0 must be determined in an additional step. In the
following, we skip the (-)-notation.

(14)

Mechanics of Materials 213 (2026) 105561

1.2. Invariance considerations

If we adhere to the idea that the Willis system (1) should be the
result of some homogenization based on classical linear elastodynamics,
then it is natural to require that solutions of (1) should satisfy the same
invariance conditions as are satisfied by classic linear elastodynamics

Dive = od,u, o = C.symDu. (15)

It is easy to see that (15) is infinitesimal Galilean-invariant, i.e. if u is a
solution, so is

u(x) > u(x) + Ax + b1, b (1) =0, (16)

where 4 € s0(3) and 1 — b(f) € R3. A direct check reveals that the
system (1) likewise admits the invariance (16).2

However, the system (15) also admits a lesser-known further invari-
ance condition, the so-called extended infinitesimal Galilean invariance

Wx) > u(x) + ADOx+50), b (®)=0, A (t)=0. a7

This invariance condition has no immediate counterpart in classical
nonlinear elasto-dynamics but appears as possibility due to the loss
of information inherent in the linearization process of which (15) is
the result. Be that as it may, it must be observed that the linear Willis
system is not invariant w.r.t. (17) if S # 0. Thus, whatever process
of homogenization is applied, the simplified system (1) cannot entirely
capture all effects that are possible in a fully dynamic calculation of
a completely resolved microstructure. Nevertheless, we find it worth-
while to look at the mathematical structure presented by the system (1).
To the best of our knowledge, no local or global existence proof has
yet been given. Due to the linearity, however, this should be possible
(but see Lewy, 1957) and indeed, based on the general theory of linear
symmetric hyperbolic systems of first order, the abstract Willis system
can be cast into a format that permits an existence result.

2. Prerequisites and assumptions

Let I := {1,2,...,n} and 2 C R" be a domain, 0 < T < oo a fixed
time, Qp 1= 2x(0,T) and D := Q2 x [0,T]. If 2 is bounded we write
Zp 1= 02 % (0,T).

Throughout, we shall employ the following notations. We write 9,

shortly for % and ||M|| := tr(MT M) is the Frobenius norm, where
k

tr(M) := Y, o5 My, is the trace and M7 the transpose of M for M €

R™", We write (v,w) := Y, ¢; tywy for the Euclidean inner product

of two vectors v,w € R" and C.e := C;;, g for the application of a
fourth-order tensor C to a second-order tensor ¢. Let s € N be a fixed
integer. By W*?(2) we denote the Sobolev space of s-times weakly
differentiable functions in LP(Q) and H*(R2) = W**(Q) is a Hilbert
space. By C;"(X) we denote the space of m-times bounded differentiable
functions of a Banach space X to R. By Sym(n) we denote the set of
symmetric real n X n matrices.

For (x,1) € Qp, let u = u(x,) = (u;(x,1)),c; denote the displace-
ment, y = u(x,t) = (u;(x,1),c; the momentum density vector, o =
o(x,1) = (0;;); je; the symmetric Cauchy stress tensor; S = S(x,1) =
(S;k(x, 1)); j ker is the Willis coupling tensor, d,u is the particle velocity.

One model assumption is that the strain be small. By ¢ = ¢(u) :=
sym Du we denote the linearized strain tensor, i.e.

£4y 1= %(0,(141 +0,uk), k,lel. 18)

For the existence proofs below we make the following assumptions on
0, C, S, uand p.

2 It is clear that an ensemble average (statistical average) transforms
likewise.
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(A0) The elasticity tensor C is a fourth-order tensor with (C = C;j,
(x,1)); j k11 Possibly depending on (x,7) to account for complicated
material behavior. We assume

Cijux,1) € C2(2 % [0,T]). 19)
The tensor C satisfies the major and minor symmetry relations
CijrGt) = Cjipg(x.1) = Cyjp(x. 1) = Cpyy(x, 1)

for all i, j,k,l € I, (x,t) € D. (20)

We assume that C is uniformly positive definite. This means there exists
a constant ¢; > 0 such that for all (x,7) € D

(C(x, t).f,E) > ¢ llell? for all € € Sym(n). 2D
(A1) The mass density ¢ = o(x, ) of the material is given and satisfies
0, 0,0 € C°(2 X [0,T)). (22)
There exists a constant m, > 0 such that

o(x, 1) > my for all (x,1) € 2 x[0,T]. (23)
(A2) The third-order Willis coupling tensor S = S;,(x, ) satisfies

Sits 0 Sy € CX(Qx[0,T])  forall i,k,/ € 1. (24)
The tensor S satisfies the symmetry relations

S, 1) =S (x,0)  foralli,j,kel,(x,1)e2x[0,T], (25)
Sijee) = S;u(x,t)  forallij k€1, (x.1) € 2x[0,T]. (26)
(A3) The initial data u, and p, satisfy for an integer s > 1

uy € H'(Q; R"), 27)
Hy € H(£; RY). (28)

(A4) The boundary function u can be extended to a function on 5><[0, T]
which satisfies

o u(-,0) € H'=r(2; R")
o ue LX0,T; H7(Q; R")

for0<r<s+1, (29)
forO0<r<s+2. (30)

We write gy(x) := o(x,0) for the (given) density at time ¢t = 0. The
condition (25) ensures the symmetry of the Cauchy stress tensor ¢. The
boundary data u in (A4) is introduced below in (40). We assume the
compatibility of initial and boundary data, i.e.

u(-,0)=u, inQ. (3D

Due to (20), for n = 3, only 36 of the 81 entries of C are indepen-
dent. As is well known, see Sommerfeld (1964, pp. 268-269), due to
conservation of energy, this reduces further and at most 21 entries may
be independent. The material symmetry relation allows to reduce this
number even more, see, e.g., Mehrabadi and Cowin (1990), Vannucci
(2018).

Using the symmetries (20), we recover the identity

1
(C(x, t)-f)ij = (C,-jkl(X, 1) E(akul +al”k)
1 1
= E(Cijk,(x,t)aku,+ E(C,-J-k,(x,t)(),uk

1
=3 ((C,-jk,(x, 1+ (C,-j,k(x, t))aku,

= (Cijk,(x, 1) opu; = (C(x, t).Du)U, i,jel, (x,t) €D.
(32)
Subsequently we analyze the following system of equations re-
lated to the Willis model. Find the solution vector (u,o,u) with u €
L2(0;T; L2(2; R™), u € L2(0,T; H'(2; R"), 6 € L?(0; T; H'(2; R™"))
solving in 2,

iel, (33)
i,jel, (34)

ou; = 00y,

Sijk Oy = Ufj—(cukl €kl
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00u; = p; = Sy €xg iel (35)

subject to the initial and boundary conditions

u(-,0) = uy, in Q, (36)
uG,0) = po, in Q, 37)
u = u, on 02 X [0,T] (38)

for given initial values u, € H'*(2) and y, € L*(2). In (32), (33)~(35)
and below, we utilize the summation convention and implicitly sum
over repeated indices in I unless stated otherwise. In the original Willis
model (Willis, 1985), formulated in n = 3 space dimensions, S is
defined by a convolution. In this article, we do not assume any specific
form of S, but consider generic tensors S depending on (x, t).

Remark 2. For S =0, (33)-(35) constitute the classical equations of
motion for the propagation of waves in solids and from (34) we recover
Hooke’s law

c=Ce. (39)

3. Reformulation of the problem

We assume that the boundary data u in (38) can be extended to a
function 7 € H**2(2 x [0, T]; R"). We split the deformation vector u by
writing

u(x,t) = a(x, 1)+ u(x,1) (40)

such that # = 0 on 92 X [0,T]. Due to compatibility of initial and
boundary data, u(-,0) — u, has zero trace on dQ2. Analogous to the
definition of € = £(u) in (18), we set

£ := &(ii) € Sym(n), £ = &(u) € Sym(n).

With these notations, (33)-(35) rewrites as the following system in £

ou; = 0,04, iel, (41)
Sijk Oyl + ) = 01— Ciipy €y +Egp)s ijel, (42)
00, +1;) = p; = S By +E).  P€] (43)

subject to the initial and boundary conditions (36)—(38).
We reformulate (41)—(43) as a linear hyperbolic system. Using (23),
Eqn. (43) becomes

o 1 1 -
0y, +1Uy) = (-)ﬂm - ;Sklm (E +2ur) mel. (44)

Hence

(42) ~ — - —
oi; =Cin <5kl + 5k/) + Sijm at(um + "m)
(44) 1 ~ — 1
= ((Cijkl - ZSiijklm>(£kl +5k1> + ;Sijk Hi>

—— —

=t Hjjig

ijel. (45)

Plugging (45) into (41), we obtain
~ = 1 .
o u; = 6j<H,~jkl (sk,+ek1)+<—)S,~jk uk), iel. (46)

By (43), p; = 00, (i +1;) + Si;; (4,42 ). Using this relationship on the
left of (46) yields

0,(00,@ + 1) + Sy Epy +8)) = 0 H, (8 +8) + Hijty 0, (8 + €y)

_ 1 1
+ 9;(e I)S[jk Mt ;%SW He t ESW e

Plugging in ;. = 00,(f + ) + Sy (Epuy + Emn) ON the right together
with the definition (45) of H, we obtain
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_ESijmaj Skim (gkl +Ekl)

1 ~ _
7777777777777 (‘)Sijmsklm )‘)j (8t +&xr)

R 1 -
+0;8,4 0, (1 + 1) + ;ajs,.,ksmnk (En + En) 47)

1 o . - 1 _
+ ES,-jk 0,00, (dy +uy) + Sy 0; (0, + 0,1 ) + ESijkajSmnk (En + Emn)

1 ~
+ ESiijmnk aj (gmn + Emn)

Most terms in (47) cancel out. After simplifications, we are left with

00,11 =Cyj1 0, (8 + ) + 0,8, 0, (@ + 1) + (Syjy — ;) 0,0, (i + 11,
+0;Cy (gkl + Ekl) =0, Sy (gkl + Zkl) - 0,0 (argi +0,1;) — 00,1,

(48)
With (32), we have

~ - 1,5 . - - - O
(Ci/,d 3j (sk, +e,d) = (Cijk, 3jz(dku, + 0,i1;, + o u; + d,uk) = (Ci/k, 6/»0,((141 +u,).

Similarly, as a consequence of (25), the third term on the right of (48)
disappears, and
0;Cijia (B + &) = 0,Cyjp Ok (8 + 1), (49)
0, (B + ) = 0,k 0k (i +14y). (50)
Eventually, after introducing e : D — R" by
oe; = —Cyjy 0;0,1; — 0S4 Oyt + (9, Sy — 0,Cy4y) Oy
+0,00,u; + 00,u; + (Sjk,- - S,-jk)d,ajﬁk, iel (51)
we end up with
00yil; = Cjjyy 0,0, + (aj(cijkl - atSkli) Oxlly + 0,5, Oyl
— 0,00, + (S — Sj)0;0,y — 0¢;  in Qp, i€l (52)

The system (52) is solved subject to the initial and boundary conditions

00 0,(x,0) = g(x), x € Q, (53)
i(x,0) = h(x), X € Q, 54
i(x,1) = 0, x €02,1€[0,T]. (55)

Therein, the initial data 4 is specified from (36) and (40), g is specified
from (43) att =0,

h(x) = uy(x) = u(x,0),

gx) = (l‘n,(x) = S (x,0) 9 (VOI(X) +ﬁl(x70)) —0p(x) atai(x’o))

x € Q, (56)

, X€EQ.

1<i<n

(57)

With (27), it holds h € H;“(Q) due to the compatibility of initial and
boundary data.

The Egs. (52) constitute a linear hyperbolic system and represent
the most general form the resulting equations may have under the
assumption (25).

We recall that a first order linear symmetric hyperbolic system is of the
form

n

Lv := Ay(x,1) 0,0+ Z Ay(x,1)0v + B(x,H) v = w(x, 1), (58)
k=1

where v 2 xRyg = R", Ap(x, 1), A(x,0),...,A4,(x,t) € R™™"

are symmetric matrices for all (x,7) € Qx[0,T], Ay(x,1) is positive
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definite, B(x,t) € R™" and w(x,t) € R™ is a given right hand side.
As a consequence of the symmetry of A, it is diagonalizable and all
eigenvalues are real.

As a preparation of the following lemma, we introduce the symmet-
ric 3 X 3 matrices
1 CI]]l ClII2 CHXI 1 Cllll Cl?.?_l CIZ'H 1 Cl3|1 CHEI C]J'H
Cl = G Gie G ), (CZ = Can Gy Cyy ), (C3 = Cuu Gy Cuy ),
CJ]H C3II2 CHXI

CXEH CTE?_I CJZZI CX}I] CUEI Caazn

Cin Ciy 2 Ciz Cian Cignp
Con Copy ), (C% = Cui Cun Cun ),
Can Cam :

Cl 22 C]HE 2
Cm G ), G =

G Caim

Caz Caan Cazmp

(59)
Cixns Cips Ciais Cisz Cigss
< s Cas Cos ) Cl = (C Coy Czazx)-
Ciiz Cay Caogs : Cais Cypz Cags
It holds C,." = C,."(x, 1) with the symmetry (C{(x, 1) = (C;(x, t) for i,j €
{1,2,3}.

For the second term on the right of (52), we introduce the short-
hand notation

5 Cis Cim Gy 5
Ci =G G Cows |, G5 =

Cais Cais Canss

Dl (x,1) 1= 0,8,y (x,1) = 0,Cjpy (e, 1), ivk,l € {1,2,3). (60)

If Q is bounded and v = (v, v, v3) € R3 is the unit outer normal vector
at a point in 942, let

vl iyl vl(C;

C, := vz(Cii wC2 1 v»C2 e R, 61)
v;(C? i V"C% i v3(Cg

Lemma 1. Assume that the Willis coupling tensor satisfies the further

symmetry relation

Sty =S;(x.0)  foralij.kel, (x.H)€ 2X[0,T]. (62)

Then the Egs. (52)—-(55) constitute a linear symmetric hyperbolic system
of first order, i.e. they can be written as the mixed initial boundary value
problem

Lv=w in 2x[0,T], (63)
M(x)v =0 in ' x[0,T], (64)
(-, 0) = vy in Q, (65)

where L is given by (58), M(x) € R™" for x € I', and w = w(x,t) € R",
vy € R™ are suitable vectors. In n = 3 dimensions, Egs. (66)-(68) hold, see
Box 1 below.

The boundary matrix and the vector of the right hand side are given by

. . 0eR’?
(Cv e RO ! 0 € R3 ! 0 € R3 - 7(72);‘;);]7(;(:7)7 R
M= 0eR™ 10eR»™ 1 0eR™ |, wen=| aunewn |
TOERIS U ERM I L e R otnneyn
' ' 0eR3
(69)

Proof. The following procedure is a modification of an example
in John (1982, p.163) for a scalar hyperbolic equation. Subsequently
we restrict to the case n = 3 which allows us to explicitly write down
all matrices and explain the necessary transformations. However, the
method is valid for any dimension »n € N. Let for n =3

T 15
v=(vy,...,05) €ER

1= (0, 08y, 0,83, 05, Oyly, Oyily, O3y, Osily, O3k, O,y Oyiky, Oyily, iy, By, 113) .
(70)

Note that the last 3 components i, ii, and ii; of v are only necessary
to incorporate the Dirichlet boundary conditions (55). We have a first
set of compatibility equations

0,01 — d1vyp =0, 0,04 — 0010 =0, 0,07 — 03019 =0,

0,0, — 0yvy; =0, 0,05 — d,v1; =0, 0,03 — 0301 =0, (71)
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Licelel ‘
gicici oo oo
C .G G 0 0
Ag(x,1) = qu; 7((;27;7@7 . 0 1 0 fwne RISX15, (66)
L0000 s elg O
0010 0 |l
0 0 0 i 0 1-C:i 0
01 0+ 0 1 -Cii 0
Ap(x,0) = 07 0 1 0 [ =C{i 0 J,neRPV, k=123, (67)
ek Tk gk T T o
,,T(?,LJ,,EC,Z,g,,,(;ig,,,(),,,‘,,,(,),,,
0 1 0 1 0 1 0 1T,
,,,,, 0 4.0 0 00
,,,,, o . O :+ O 0 0
,,,,, L L N S S O U 1 U
b= Dh Diz Dis | D%l Déz gy Dél Déz Dés L9511 e 9;S1j2 95513 o (68)
Dgl D%z DPJD%l Dy, D%zl il D%z D%3 L 9521 0jS2j2 =00 0523 10
Diy_Djy Diyy Dy Dy Dy D3y Dy Dy i 9pSspn 93 9% mdel
e -1 o
Box 1.

0,v3 — 01U}, =0, 0,0 — 0,0y, =0, 0,09 — 0301, = 0.

The Egs. (52) determine o,v,y, d,v;; and 0,v;,. For the last variables,
there is a second set of compatibility relations

0013 —v1p =0, Ov14 — vy =0, U5 —v;p =0 (72)

together with
dv;3—v =0, Oyv13 — 0y =0, O3 —v7 =0,
03014 —vg =0, (73)

03015 — vg = 0.

010y =0, =0, vy —vs=0,

djv;s—v3 =0, 0yv15 — v =0,

With (70), we write the modified linear elasticity equation

0(x, 1) Oyfl; — Cy e (x,1) 0,018y + (Sjy; — S;j1)9;0,8 = 0 74)

and (71), (72), (73) in the matrix form

3
/foa,u+2/fk6ku+ Bv=0.

k=1
Direct inspection yields Egs. (75)-(78) given in Box II for the 3 x 3-
matrices

0 Si21=S12 S131=S113 $o11=S121 $221 =122 S231=S123

Fy = (Si2=Sm Sim=5m Sim=Suz ), F, (= S5 0 S=Sm3 )

S113=S311 S123=5312 S133=S313 S213=5321 $223=S322 S233=S323,

S311=S131 S321=S132 S331=S133
F; =

S312=5231 3225032 S332-5233
S313=5331 3235332 0

(79)

However, A,(x,1), Ay(x,1), A;(x,1) € R5¥I5 are not symmetric. The
matrices F, are on the diagonal of 4,, i = 1,2,3. They are not sym-
metric and cannot be rearranged without destroying the symmetry and
positive definiteness of A,. Imposing the strong assumption (62), we
obtain F, = F, = F; =0 € R?3,

Now, to symmetrize A;, we form suitable linear combinations of the
compatibility Egs. (71). This idea is first presented in Sfyris (2024).

Exemplary, to get the first line of A,, we use (cf. the first column of
the matrix A4,)

Ci11100,01 = 01010) + Cyy11 (9,0 = 91 011) + C3y11 (9,03 — 9y v1p) =0, (80)
to get the second line of A, we use (cf. the second column of A,)

Ci11200,01 = 91v19) + Cy 120,05 = 0y01) + C3y (903 — 0,01,) =0,  (81)

and eventually to get the ninth line of A, we use (cf. the ninth column
of 4;)

Ci331(0,01 = 9yv19) + Ca331 (8,05 — 0,0y 1) + Cy33, (903 — 0, v12) = 0. (82)

So we obtain A;, see (67) with k = 1. In the same way, /iz is
symmetrized. For the first line of A,, we use (cf. 1. column of 4,)

Ci112(0,04 = 05010) + Ca112(9,05 — 0,011) + C3112(9,06 — dp012) =0, (83)
for the second line

C1122(0,04 = 07010) + Ca122(9,05 — 0y011) + C3199(9,06 — dpv12) =0, (84)
and so forth. Finally, to symmetrize A;, we use for the first two lines

C1113(9,07 = 93010) + Cay13(9,08 — 93011) + C3113(9,09 — d3012) =0, (85)
C1123(0,07 = 93010) + Co123(0,08 — 03011) + C3103(0,09 — 93017) =0, (86)

and similar operations for lines 3 to 9. With these operations we obtain
A,, Aj, see (67) with k = 2,3. The linear combinations (80)-(82),
(83)—(86) lead as well to changes in EO, resulting in (66). For instance,
(80) modifies the first line of A, which results in three non-zero entries,
(81) changes the second line of A,,. In total, the coefficients in (80)—(82)
constitute the first 3 x 3-block C} in A,.

The major and minor symmetry (20) of C imposes the symmetry of
the matrices (Cj, in (59) as well as (C; = (C{ for i,j € {1,2,3}, implying
the symmetry of Ay(x,1) for all (x,7). Due to o(x,7) > 0 in D and the
positive definiteness of C, Ay(x,) is positive definite. The components
—vyg in (72),, vy in (72), and —v;, in (72) lead to the last —1 € R>3
block of B in (68). The other —1 blocks in B are a consequence of the
terms —vy, ..., —vg in (73). The 1 € R¥3 block in (76)~(78) is due to
0,03, --., 03015 in (73). This completes the reformulation of (71)-(74)
in form of a linear symmetric first-order hyperbolic system.

The remaining terms of (52) can be incorporated in B, leading to
(68). The boundary matrix M and the right hand side w are specified
by (69).

We want to comment on the matrix C, appearing in M. Due to
Dirichlet boundary conditions, it holds # = 0 on I'. As a consequence,
all tangential derivatives of & must vanish along I'. Exemplary, consider
the special case of the local coordinates introduced before Definition 2
below, where I' = 042 is straight and corresponds to x; = 0. Here, the
tangential derivatives d,#; and 0;i;, i € {1,2,3} vanish on I'. In matrix
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1eR™ | 0eR™ 1 0eR™
Ay, = 0eR™ 1 o(x,n1 eR™ | 0 eR>*? RIX15
0eR™ | 0eR™ | 1eR>
0 € R P -1 e R
0 e R ) e RIS
. 0 € R¥ 10 e R
A= =Cii11 =Ciiiz =Ci131 =Crait =Cizz1 —Cia31 =Crain —Cizzr —Cisap ! 33
~Carnt =Ca112 =Ca131 =Caa11 ~Ca221 ~Ca231 ~Co311 ~Caza1 —Cossy ! F eR
.26 G2 =G =Cau G ~Con “Con G Gy
0 e R 0 e R33
0e R f0e R33
0eR> P -1 e R
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, LT
_ 0eR™ 10 e R
4, = —Ci112 =Cri22 —Cii32 —Ci212 —Ci222 —Ci232 ~Ci312 ~Cizz 7(C13327: 3
—Ca112 =Ca122 =Ca132 =Cp212 =Ca222 —C232 —=Ca312 —C32 —Ca332 ! F,eR
G0 7Cai =Gz ~Ca2i2 ~Coom ~Coom “Coia Camn Casma s .
0 e R 0 e R3S
0 e R L0 eRM
0eR™ 0 e R33
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Vel
- 0 e R¥ | -1 e R
Ay = —Ci113 =Ci123 —Ci233 —Ci213 —Ci223 —Ci233 —Ci313 —Cizz3 —Cmﬂ 3
—Ca113 =Ca123 —Ca133 ~Ca213 =Cano3 —Ca233 —Ca313 —Cazpz —Cozzz 1 F3 € R”
L Csu3 ~Caizs ~Caoss ~Ca213 ~Caoa3 ~Coo33 ~Conis ~Cammy ~Canmay .
0eR> ") e R

(75)

(76)

7

(78)

L1 eR>3

Box II.

form this reads

0100
P( 0103031 0405063 070509)" i=| 01110
070 T

X (0] Uy U3 1 Vg V5 Vg E V70509 ) =0 (87)

In symmetrizing /ik for k = 1,2,3, the linear combinations (80)-(86)
are applied, converting the matrix P € R”® to C, with v = (-1,0,0)T
in the example. This is in line with the transformation of the upper left
9 x 9 block 1 of A to the upper left 9 x 9 block of A in (66).

The vector v, for the initial values can be directly read off from (53),
(54),

vo(x) = ( dyug,1 (x) = 0quy(x,0), 9yug o (x) — 1 uz(x, 0), 9y up 3(x) — 91 u3(x,0), ...,

Ho1 (%) = S (x, 0)0 (ugy (x) + 1y (x, 0))

03u3(x,0), PN

O3up3(x) — — 0,1 (x,0),

— S (x, 00y (ugy (x) + 4y (x, 0)
0p(x)

S350, 000y (g (x) + 1y (x,0))
Ou(x)

Ho2(X)

= 0yp(x, 0),

Ho3(x) —

= 0,u3(x, 0),

(88)

ug, 1 (x) = 1 (x,0),up 2 (x) = us(x,0), up 2 (x) — up(x,0) ) T

With (66), (67), (68) and (69), the equivalence of (63)-(65) with
(52)—(55) has been shown. []

4. Existence and uniqueness of weak solutions

In this section we apply the existence theory for linear symmetric
hyperbolic systems of first order to the Willis system. A good general
introduction and overview of mathematical methods for hyperbolic
systems can be found in Evans (2010, Chapter 7). An early L?-theory for
linear symmetric hyperbolic systems in bounded domains is developed
in Friedrichs (1958), see also (Friedrichs, 1954). The case where the
boundary is non-characteristic (see Definition 1 below for explanations)
is covered in Rauch and Massey (1974) and Lax and Phillips (1960). In

the situation studied here, I' is characteristic of constant multiplicity.
This has been analyzed for tangential regularity in Rauch (1985) and
more generally in Ohno et al. (1995). We also learned a lot from the
seminal paper (Hughes and Marsden, 1977). An alternative approach
would be the use of semigroup theory, see, e.g. Xin and Sha (2009),
which however appears to be less flexible.

4.1. Existence theory for Q2 = R"

As long as no boundary conditions are involved, the proof of ex-
istence and uniqueness of solutions to linear symmetric hyperbolic
first-order systems is straightforward and we begin with this case. The
following theorem is taken from Hughes and Marsden (1977).

Theorem 1 (Existence and Uniqueness for 2 = R"). Consider the linear
symmetric first-order hyperbolic system (58) on R" with initial data v,. Let
s € N and assume that

(i) Ay, A; and B are in Cr@R"x[0,T1; Rmxmy
(ii) Ay and A;, 1 <i < n are symmetric.
(iii) A, is uniformly positive definite, i.e. there exists a constant § > 0 with

(&, Ag(x, 1)) > 6 ||E* for all ¢ e R™\{0} and all x € R", t € [0, T].

(89)

(iv) we H*R"x[0,T]; R™).
V) vy € H*R"; R™).

Then there exists a unique solution v of (58) in R" belonging to
C"([0,T]; HS"(R"; R™)) for 0 < r < s, such that v(-,0) = v, The
solution varies continuously with the initial data in H*(R"; R™). Finally,
the equations are hyperbolic in the sense that if v, and w have compact

support then so does v(-,1) for each t.

An immediate consequence is
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Corollary 1. Let the assumptions (A0)—(A2) and (26) hold, and let (A3)
be satisfied for an integer s > 1. Then there exists a unique solution

ve () Cr(0,T); H " (R"; R™) (90)
r=0

to the symmetric linear hyperbolic system (63), (65) with Q = R".

Consequently, there exists a unique solution vector (u,o,u) to (33)-(37)

of the Willis system in = R" satisfying

s+1

ue ()0, TY; H*' 7 (2; R), ()
r=0

.o € [ C(0.T); H*™(2; R")). (92)
r=0

Proof. First we verify that the matrices A,, A; and B introduced in
Lemma 1, (66)-(68) satisfy the requirements (i)-(iii) of Theorem 1.
Evidently, (i) follows from (A0), (Al) and (A2). The symmetry (ii) is
a direct consequence of (20) and (66), (67). By the uniform positive
definiteness of C, and Sylvester’s criterion, all principal minors of C
are strictly positive. Together with the positivity condition (23) on o,
this yields that A, is uniformly positive definite. In the case 2 = R”,
one can formally set u := 0 in the derivation of the system leading
to u = & and w(x,t) = 0 such that (iv) holds. Finally, due to (88)
and (A0)-(A3), we obtain v, € H*(R"; R™). Hence, (i) to (v) of
Theorem 1 are satisfied, yielding the existence of a unique solution
v EeEW = ﬂi=0 C'([0,T]; H*"(R"; R™)). By (70), it holds e(u), Du,
ou € W, implying u € ();_,C"((0.T]; H**'"@R"; R™) and u €
ﬂj=0 C™1([0,T]; H*"(R"; R™)). This can be subsumed in one formula
(91). With the smoothness (19), (24) of C and S, Eq. (34) yieldsc € W.
With the smoothness (22) of ¢ and (24) of .S, Eq. (35) yields u € W.
This proves (92). []

Remark 3. We can use the embedding
W@ < R

with ps > n, r + @ = s — n/p for « € (0,1), see Brezis (2011,
Theorem 9.12), setting p = 2.
In n = 3 dimensions we obtain the continuity of the embeddings

HARY) & C*1(RY), HIRY) o CMIRY), HA®RY) o C*1(RY). (93)
For uy € H*(R*; R3), uy € H3R?; RY), (92) and (93) yield

u e C0,T]; CH2RY: RY) n C'([0,T]; COVARY; R?)), 94
. o € CO[0,TT; C¥V2R3; RY) n C'([0.TT; H'(R?; R?)), (95)
while for y, € H3(R3; R3), uy € H*(R3; R?) we even obtain
ueCO([0,T1; C*'2(R¥; R*) n ' ([0, T1; €2 (R RY) n €O([0, TT;

0! /2(R3 ‘R3)), (96)
u. o € C°10,T: CH2R3: RY)) n €' ([0, T1: CO/A(R3: RY) 97)

for the unique solution vector (u,o,u) of (33)-(37).
4.2. Existence theory in a bounded domain

Now we turn to the boundary value problem (63)-(65) for a
bounded domain 2 c R”".

Corollary 2 (Classical Dirichlet Boundary Conditions). Let 2 C R" be a
bounded domain and assume

forte[0,T], i,jel.
(98)

supp(ug), supp(p), supp(y; (1)), supp(d;u;(t)) C 2

Let the assumptions (A0)—(A2) and (26) hold and let (A3) be satisfied for
an integer s > 1. Then, Corollary 1 remains true, i.e. there exists a unique
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solution (u,o,u) to (33)-(38) and (90)-(92) hold for a bounded domain
Q. In n = 3 dimensions, if 2 has Lipschitz boundary, for u, € H*(2; R?),
uy € H3(2; R3), it holds

u e C°[0,T1; CM1/2(2; R) n €' ([0, T1; €%/2(2; RYY), (99)

, 6 € CO0,T); C¥V/2(2; R%), e Cl(0,T); H'(2; R%) (100)

for the unique solution vector (u,o,u) of (33)—(38).

Proof. The condition (98) implies supp(d,u), supp(d, ) C £2 and supp(d;u)
C Q. So, by (51), supp((ee;)(®)) C L for r € [0,T] and i € {1,2,3}. Using
(69), (88) and (98), we find

supp(vy), supp(w(®)) c 2  fort € [0,T].

With Theorem 1, this ensures supp (v(t)) C Q for ¢+ € [0,T]. If 0Q2 is
Lipschitz continuous, there is a compact embedding H*(Q) & C%1/2(Q)
for s > 3/2, see Evans (2010, Theorem 6 p.270), leading to (99),
(100). O

Note that (98) implies u = 0 on 942, i.e. classical Dirichlet boundary
conditions.

Now we discuss general, possibly non-regular Dirichlet boundary
conditions. The following analysis is based on the methods developed
in Ohno et al. (1995) and Rauch (1985).

Definition 1. Let v(x) = (v;,...,v,)(x) be the unit outer normal to 2
in x € I' = 0. The boundary matrix is given by

n

Ay 1= 2 Vi A( D).
k=1

(101)

If A, is invertible everywhere on I', the boundary is called non-
characteristic. If A, is not invertible but has constant rank on I', the
boundary is called characteristic of constant multiplicity.

A particular difficulty for the theory of boundary value problems is
the possible loss of derivatives in normal direction. For that reason we
need to introduce new spaces.

Let (O;, x:)1<i<; be a partition of unity of I'. For some 6 > 0, let

Q5 ={x e Q|dist(x,I') > 6}

and let y, be a smooth function with y, = 1 in Q5 and y, = 0
in a neighborhood of I'. Assume Zﬁ:o 72 = 1in Q. Introduce local
coordinates and consider a family of diffeomorphisms (z;),<;; from R”
to R” such that I' corresponds to x; =0 and £ corresponds to

B :={xeR"||x| <1, x, >0}.
We recall that A € C*(2; R") is a tangential vector field if
forallxeI.

{(AX), v(x)) =0 (102)

The following three definitions are taken from Ohno et al. (1995).

Definition 2. Let s > 0 be an integer. We introduce H3}(£2) as the set
of functions f € L?(2; R) with the following property:

Let A, Ay, ..., A; be tangential vector fields and A7, A, ..., A} be
non-tangential vector fields. Then
MAy AN ALf € LRQ) for j+2k <. (103)
The norm in H}(£) is given by
m
1 Wy = WxoS Mgy + 2 2y 1080t F V12 e (104)
i=1 |a|+2k<s !
where fO := (y,f)or7!, @ = (ay,....@,) is a multi-index, |a| :=

a; + - +a,, and

0, 1= (x0) 1052 -+ 9"

tan *
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The key to understanding this definition is the observation that in
local coordinates for any point in a neighborhood of I', x,9,, 9,, ..., 9,
span the tangential vector fields. The normal vector field 9, corresponds
to —0; in local coordinates. The space H!(®) is identical to H! (Q)
introduced in Rauch (1985).

Definition 3. Let s > 0 be an integer. We introduce H () as the set
of all functions f € L?(£2; R) with the following property:

Let Ay, A,, ..., A; be tangential vector fields and let A’l, A’z, ..., A} be
non-tangential vector fields. Then

AjAy - NN AL f € L) for j+2k<s+1and j+k<m.

(105)

The norm on H? (£2) is given by

1
W @) = oS Wipsiy + 20 2 M0G0 S s e (106)

=1 lal42kss+1
|a|+k<s

In (104), (106), different choices of (O}, ;)o<i<; and (7;),<;<; lead
to equivalent norms. For any s > 0, there is a continuous embedding
H*(Q) < H} (Q2) < H(Q). Therefore, H}(22) and H] () may be
regarded as subspaces of H*(£2).

Definition 4. For an integer s > 0, let X*([0,T]; 2) be the space of
functions f with
o f €C(0.T; H" (), 0<r<s.

Here, 0/ f, 0 < r < s are the derivatives of f in the sense of distributions.
The space X*([0,T]; £2) is a Banach space with the norm

I xsqoirya) = max /@I, (107)
WFON 2= D510, f O emr - (108)
r=0
Analogously, let X([0,T]; ) be the space of functions f with
9 f €C0,T]; HI(2), 0<r<s.
The space X:([0,T]; ) is a Banach space with the norm
2 o
W o = s, WSOl (109)
N
WSO, == X 10 O psr - (110
r=0

By W}(0,T; Q) we denote the space of functions f such that

2 . §—,
9/ f € L(0,T; H,”"(£2)), 0<r<s.

For vector-valued functions f = (fy, ..., f,,) with f; € X*([0,T]; 2) for
1 <i < mwewrite f € X°([0,T]; )" and W (0,T; 2)" is defined
analogously.

The following theorem is a reformulation of Ohno et al. (1995, The-
orem 2.1) which also investigates certain quasi-linear problems where
Agy, Ay, ..., A, may depend on a further function. Theorem 2.1 in Ohno
et al. (1995) is an improved version of Theorem 10 in Rauch (1985)
which requires slightly stronger assumptions, only proves tangential
regularity, and does not prove uniqueness of the solution. Note that
several assumptions of Theorem 10 in Rauch (1985) are not formulated
explicitly, but are mentioned elsewhere in the article.

Theorem 2. Let s > 1 be an integer. Then an initial boundary value
problem (63)—(65) has a unique solution v € X$([0,T]; £2)" provided the
following conditions are satisfied:

(i) 2 c R" is a bounded open set with boundary I' of class C*.
(i) M(x) is a real matrix-valued function with M € C®(I"; R™>m),
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(iii) Ai(x,1) € R™™ 0 < k < n are real symmetric matrices for every
(x,t) € 2 X [0,T]. The matrix Ay(x,1) is positive definite for (x,1) €
aQx[0,T]

(iv) The dimension of N (x) := ker A,y and the dimension of ker M (x)
are constant on each component of I' and it holds 0 < dim N'(x) < m.

(v) ker M(x) is a maximal non-negative subspace of A, for x € I'.

(vi) Itholds w € W}(0,T; Q)", /w(0) € H*'~(Q; R™) for 0 < r < s—1
and the initial values fulfill vy € H*(2; R™).

(vii) The data w, v, fulfill the compatibility conditions of order s — 1 for
the initial boundary value problem (63)—(65).

Then the solution v obeys for positive constants c,, c, the estimate

0O < er (Neollzsiarmm + M),y )

t
+ cz/ e2w(@)lly, dr, ¢t €[0,TI. (111)
0
Remark 4. The condition (v) in Theorem 2 means that
(A, (x,0)z,2) >0 for all (x,t) € I' X [0,T1], z € ker M(x) (112)

and ker M as a subspace of C™ cannot be enlarged while (112) remains
valid.

The compatibility conditions on w and v, up to order s — 1 are
canonical as in (31). One takes spatial derivatives up to order s — 1
of the system, resolves 0;’ v for 0 < p < s — 1 and evaluates the result
at t+ = 0. In detail, the procedure is as follows, cf. Ohno et al. (1995,
p.169). For p =0, set vy := vy. For p=1,2,...,s— 1, set iteratively

p—1
Vo 1= 20 (P71) GOy oy + 077 (AF'w)(0)  in &,
i=0
where
n
Go(t) := = Y A Ao, — A B,
k=1
n
G,(t) = — Za;’(Ag‘Ak)ak - di(A;' B), i>1.

k=1

Then, the compatibility conditions up to order s — 1 are

My, =0 on[for0<p<s—1. (113)

Corollary 3. Letn =3 and 2 c R? be a bounded open set with boundary
T of class C*™. Assume (26) and let (A0)—-(A4) be satisfied for an integer
s > 1. Let uy, u satisfy the compatibility conditions up to order s+ 1. Let C,
be defined by (61) and assume that

dimker(C,) = const > 0 on every component of I. (114

Then there exists a unique solution (u,o,u) of the Willis system (33)-(37)
which satisfies

s+1

ue (€0, T); HIH'7(Q; R™), (115)
r=0
o€ [ C(O0,T); HI(2; R")). (116)

r=0

Proof. We need to validate (i)-(vii) of Theorem 2 for n = 3. Clearly (i)
holds by assumption and (ii) follows from (A0) and (69). Condition (iii)
follows as in Corollary 1 from Lemma 1, the symmetry (20) and the
positivity condition (23) on o.

The condition v, € H*(£2; R™) in (vi) follows from (A0)-(A3). By
(29) and (51) the condition on 0]w(0) in (vi) is ensured. Finally, due
to (30), the remaining condition w € W;(0,T; )" from (vi) is also
satisfied.
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Writing C; := vl(C}c + v2(Ci + v3(Ci for k = 1,2,3, due to (67) and
(101), we have

0., 0 0 -C; 0
0 ;0 . 0 .G, 0

A= 0 10 1 0 | -Cy 0 € RISXI3, 117)
O GG 0 0 .

0 1 0 1 0 1 0 ' (v+wn+yl

Let z := (z!,2%,...,2°)T € R be a vector consisting of blocks z¢ € R?
for k =1,...,5. Evaluating A,z = 0 leads to z* = z> = 0 and

(CYzl + (C;z2 + (ng3 =0eR?
which is equivalent to z* = z5 = 0 and
(z', 2%, 27T eker(C,) (118)
with C, € R defined in (61). So we obtain
ker A, ={z =@ ... eR? | #=2=0, (227 e ker((Cv(x))},
xelrl.
(119)

This demonstrates that 0 < dimker A
find

y <m for x € I'. Due to (69), we

v(x

ker M(x) = {z =@, ) eRY | S =0, (2,222 e ker((Cv(x))}, xerl.
(120)

With Assumption (114), this implies (iv) of Theorem 2.
For a vector z = (z!,...,2°)T € ker(M(x)), the condition (112)
becomes with v = v(x)

(Ayz,z) = — <(C‘1/Z4, zly - ((C;z4, z%) — ((C§Z4, z3)

—(Cyz', 2ty —(Cy2% ) — (Cy2 2y > 0.
Due to the symmetry of C}, this is equivalent to
(Ciz' + Cy2 + Cy2% 2% <.

3

Since z* for z = (z', 2%, 23, 2%, 2%) € ker(M) is arbitrary, we must have

(C‘{Zl + (C;z2 + (ngz’ =0 or

v ((C} 2! +(C;z2 +(C;z3)+v2((C%z1 +(C§zz+(C§z3)+v3 ((C?z1 +(ngz+(C§z3) =0.
(121)

This last condition (121) is equivalent to C,(z',2z2,2z®) = 0 which
holds due to (120). Geometrically, Eq. (121) ensures that all tangen-
tial derivatives of & vanish along I'. In summary, (112) holds with
equality and enlarging ker(M) violates (121). This proves the remaining
condition (v) in Theorem 2. [

5. Concluding remarks

In this article, three existence and uniqueness results for (weak)
solutions to a system of partial differential equations related to the
Willis model have been derived, both for the whole space case and for
bounded domains. The investigated system (33)-(35) differs from the
original Willis equations in that no explicit form of S, e.g. no convo-
lution expression, is postulated. In addition to the natural symmetry
condition (25) on S which guarantees the symmetry of the Cauchy
stress tensor o, a second symmetry condition (26) has to be imposed
for the analysis. This condition appears to be necessary mathematically
and admits to write (33)-(35) as a linear symmetric hyperbolic system
of first order. Combined, (25) and (26) impose strong restrictions on S:
the third-order Willis coupling tensor must be totally symmetric. It has
to be checked experimentally whether these conditions are satisfied for
a real-world material. At this point we have no rigorous physical justifi-
cation for (26). We refer to Muhlestein et al. (2016) for a discussion of
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necessary conditions on the quantities of the Willis system in order to
have a physically correct model. Since inhomogeneous dynamic linear
elasticity constitutes a linear symmetric hyperbolic system, Hughes and
Marsden (1977), Sfyris (2024), so should be any homogenized problem
based on the former, here the Willis equations. The condition (26)
seems to be a welcome novel restriction on the Willis coupling tensor
S introduced by this requirement.

In summary, with the additional symmetry condition (26), after
establishing suitable structural assumptions, mostly on S and o, the
existence and uniqueness of a (weak) solution follows from established
existence results for linear symmetric first-order hyperbolic systems. If
the initial and boundary data is regular enough, even a unique classical
solution is obtained. Finally, in bounded domains, the condition (114)
is essential for the existence theory. Its validity depends crucially on
material properties.
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