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 A B S T R A C T

The existence and uniqueness of weak solutions is shown for a system related to the Willis model of 
elastodynamics. Both the whole space case and the case of a bounded smooth domain are studied. To this end 
the equations are reformulated as a linear symmetric hyperbolic system of first order and the existing theory 
for such systems is applied. If the initial and boundary data is regular enough, classical solutions are obtained. 
The possibility to transform the problem to a linear symmetric hyperbolic system hinges on a new symmetry 
condition on the Willis coupling tensor S, not yet considered in the literature. This condition demands that 𝑆
is a totally symmetric third-order tensor.
. The Willis model in elastomechanics

The Willis model, see Willis (1981, 2009, 2011) and Milton and 
illis (2007), is an extension of classical elastodynamics with the aim 
o better reproduce wave propagation in metamaterials. The latter 
opic is of high current interest, see, e.g., Rizzi et al. (2024), Gattin 
t al. (2025). In fact, metamaterials (or architected materials) show 
ncommon dispersion relations that are impossible to predict with 
lassical linear elastodynamics. In the Willis type models, the balance 
f linear momentum is modified, together with a coupling equation. 
he system reads 
iv 𝜎 = 𝜇̇,

𝜎 = Ceff .symD𝑢 + 𝑆eff 𝑢̇,

𝜇 = 𝑆𝑇
eff .symD𝑢 + 𝜚eff 𝑢̇.

(1)

oreover, Ceff ∶ Sym(3) → Sym(3), 𝑆eff ∶ R3 → Sym(3) ⊂ R3×3, 𝑆𝑇
eff ∶

ym(3) → R3 have a formal character, but should be determined by 
ome ‘homogenization’ procedure. For 𝑆eff = 0, we have just 𝜇̇ = 𝜚eff 𝑢̈. 
he (symmetric) Cauchy stress tensor is denoted by 𝜎, the displacement 
s 𝑢 ∶ 𝛺 ⊂ R3 → R3 and 𝜇 ∶ 𝛺 ⊂ R3 → R3 is the linear momentum 
ensity.
In index notation, the system (1) is equivalent to (using summation 

onvention)

𝑗𝜎𝑖𝑗 = 𝜇̇𝑖, (2)

I This article is part of a Special issue entitled: ‘Ortiz70’ published in Mechanics of Materials.
∗ Corresponding author.
E-mail addresses: t.blesgen@th-bingen.de (T. Blesgen), patrizio.neff@uni-due.de (P. Neff).

1 Both authors contributed equally to the present article.

𝜎𝑖𝑗 = (Ceff )𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 + (𝑆eff )𝑖𝑗𝑘 𝑢̇𝑘, (3)

𝜇𝑖 = (𝑆eff )𝑘𝑙𝑖 𝜀𝑘𝑙 + 𝜚eff 𝑢̇𝑖. (4)

We show existence and uniqueness of (weak) solutions under the two 
symmetry assumptions on the Willis coupling tensor
𝑆𝑖𝑗𝑘 = 𝑆𝑗𝑖𝑘 for 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛, (5)

𝑆𝑖𝑗𝑘 = 𝑆𝑗𝑘𝑖 for 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛. (6)

While the first symmetry (5) is naturally associated to the symmetry 
of the Cauchy stress 𝜎, the second condition (6) appears to be new 
and is related to the possibility to transform the problem to a linear 
symmetric hyperbolic system. Combined, the conditions (5) and (6) 
imply that 𝑆 is a totally symmetric third-order tensor, having at most 
10 independent coefficients in dimension 3, see Itin and Reches (2025). 
Due to the term (𝑆𝑇

eff )𝑙𝑖𝑘 = (𝑆eff )𝑘𝑙𝑖 in (4), the material exhibits reci-
procity, see Muhlestein et al. (2016), independently of the symmetry 
assumption (6).

We would like to thank Prof. G. Rosi (University Paris – Est Créteil) 
for sharing the following observation.

Remark 1.  Assume that 𝜚, C𝑖𝑗𝑘𝑙 and 𝑆𝑖𝑗𝑘 are constants independent 
of (𝑥, 𝑡). Differentiating (3) w.r.t. 𝑗 and (4) w.r.t. 𝑡, we obtain for 𝑖 ∈
{1, 2,… , 𝑛}

C𝑖𝑗𝑘𝑙 𝜕𝑗𝜕𝑘𝑢𝑙 + 𝑆𝑖𝑗𝑘 𝜕𝑡𝜕𝑗𝑢𝑘 = 𝜕𝑗𝜎𝑖𝑗 , (7)
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𝑆𝑗𝑘𝑖 𝜕𝑡𝜕𝑗𝑢𝑘 + 𝜚 𝜕2𝑡 𝑢𝑖 = 𝜕𝑡𝜇𝑖. (8)

Due to Eq. (2), the right hand sides of (7), (8) are equal such that 

𝜚 𝜕2𝑡 𝑢𝑖 = C𝑖𝑗𝑘𝑙 𝜕𝑗𝜕𝑘𝑢𝑙 + (𝑆𝑖𝑗𝑘 − 𝑆𝑗𝑘𝑖) 𝜕𝑡𝜕𝑗𝑢𝑘. (9)

If 𝑆 satisfies the symmetry (6), the term in brackets on the right disap-
pears and Eq. (9) simplifies to the common linear elasticity equation

𝜚 𝜕2𝑡 𝑢𝑖 = C𝑖𝑗𝑘𝑙 𝜕𝑗𝜕𝑘𝑢𝑙

showing no Willis coupling. Hence, total symmetry of 𝑆 excludes Willis 
coupling for constant coefficients. However, in general, the coupling 
tensor 𝑆 is space and time dependent in which case the studied Willis 
problem is non-trivial in the sense that it departs considerably from 
classical linear elasticity. In addition, even for constant 𝜚, C and 𝑆, the 
Willis coupling does not disappear on 𝜕𝛺 (related to the normal compo-
nent 𝜎𝑖𝑗𝑛𝑗 of the stress). Also note that for materials whose underlying 
microstructure shows centro-symmetry (inversion symmetry), the third-
order Willis coupling tensor 𝑆 must vanish. This is not at odds with 
assuming that 𝑆 is totally symmetric as both conditions are different.

1.1. Background for the Willis approach

Unusual dynamic properties of certain classes of composite ma-
terials (architected materials, metamaterials) necessitate to introduce 
new systems of equations, extending classical linear elasticity. One 
direction is to explore generalized continua, see. e.g. Madeo et al. 
(2016), Rizzi et al. (2024), with additional kinematic descriptor fields. 
Another direction is to change the structure of the equations. In the 
latter case, the Willis model aims to provide effective constitutive 
equations for ensemble averages of quantities of interest, i.e. Cauchy 
stress 𝜎 versus displacement 𝑢 or velocity 𝑣 = 𝑢̇. Hence, the usefulness 
of the Willis approach depends crucially on the assumption that an 
ensemble average is a reasonable descriptor of the given (periodic) 
microstructure of the medium.

Let the fully resolved microstructure of the medium obey classical 
linear elasticity, i.e. 

Div 𝜎 = 𝜇̇ = d
d𝑡
(𝜚 𝑢̇) (10)

together with the constitutive law 

𝜎 = C(𝑥).𝜀, 𝜀 = symD𝑢. (11)

Ensemble averaging (10) we obtain

Div ⟨𝜎⟩ = ⟨𝜇̇⟩

for the averaged quantities ⟨𝜎⟩ and ⟨𝜇̇⟩. The infinitesimal strain tensor 
is likewise ensemble averaged as 

⟨𝜀⟩ = symD⟨𝑢⟩. (12)

However, ensemble averaging the constitute law (11)1 is not directly 
achievable since 

⟨𝜎⟩ = ⟨C(𝑥).𝜀⟩ ≠ ⟨C(𝑥)⟩.⟨𝜀⟩ (13)

and ⟨𝜇⟩ ≠ ⟨𝜚⟩ ⋅ ⟨𝑢̇⟩ because in general the product of averages differs 
from the average of the product. Therefore, the Willis equations provide 
simple constitutive closure relations in the form 
⟨𝜎⟩ ∶= Ceff .⟨𝜀⟩ + 𝑆eff .⟨𝑢̇⟩,

⟨𝜇⟩ ∶= 𝑆𝑇
eff .⟨𝜀⟩ + 𝜚eff ⟨𝑢̇⟩,

(14)

where Ceff , 𝑆eff , 𝜚eff  must be determined in an additional step. In the 
following, we skip the ⟨⋅⟩-notation.
2 
1.2. Invariance considerations

If we adhere to the idea that the Willis system (1) should be the 
result of some homogenization based on classical linear elastodynamics, 
then it is natural to require that solutions of (1) should satisfy the same 
invariance conditions as are satisfied by classic linear elastodynamics 
Div 𝜎 = 𝜚 𝜕𝑡𝑡𝑢, 𝜎 = C.symD𝑢. (15)

It is easy to see that (15) is infinitesimal Galilean-invariant, i.e. if 𝑢 is a 
solution, so is 
𝑢(𝑥) ↦ 𝑢(𝑥) + 𝐴𝑥 + 𝑏(𝑡), 𝑏

′′
(𝑡) = 0, (16)

where 𝐴 ∈ so(3) and 𝑡 ↦ 𝑏(𝑡) ∈ R3. A direct check reveals that the 
system (1) likewise admits the invariance (16).2

However, the system (15) also admits a lesser-known further invari-
ance condition, the so-called extended infinitesimal Galilean invariance

𝑢(𝑥) ↦ 𝑢(𝑥) + 𝐴(𝑡)𝑥 + 𝑏(𝑡), 𝑏
′′
(𝑡) = 0, 𝐴

′′
(𝑡) = 0. (17)

This invariance condition has no immediate counterpart in classical 
nonlinear elasto-dynamics but appears as possibility due to the loss 
of information inherent in the linearization process of which (15) is 
the result. Be that as it may, it must be observed that the linear Willis 
system is not invariant w.r.t. (17) if 𝑆eff ≠ 0. Thus, whatever process 
of homogenization is applied, the simplified system (1) cannot entirely 
capture all effects that are possible in a fully dynamic calculation of 
a completely resolved microstructure. Nevertheless, we find it worth-
while to look at the mathematical structure presented by the system (1). 
To the best of our knowledge, no local or global existence proof has 
yet been given. Due to the linearity, however, this should be possible 
(but see Lewy, 1957) and indeed, based on the general theory of linear 
symmetric hyperbolic systems of first order, the abstract Willis system 
can be cast into a format that permits an existence result.

2. Prerequisites and assumptions

Let 𝐼 ∶= {1, 2,… , 𝑛} and 𝛺 ⊂ R𝑛 be a domain, 0 < 𝑇 ≤ ∞ a fixed 
time, 𝛺𝑇 ∶= 𝛺 × (0, 𝑇 ) and  ∶= 𝛺 × [0, 𝑇 ]. If 𝛺 is bounded we write 
𝛴𝑇 ∶= 𝜕𝛺 × (0, 𝑇 ).

Throughout, we shall employ the following notations. We write 𝜕𝑘
shortly for 𝜕

𝜕𝑥𝑘
 and ‖𝑀‖ ∶= tr(𝑀𝑇𝑀) is the Frobenius norm, where 

tr(𝑀) ∶=
∑

𝑘∈𝐼 𝑀𝑘𝑘 is the trace and 𝑀𝑇  the transpose of 𝑀 for 𝑀 ∈
R𝑛×𝑛. We write ⟨𝑣,𝑤⟩ ∶=

∑

𝑘∈𝐼 𝑣𝑘𝑤𝑘 for the Euclidean inner product 
of two vectors 𝑣,𝑤 ∈ R𝑛 and C.𝜀 ∶= C𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 for the application of a 
fourth-order tensor C to a second-order tensor 𝜀. Let 𝑠 ∈ N be a fixed 
integer. By 𝑊 𝑠,𝑝(𝛺) we denote the Sobolev space of 𝑠-times weakly 
differentiable functions in 𝐿𝑝(𝛺) and 𝐻𝑠(𝛺) ≡ 𝑊 𝑠,2(𝛺) is a Hilbert 
space. By 𝐶𝑚

𝑏 (𝑋) we denote the space of 𝑚-times bounded differentiable 
functions of a Banach space 𝑋 to R. By Sym(𝑛) we denote the set of 
symmetric real 𝑛 × 𝑛 matrices.

For (𝑥, 𝑡) ∈ 𝛺𝑇 , let 𝑢 = 𝑢(𝑥, 𝑡) = (𝑢𝑖(𝑥, 𝑡))𝑖∈𝐼  denote the displace-
ment, 𝜇 = 𝜇(𝑥, 𝑡) = (𝜇𝑖(𝑥, 𝑡))𝑖∈𝐼  the momentum density vector, 𝜎 =
𝜎(𝑥, 𝑡) = (𝜎𝑖𝑗 )𝑖,𝑗∈𝐼  the symmetric Cauchy stress tensor; 𝑆 = 𝑆(𝑥, 𝑡) =
(𝑆𝑖𝑗𝑘(𝑥, 𝑡))𝑖,𝑗,𝑘∈𝐼  is the Willis coupling tensor, 𝜕𝑡𝑢 is the particle velocity.

One model assumption is that the strain be small. By 𝜀 = 𝜀(𝑢) ∶=
symD𝑢 we denote the linearized strain tensor, i.e. 

𝜀𝑘𝑙 ∶=
1
2

(

𝜕𝑘𝑢𝑙 + 𝜕𝑙𝑢𝑘
)

, 𝑘, 𝑙 ∈ 𝐼. (18)

For the existence proofs below we make the following assumptions on 
𝜚, C, 𝑆, 𝑢 and 𝜇0.

2 It is clear that an ensemble average (statistical average) transforms 
likewise.
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(A0) The elasticity tensor C is a fourth-order tensor with (C = C𝑖𝑗𝑘𝑙
(𝑥, 𝑡))𝑖,𝑗,𝑘,𝑙∈𝐼  possibly depending on (𝑥, 𝑡) to account for complicated 
material behavior. We assume 
C𝑖𝑗𝑘𝑙(𝑥, 𝑡) ∈ 𝐶∞

𝑏 (𝛺 × [0, 𝑇 ]). (19)

The tensor C satisfies the major and minor symmetry relations
C𝑖𝑗𝑘𝑙(𝑥, 𝑡) = C𝑗𝑖𝑘𝑙(𝑥, 𝑡) = C𝑖𝑗𝑙𝑘(𝑥, 𝑡) = C𝑘𝑙𝑖𝑗 (𝑥, 𝑡)

for all 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝐼, (𝑥, 𝑡) ∈ . (20)

We assume that C is uniformly positive definite. This means there exists 
a constant 𝑐1 > 0 such that for all (𝑥, 𝑡) ∈ 
⟨

C(𝑥, 𝑡).𝜀, 𝜀
⟩

≥ 𝑐1‖𝜀‖
2 for all 𝜀 ∈ Sym(𝑛). (21)

(A1) The mass density 𝜚 = 𝜚(𝑥, 𝑡) of the material is given and satisfies 
𝜚, 𝜕𝑡𝜚 ∈ 𝐶∞

𝑏 (𝛺 × [0, 𝑇 ]). (22)

There exists a constant 𝑚0 > 0 such that 
𝜚(𝑥, 𝑡) ≥ 𝑚0 for all (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ]. (23)

(A2) The third-order Willis coupling tensor 𝑆 = 𝑆𝑖𝑘𝑙(𝑥, 𝑡) satisfies 
𝑆𝑖𝑘𝑙 , 𝜕𝑡𝑆𝑖𝑘𝑙 ∈ 𝐶∞

𝑏 (𝛺 × [0, 𝑇 ]) for all 𝑖, 𝑘, 𝑙 ∈ 𝐼. (24)

The tensor 𝑆 satisfies the symmetry relations
𝑆𝑖𝑗𝑘(𝑥, 𝑡) = 𝑆𝑗𝑖𝑘(𝑥, 𝑡) for all 𝑖, 𝑗, 𝑘 ∈ 𝐼, (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ], (25)

𝑆𝑖𝑗𝑘(𝑥, 𝑡) = 𝑆𝑗𝑘𝑖(𝑥, 𝑡) for all 𝑖, 𝑗, 𝑘 ∈ 𝐼, (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ]. (26)

(A3) The initial data 𝑢0 and 𝜇0 satisfy for an integer 𝑠 ≥ 1

𝑢0 ∈ 𝐻𝑠+1(𝛺; R𝑛), (27)

𝜇0 ∈ 𝐻𝑠(𝛺; R𝑛). (28)

(A4) The boundary function 𝑢 can be extended to a function on 𝛺×[0, 𝑇 ]
which satisfies
𝜕𝑟𝑡 𝑢(⋅, 0) ∈ 𝐻𝑠+1−𝑟(𝛺; R𝑛) for 0 ≤ 𝑟 ≤ 𝑠 + 1, (29)

𝜕𝑟𝑡 𝑢 ∈ 𝐿2(0, 𝑇 ; 𝐻𝑠+2−𝑟(𝛺; R𝑛)) for 0 ≤ 𝑟 ≤ 𝑠 + 2. (30)

We write 𝜚0(𝑥) ∶= 𝜚(𝑥, 0) for the (given) density at time 𝑡 = 0. The 
condition (25) ensures the symmetry of the Cauchy stress tensor 𝜎. The 
boundary data 𝑢 in (A4) is introduced below in (40). We assume the 
compatibility of initial and boundary data, i.e. 
𝑢(⋅, 0) = 𝑢0 in 𝛺. (31)

Due to (20), for 𝑛 = 3, only 36 of the 81 entries of C are indepen-
dent. As is well known, see Sommerfeld (1964, pp. 268–269), due to 
conservation of energy, this reduces further and at most 21 entries may 
be independent. The material symmetry relation allows to reduce this 
number even more, see, e.g., Mehrabadi and Cowin (1990), Vannucci 
(2018).

Using the symmetries (20), we recover the identity

(C(𝑥, 𝑡).𝜀)𝑖𝑗 = C𝑖𝑗𝑘𝑙(𝑥, 𝑡)
1
2
(

𝜕𝑘𝑢𝑙 + 𝜕𝑙𝑢𝑘
)

= 1
2
C𝑖𝑗𝑘𝑙(𝑥, 𝑡) 𝜕𝑘𝑢𝑙 +

1
2
C𝑖𝑗𝑘𝑙(𝑥, 𝑡) 𝜕𝑙𝑢𝑘

= 1
2
(

C𝑖𝑗𝑘𝑙(𝑥, 𝑡) + C𝑖𝑗𝑙𝑘(𝑥, 𝑡)
)

𝜕𝑘𝑢𝑙

= C𝑖𝑗𝑘𝑙(𝑥, 𝑡) 𝜕𝑘𝑢𝑙 = (C(𝑥, 𝑡).D𝑢)𝑖𝑗 , 𝑖, 𝑗 ∈ 𝐼, (𝑥, 𝑡) ∈ .

(32)
Subsequently we analyze the following system of equations re-

lated to the Willis model. Find the solution vector (𝜇, 𝜎, 𝑢) with 𝜇 ∈
𝐿2(0; 𝑇 ;𝐿2(𝛺; R𝑛)), 𝑢 ∈ 𝐿2(0, 𝑇 ; 𝐻1(𝛺; R𝑛)), 𝜎 ∈ 𝐿2(0; 𝑇 ; 𝐻1(𝛺; R𝑛×𝑛))
solving in 𝛺𝑇

𝜕𝑡𝜇𝑖 = 𝜕𝑗𝜎𝑖𝑗 , 𝑖 ∈ 𝐼, (33)

𝑆 𝜕 𝑢 = 𝜎 − C 𝜀 , 𝑖, 𝑗 ∈ 𝐼, (34)
𝑖𝑗𝑘 𝑡 𝑘 𝑖𝑗 𝑖𝑗𝑘𝑙 𝑘𝑙

3 
𝜚 𝜕𝑡𝑢𝑖 = 𝜇𝑖 − 𝑆𝑘𝑙𝑖 𝜀𝑘𝑙 , 𝑖 ∈ 𝐼 (35)

subject to the initial and boundary conditions

𝑢(⋅, 0) = 𝑢0, in 𝛺, (36)

𝜇(⋅, 0) = 𝜇0, in 𝛺, (37)

𝑢 = 𝑢, on 𝜕𝛺 × [0, 𝑇 ] (38)

for given initial values 𝑢0 ∈ 𝐻1,2(𝛺) and 𝜇0 ∈ 𝐿2(𝛺). In (32), (33)–(35) 
and below, we utilize the summation convention and implicitly sum 
over repeated indices in 𝐼 unless stated otherwise. In the original Willis 
model (Willis, 1985), formulated in 𝑛 = 3 space dimensions, 𝑆 is 
defined by a convolution. In this article, we do not assume any specific 
form of 𝑆, but consider generic tensors 𝑆 depending on (𝑥, 𝑡).

Remark 2.  For 𝑆 = 𝟎, (33)–(35) constitute the classical equations of 
motion for the propagation of waves in solids and from (34) we recover
Hooke’s law 

𝜎 = C.𝜀. (39)

3. Reformulation of the problem

We assume that the boundary data 𝑢 in (38) can be extended to a 
function 𝑢 ∈ 𝐻𝑠+2(𝛺 × [0, 𝑇 ]; R𝑛). We split the deformation vector 𝑢 by 
writing 

𝑢(𝑥, 𝑡) ∶= 𝑢̃(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) (40)

such that 𝑢̃ = 0 on 𝜕𝛺 × [0, 𝑇 ]. Due to compatibility of initial and 
boundary data, 𝑢(⋅, 0) − 𝑢0 has zero trace on 𝜕𝛺. Analogous to the 
definition of 𝜀 = 𝜀(𝑢) in (18), we set

𝜀 ∶= 𝜀(𝑢̃) ∈ Sym(𝑛), 𝜀 ∶= 𝜀(𝑢) ∈ Sym(𝑛).

With these notations, (33)–(35) rewrites as the following system in 𝛺𝑇

𝜕𝑡𝜇𝑖 = 𝜕𝑗𝜎𝑖𝑗 , 𝑖 ∈ 𝐼, (41)

𝑆𝑖𝑗𝑘 𝜕𝑡(𝑢̃𝑘 + 𝑢𝑘) = 𝜎𝑖𝑗 − C𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙 + 𝜀𝑘𝑙), 𝑖, 𝑗 ∈ 𝐼, (42)

𝜚 𝜕𝑡(𝑢̃𝑖 + 𝑢𝑖) = 𝜇𝑖 − 𝑆𝑘𝑙𝑖 (𝜀𝑘𝑙 + 𝜀𝑘𝑙), 𝑖 ∈ 𝐼 (43)

subject to the initial and boundary conditions (36)–(38).
We reformulate (41)–(43) as a linear hyperbolic system. Using (23), 

Eqn. (43) becomes 

𝜕𝑡(𝑢̃𝑚 + 𝑢𝑚) = 1
𝜚
𝜇𝑚 − 1

𝜚
𝑆𝑘𝑙𝑚

(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

, 𝑚 ∈ 𝐼. (44)

Hence

𝜎𝑖𝑗
(42)
= C𝑖𝑗𝑘𝑙

(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+ 𝑆𝑖𝑗𝑚 𝜕𝑡
(

𝑢̃𝑚 + 𝑢𝑚
)

(44)
=

(

C𝑖𝑗𝑘𝑙 −
1
𝜚
𝑆𝑖𝑗𝑚𝑆𝑘𝑙𝑚

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ 𝐻𝑖𝑗𝑘𝑙

(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+ 1
𝜚
𝑆𝑖𝑗𝑘 𝜇𝑘, 𝑖, 𝑗 ∈ 𝐼. (45)

Plugging (45) into (41), we obtain 

𝜕𝑡𝜇𝑖 = 𝜕𝑗
(

𝐻𝑖𝑗𝑘𝑙
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+ 1
𝜚
𝑆𝑖𝑗𝑘 𝜇𝑘

)

, 𝑖 ∈ 𝐼. (46)

By (43), 𝜇𝑖 = 𝜚 𝜕𝑡
(

𝑢̃𝑖+𝑢𝑖
)

+ 𝑆𝑘𝑙𝑖
(

𝜀𝑘𝑙+𝜀𝑘𝑙
)

. Using this relationship on the 
left of (46) yields 

𝜕𝑡
(

𝜚 𝜕𝑡(𝑢̃𝑖 + 𝑢𝑖) + 𝑆𝑘𝑙𝑖 (𝜀𝑘𝑙 + 𝜀𝑘𝑙)
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 𝜕𝑗𝐻𝑖𝑗𝑘𝑙
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+𝐻𝑖𝑗𝑘𝑙 𝜕𝑗
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+ 𝜕𝑗 (𝜚−1)𝑆𝑖𝑗𝑘 𝜇𝑘
⁓⁓⁓⁓⁓⁓⁓⁓

+ 1
𝜚
𝜕𝑗𝑆𝑖𝑗𝑘 𝜇𝑘 +

1
𝜚
𝑆𝑖𝑗𝑘 𝜕𝑗𝜇𝑘.

Plugging in 𝜇𝑘 = 𝜚 𝜕𝑡(𝑢̃𝑘 + 𝑢𝑘) + 𝑆𝑚𝑛𝑘
(

𝜀𝑚𝑛 + 𝜀𝑚𝑛
) on the right together 

with the definition (45) of 𝐻 , we obtain
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𝜚 𝜕𝑡𝑡𝑢̃𝑖. . . . . . = −𝜕𝑗 (𝜚−1)𝑆𝑖𝑗𝑚𝑆𝑘𝑙𝑚
(

𝜀𝑘𝑙+𝜀𝑘𝑙
)

− 1
𝜚
𝜕𝑗𝑆𝑖𝑗𝑚𝑆𝑘𝑙𝑚

(

𝜀𝑘𝑙+𝜀𝑘𝑙
)

−1
𝜚
𝑆𝑖𝑗𝑚𝜕𝑗𝑆𝑘𝑙𝑚

(

𝜀𝑘𝑙+𝜀𝑘𝑙
)

+ 𝜕𝑗C𝑖𝑗𝑘𝑙
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+
(

C𝑖𝑗𝑘𝑙 −
1
𝜚
𝑆𝑖𝑗𝑚𝑆𝑘𝑙𝑚

)

𝜕𝑗
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+ 𝜚 𝜕𝑗 (𝜚−1)𝑆𝑖𝑗𝑘 𝜕𝑡
(

𝑢̃𝑘 + 𝑢𝑘
)

+ 𝜕𝑗 (𝜚−1)𝑆𝑖𝑗𝑘𝑆𝑚𝑛𝑘
(

𝜀𝑚𝑛 + 𝜀𝑚𝑛
)

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓

+𝜕𝑗𝑆𝑖𝑗𝑘 𝜕𝑡
(

𝑢̃𝑘 + 𝑢𝑘
)

+ 1
𝜚
𝜕𝑗𝑆𝑖𝑗𝑘𝑆𝑚𝑛𝑘

(

𝜀𝑚𝑛 + 𝜀𝑚𝑛
)

(47)

+ 1
𝜚
𝑆𝑖𝑗𝑘 𝜕𝑗𝜚 𝜕𝑡

(

𝑢̃𝑘 + 𝑢𝑘
)

+ 𝑆𝑖𝑗𝑘 𝜕𝑗
(

𝜕𝑡𝑢̃𝑘 + 𝜕𝑡𝑢𝑘
)

+ 1
𝜚
𝑆𝑖𝑗𝑘𝜕𝑗𝑆𝑚𝑛𝑘

(

𝜀𝑚𝑛 + 𝜀𝑚𝑛
)

+ 1
𝜚
𝑆𝑖𝑗𝑘𝑆𝑚𝑛𝑘 𝜕𝑗

(

𝜀𝑚𝑛 + 𝜀𝑚𝑛
)

− 𝜕𝑡𝑆𝑘𝑙𝑖
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

− 𝑆𝑘𝑙𝑖 𝜕𝑡
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

− 𝜕𝑡𝜚 𝜕𝑡
(

𝑢̃𝑖 + 𝑢𝑖
)

− 𝜚 𝜕𝑡𝑡𝑢𝑖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 𝑖 ∈ 𝐼.

Most terms in (47) cancel out. After simplifications, we are left with
𝜚 𝜕𝑡𝑡𝑢̃𝑖 = C𝑖𝑗𝑘𝑙 𝜕𝑗

(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

+ 𝜕𝑗𝑆𝑖𝑗𝑘 𝜕𝑡
(

𝑢̃𝑘 + 𝑢𝑘
)

+ (𝑆𝑖𝑗𝑘 − 𝑆𝑗𝑘𝑖) 𝜕𝑡𝜕𝑗
(

𝑢̃𝑘 + 𝑢𝑘
)

+ 𝜕𝑗C𝑖𝑗𝑘𝑙
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

− 𝜕𝑡𝑆𝑘𝑙𝑖
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

− 𝜕𝑡𝜚
(

𝜕𝑡𝑢̃𝑖 + 𝜕𝑡𝑢𝑖
)

− 𝜚 𝜕𝑡𝑡𝑢𝑖.

(48)
With (32), we have

C𝑖𝑗𝑘𝑙 𝜕𝑗
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

= C𝑖𝑗𝑘𝑙 𝜕𝑗
1
2
(

𝜕𝑘𝑢̃𝑙 + 𝜕𝑙 𝑢̃𝑘 + 𝜕𝑘𝑢𝑙 + 𝜕𝑙𝑢𝑘
)

= C𝑖𝑗𝑘𝑙 𝜕𝑗𝜕𝑘
(

𝑢̃𝑙 + 𝑢𝑙
)

.

Similarly, as a consequence of (25), the third term on the right of (48) 
disappears, and
𝜕𝑗C𝑖𝑗𝑘𝑙

(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

= 𝜕𝑗C𝑖𝑗𝑘𝑙 𝜕𝑘
(

𝑢̃𝑙 + 𝑢𝑙
)

, (49)

𝜕𝑡𝑆𝑘𝑙𝑖
(

𝜀𝑘𝑙 + 𝜀𝑘𝑙
)

= 𝜕𝑡𝑆𝑘𝑙𝑖 𝜕𝑘
(

𝑢̃𝑙 + 𝑢𝑙
)

. (50)

Eventually, after introducing 𝑒 ∶  → R𝑛 by
𝜚 𝑒𝑖 ∶= − C𝑖𝑗𝑘𝑙 𝜕𝑗𝜕𝑘𝑢𝑙 − 𝜕𝑗𝑆𝑖𝑗𝑘 𝜕𝑡𝑢𝑘 + (𝜕𝑡𝑆𝑘𝑙𝑖 − 𝜕𝑗C𝑖𝑗𝑘𝑙) 𝜕𝑘𝑢𝑙

+ 𝜕𝑡𝜚 𝜕𝑡𝑢𝑖 + 𝜚 𝜕𝑡𝑡𝑢𝑖 + (𝑆𝑗𝑘𝑖 − 𝑆𝑖𝑗𝑘)𝜕𝑡𝜕𝑗𝑢𝑘, 𝑖 ∈ 𝐼 (51)

we end up with
𝜚 𝜕𝑡𝑡𝑢̃𝑖 = C𝑖𝑗𝑘𝑙 𝜕𝑗𝜕𝑘𝑢̃𝑙 +

(

𝜕𝑗C𝑖𝑗𝑘𝑙 − 𝜕𝑡𝑆𝑘𝑙𝑖
)

𝜕𝑘𝑢̃𝑙 + 𝜕𝑗𝑆𝑖𝑗𝑘 𝜕𝑡𝑢̃𝑘

− 𝜕𝑡𝜚 𝜕𝑡𝑢̃𝑖 + (𝑆𝑖𝑗𝑘 − 𝑆𝑗𝑘𝑖)𝜕𝑗𝜕𝑡𝑢̃𝑘 − 𝜚𝑒𝑖 in 𝛺𝑇 , 𝑖 ∈ 𝐼. (52)

The system (52) is solved subject to the initial and boundary conditions
𝜚0 𝜕𝑡𝑢̃(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ 𝛺, (53)

𝑢̃(𝑥, 0) = ℎ(𝑥), 𝑥 ∈ 𝛺, (54)

𝑢̃(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕𝛺, 𝑡 ∈ [0, 𝑇 ]. (55)

Therein, the initial data ℎ is specified from (36) and (40), 𝑔 is specified 
from (43) at 𝑡 = 0,

ℎ(𝑥) = 𝑢0(𝑥) − 𝑢(𝑥, 0), 𝑥 ∈ 𝛺, (56)

𝑔(𝑥) =
(

𝜇0𝑖(𝑥) − 𝑆𝑘𝑙𝑖(𝑥, 0) 𝜕𝑘
(

𝑢0𝑙(𝑥) + 𝑢𝑙(𝑥, 0)
)

− 𝜚0(𝑥) 𝜕𝑡𝑢𝑖(𝑥, 0)
)

1≤𝑖≤𝑛
, 𝑥 ∈ 𝛺.

(57)

With (27), it holds ℎ ∈ 𝐻𝑠+1
0 (𝛺) due to the compatibility of initial and 

boundary data.
The Eqs. (52) constitute a linear hyperbolic system and represent 

the most general form the resulting equations may have under the 
assumption (25).

We recall that a first order linear symmetric hyperbolic system is of the 
form 

𝐿𝑣 ∶= 𝐴0(𝑥, 𝑡) 𝜕𝑡𝑣 +
𝑛
∑

𝑘=1
𝐴𝑘(𝑥, 𝑡) 𝜕𝑘𝑣 + 𝐵(𝑥, 𝑡) 𝑣 = 𝑤(𝑥, 𝑡), (58)

where 𝑣 ∶ 𝛺 × R≥0 → R𝑚, 𝐴0(𝑥, 𝑡), 𝐴1(𝑥, 𝑡),… , 𝐴𝑛(𝑥, 𝑡) ∈ R𝑚×𝑚

are symmetric matrices for all (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ], 𝐴 (𝑥, 𝑡) is positive 
0

4 
definite, 𝐵(𝑥, 𝑡) ∈ R𝑚×𝑚, and 𝑤(𝑥, 𝑡) ∈ R𝑚 is a given right hand side. 
As a consequence of the symmetry of 𝐴0, it is diagonalizable and all 
eigenvalues are real.

As a preparation of the following lemma, we introduce the symmet-
ric 3 × 3 matrices
C1

1 ∶=
( C1111 C1112 C1131

C2111 C2112 C2131
C3111 C3112 C3131

)

, C1
2 ∶=

( C1211 C1221 C1231
C2211 C2221 C2231
C3211 C3221 C3231

)

, C1
3 ∶=

( C1311 C1321 C1331
C2311 C2321 C2331
C3311 C3321 C3331

)

,

C2
1 ∶=

( C1112 C1122 C1132
C2112 C2122 C2132
C3112 C3122 C3132

)

, C2
2 ∶=

( C1212 C1222 C1232
C2212 C2222 C2232
C3212 C3222 C3232

)

, C2
3 ∶=

( C1312 C1322 C1332
C2312 C2322 C2332
C3312 C3322 C3332

)

,

(59)

C3
1 ∶=

( C1113 C1123 C1233
C2113 C2123 C2233
C3113 C3123 C3233

)

, C3
2 ∶=

( C1213 C1223 C1233
C2213 C2223 C2233
C3213 C3223 C3233

)

, C3
3 ∶=

( C1313 C1323 C1333
C2313 C2323 C2333
C3313 C3323 C3333

)

.

It holds 𝐶𝑗
𝑖 = 𝐶𝑗

𝑖 (𝑥, 𝑡) with the symmetry C
𝑗
𝑖 (𝑥, 𝑡) = C𝑖

𝑗 (𝑥, 𝑡) for 𝑖, 𝑗 ∈
{1, 2, 3}.

For the second term on the right of (52), we introduce the short-
hand notation 
𝐷𝑖

𝑘𝑙(𝑥, 𝑡) ∶= 𝜕𝑡𝑆𝑘𝑙𝑖(𝑥, 𝑡) − 𝜕𝑗C𝑖𝑗𝑘𝑙(𝑥, 𝑡), 𝑖, 𝑘, 𝑙 ∈ {1, 2, 3}. (60)

If 𝛺 is bounded and 𝜈 = (𝜈1, 𝜈2, 𝜈3) ∈ R3 is the unit outer normal vector 
at a point in 𝜕𝛺, let 

C
�
∶=

⎛
⎜
⎜
⎜
⎝

�1C
1

1
�1C

1

2
�1C

1

3

�2C
2

1
�2C

2

2
�2C

2

3

�3C
3

1
�3C

3

2
�3C

3

3

⎞
⎟
⎟
⎟
⎠

∈ R9×9
. (61)

Lemma 1.  Assume that the Willis coupling tensor satisfies the further 
symmetry relation 
𝑆𝑖𝑗𝑘(𝑥, 𝑡) = 𝑆𝑗𝑘𝑖(𝑥, 𝑡) for all 𝑖, 𝑗, 𝑘 ∈ 𝐼, (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ]. (62)

Then the Eqs. (52)–(55) constitute a linear symmetric hyperbolic system 
of first order, i.e. they can be written as the mixed initial boundary value 
problem

𝐿𝑣 = 𝑤 in 𝛺 × [0, 𝑇 ], (63)

𝑀(𝑥)𝑣 = 0 in 𝛤 × [0, 𝑇 ], (64)

𝑣(⋅, 0) = 𝑣0 in 𝛺, (65)

where 𝐿 is given by (58), 𝑀(𝑥) ∈ R𝑚×𝑚 for 𝑥 ∈ 𝛤 , and 𝑤 = 𝑤(𝑥, 𝑡) ∈ R𝑚, 
𝑣0 ∈ R𝑚 are suitable vectors. In 𝑛 = 3 dimensions, Eqs.  (66)–(68) hold, see 
Box  I below. 
The boundary matrix and the vector of the right hand side are given by 

M =

⎛
⎜
⎜
⎝

C� ∈ R9×9 0 ∈ R9×3 0 ∈ R9×3

0 ∈ R3×9 0 ∈ R3×3 0 ∈ R3×3

0 ∈ R3×3 0 ∈ R3×3
1 ∈ R3×3

⎞
⎟
⎟
⎠
, w(x, t) =

⎛
⎜
⎜
⎜
⎜
⎝

0⃗ ∈ R
9

%(x, t) e1(x, t)

%(x, t) e2(x, t)

%(x, t) e3(x, t)

0⃗ ∈ R
3

⎞
⎟
⎟
⎟
⎟
⎠

.

(69)

Proof.  The following procedure is a modification of an example 
in John (1982, p.163) for a scalar hyperbolic equation. Subsequently 
we restrict to the case 𝑛 = 3 which allows us to explicitly write down 
all matrices and explain the necessary transformations. However, the 
method is valid for any dimension 𝑛 ∈ N. Let for 𝑛 = 3

𝑣 = (𝑣1,… , 𝑣15)𝑇 ∈ R15

∶= (𝜕1𝑢̃1, 𝜕1𝑢̃2, 𝜕1𝑢̃3, 𝜕2𝑢̃1, 𝜕2𝑢̃2, 𝜕2𝑢̃3, 𝜕3𝑢̃1, 𝜕3𝑢̃2, 𝜕3𝑢̃3, 𝜕𝑡𝑢̃1, 𝜕𝑡𝑢̃2, 𝜕𝑡𝑢̃3, 𝑢̃1, 𝑢̃2, 𝑢̃3)𝑇 .
(70)

Note that the last 3 components 𝑢̃1, 𝑢̃2 and 𝑢̃3 of 𝑣 are only necessary 
to incorporate the Dirichlet boundary conditions (55). We have a first 
set of compatibility equations
𝜕𝑡𝑣1 − 𝜕1𝑣10 = 0, 𝜕𝑡𝑣4 − 𝜕2𝑣10 = 0, 𝜕𝑡𝑣7 − 𝜕3𝑣10 = 0,

𝜕 𝑣 − 𝜕 𝑣 = 0, 𝜕 𝑣 − 𝜕 𝑣 = 0, 𝜕 𝑣 − 𝜕 𝑣 = 0, (71)
𝑡 2 1 11 𝑡 5 2 11 𝑡 8 3 11
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A0(x, t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

C1
1

C1
2

C1
3

0 0

C2
1

C2
2

C2
3

0 0

C
3
1

C
3
2

C
3
3

0 0

0 0 0 %13×3 0

0 0 0 0 13×3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(x, t) ∈ R15×15, (66)

Ak(x, t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −Ck

1
0

0 0 0 −Ck

2
0

0 0 0 −Ck

3
0

−Ck

1
−Ck

2
−Ck

3
0 0

0 0 0 0 13×3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(x, t) ∈ R15×15, k = 1, 2, 3, (67)

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D1

11
D1

12
D1

13

D2

11
D2

12
D2

13

D3

11
D3

12
D3

13

D1

21
D1

22
D1

23

D2

21
D2

22
D2

23

D3

21
D3

22
D3

23

D1

31
D1

32
D1

33

D2

31
D2

32
D2

33

D3

31
D3

32
D3

33

)jS1j1 − )t% )jS1j2 )jS1j3

)jS2j1 )jS2j2 − )t% )jS2j3

)jS3j1 )jS3j2 )jS3j3 − )t%

0

−1 −1 −1 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (68)

Box I. 
𝜕𝑡𝑣3 − 𝜕1𝑣12 = 0, 𝜕𝑡𝑣6 − 𝜕2𝑣12 = 0, 𝜕𝑡𝑣9 − 𝜕3𝑣12 = 0.

The Eqs. (52) determine 𝜕𝑡𝑣10, 𝜕𝑡𝑣11 and 𝜕𝑡𝑣12. For the last variables, 
there is a second set of compatibility relations 
𝜕𝑡𝑣13 − 𝑣10 = 0, 𝜕𝑡𝑣14 − 𝑣11 = 0, 𝜕𝑡𝑣15 − 𝑣12 = 0 (72)

together with
𝜕1𝑣13 − 𝑣1 = 0, 𝜕2𝑣13 − 𝑣4 = 0, 𝜕3𝑣13 − 𝑣7 = 0,

𝜕1𝑣14 − 𝑣2 = 0, 𝜕2𝑣14 − 𝑣5 = 0, 𝜕3𝑣14 − 𝑣8 = 0, (73)
𝜕1𝑣15 − 𝑣3 = 0, 𝜕2𝑣15 − 𝑣6 = 0, 𝜕3𝑣15 − 𝑣9 = 0.

With (70), we write the modified linear elasticity equation 
𝜚(𝑥, 𝑡) 𝜕𝑡𝑡𝑢̃𝑖 − C𝑖𝑗𝑘𝑙(𝑥, 𝑡) 𝜕𝑗𝜕𝑘𝑢̃𝑙 + (𝑆𝑗𝑘𝑖 − 𝑆𝑖𝑗𝑘)𝜕𝑗𝜕𝑡𝑢̃𝑘 = 0 (74)

and (71), (72), (73) in the matrix form

𝐴̃0 𝜕𝑡𝑣 +
3
∑

𝑘=1
𝐴̃𝑘 𝜕𝑘𝑣 + 𝐵𝑣 = 0.

Direct inspection yields Eqs.  (75)–(78) given in Box  II for the 3 × 3-
matrices 

𝐹1 ∶=
(

0 𝑆121−𝑆112 𝑆131−𝑆113
𝑆112−𝑆211 𝑆122−𝑆212 𝑆132−𝑆213
𝑆113−𝑆311 𝑆123−𝑆312 𝑆133−𝑆313

)

, 𝐹2 ∶=
(

𝑆211−𝑆121 𝑆221−𝑆122 𝑆231−𝑆123
𝑆212−𝑆221 0 𝑆232−𝑆223
𝑆213−𝑆321 𝑆223−𝑆322 𝑆233−𝑆323

)

,

𝐹3 ∶=
(

𝑆311−𝑆131 𝑆321−𝑆132 𝑆331−𝑆133
𝑆312−𝑆231 𝑆322−𝑆232 𝑆332−𝑆233
𝑆313−𝑆331 𝑆323−𝑆332 0

)

.

(79)

However, 𝐴̃1(𝑥, 𝑡), 𝐴̃2(𝑥, 𝑡), 𝐴̃3(𝑥, 𝑡) ∈ R15×15 are not symmetric. The 
matrices 𝐹𝑖 are on the diagonal of 𝐴̃𝑖, 𝑖 = 1, 2, 3. They are not sym-
metric and cannot be rearranged without destroying the symmetry and 
positive definiteness of 𝐴0. Imposing the strong assumption (62), we 
obtain 𝐹1 = 𝐹2 = 𝐹3 = 0 ∈ R3×3.

Now, to symmetrize 𝐴̃𝑖, we form suitable linear combinations of the 
compatibility Eqs. (71). This idea is first presented in Sfyris (2024).

Exemplary, to get the first line of 𝐴1, we use (cf. the first column of 
the matrix 𝐴̃1) 
C1111(𝜕𝑡𝑣1 − 𝜕1𝑣10) + C2111(𝜕𝑡𝑣2 − 𝜕1𝑣11) + C3111(𝜕𝑡𝑣3 − 𝜕1𝑣12) = 0, (80)

to get the second line of 𝐴1, we use (cf. the second column of 𝐴̃1) 
C (𝜕 𝑣 − 𝜕 𝑣 ) + C (𝜕 𝑣 − 𝜕 𝑣 ) + C (𝜕 𝑣 − 𝜕 𝑣 ) = 0, (81)
1112 𝑡 1 1 10 2112 𝑡 2 1 11 3112 𝑡 3 1 12

5 
and eventually to get the ninth line of 𝐴1, we use (cf. the ninth column 
of 𝐴̃1) 

C1331(𝜕𝑡𝑣1 − 𝜕1𝑣10) + C2331(𝜕𝑡𝑣2 − 𝜕1𝑣11) + C3331(𝜕𝑡𝑣3 − 𝜕1𝑣12) = 0. (82)

So we obtain 𝐴1, see (67) with 𝑘 = 1. In the same way, 𝐴̃2 is 
symmetrized. For the first line of 𝐴2, we use (cf. 1. column of 𝐴̃2) 

C1112(𝜕𝑡𝑣4 − 𝜕2𝑣10) + C2112(𝜕𝑡𝑣5 − 𝜕2𝑣11) + C3112(𝜕𝑡𝑣6 − 𝜕2𝑣12) = 0, (83)

for the second line 

C1122(𝜕𝑡𝑣4 − 𝜕2𝑣10) + C2122(𝜕𝑡𝑣5 − 𝜕2𝑣11) + C3122(𝜕𝑡𝑣6 − 𝜕2𝑣12) = 0, (84)

and so forth. Finally, to symmetrize 𝐴̃3, we use for the first two lines

C1113(𝜕𝑡𝑣7 − 𝜕3𝑣10) + C2113(𝜕𝑡𝑣8 − 𝜕3𝑣11) + C3113(𝜕𝑡𝑣9 − 𝜕3𝑣12) = 0, (85)

C1123(𝜕𝑡𝑣7 − 𝜕3𝑣10) + C2123(𝜕𝑡𝑣8 − 𝜕3𝑣11) + C3123(𝜕𝑡𝑣9 − 𝜕3𝑣12) = 0, (86)

and similar operations for lines 3 to 9. With these operations we obtain 
𝐴2, 𝐴3, see (67) with 𝑘 = 2, 3. The linear combinations (80)–(82), 
(83)–(86) lead as well to changes in 𝐴̃0, resulting in (66). For instance, 
(80) modifies the first line of 𝐴0 which results in three non-zero entries, 
(81) changes the second line of 𝐴0. In total, the coefficients in (80)–(82) 
constitute the first 3 × 3-block C1

1 in 𝐴0.
The major and minor symmetry (20) of C imposes the symmetry of 

the matrices C𝑖
𝑗 in (59) as well as C𝑖

𝑗 = C𝑗
𝑖  for 𝑖, 𝑗 ∈ {1, 2, 3}, implying 

the symmetry of 𝐴0(𝑥, 𝑡) for all (𝑥, 𝑡). Due to 𝜚(𝑥, 𝑡) > 0 in  and the 
positive definiteness of C, 𝐴0(𝑥, 𝑡) is positive definite. The components 
−𝑣10 in (72)1, −𝑣11 in (72)2 and −𝑣12 in (72)3 lead to the last −1 ∈ R3×3

block of 𝐵 in (68). The other −1 blocks in 𝐵 are a consequence of the 
terms −𝑣1, . . . , −𝑣9 in (73). The 1 ∈ R3×3 block in (76)–(78) is due to 
𝜕1𝑣13, . . . , 𝜕3𝑣15 in (73). This completes the reformulation of (71)–(74) 
in form of a linear symmetric first-order hyperbolic system.

The remaining terms of (52) can be incorporated in 𝐵, leading to 
(68). The boundary matrix 𝑀 and the right hand side 𝑤 are specified 
by (69).

We want to comment on the matrix C𝜈 appearing in 𝑀 . Due to 
Dirichlet boundary conditions, it holds 𝑢̃ = 0 on 𝛤 . As a consequence, 
all tangential derivatives of 𝑢̃ must vanish along 𝛤 . Exemplary, consider 
the special case of the local coordinates introduced before Definition  2 
below, where 𝛤 = 𝜕𝛺 is straight and corresponds to 𝑥1 = 0. Here, the 
tangential derivatives 𝜕 𝑢̃  and 𝜕 𝑢̃ , 𝑖 ∈ {1, 2, 3} vanish on 𝛤 . In matrix 
2 𝑖 3 𝑖
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Ã0(x, t) =

⎛
⎜
⎜
⎝

1 ∈ R
9×9 0 ∈ R

9×3 0 ∈ R
9×3

0 ∈ R
3×9 %(x, t)1 ∈ R

3×3 0 ∈ R
3×3

0 ∈ R
3×9 0 ∈ R

3×3
1 ∈ R

3×3

⎞
⎟
⎟
⎠
∈ R

15×15, (75)

Ã1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∈ R
3×9 −1 ∈ R

3×3 0 ∈ R
3×3

0 ∈ R
3×9 0 ∈ R

3×3 0 ∈ R
3×3

0 ∈ R
3×9 0 ∈ R

3×3 0 ∈ R
3×3

−C1111 −C1112 −C1131 −C1211 −C1221 −C1231 −C1311 −C1321 −C1331

−C2111 −C2112 −C2131 −C2211 −C2221 −C2231 −C2311 −C2321 −C2331

−C3111 −C3112 −C3131 −C3211 −C3221 −C3231 −C3311 −C3321 −C3331

F1 ∈ R
3×3 0 ∈ R

3×3

0 ∈ R
3×9 0 ∈ R

3×3
1 ∈ R

3×3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (76)

Ã2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∈ R
3×9 0 ∈ R

3×3 0 ∈ R
3×3

0 ∈ R
3×9 −1 ∈ R

3×3 0 ∈ R
3×3

0 ∈ R
3×9 0 ∈ R

3×3 0 ∈ R
3×3

−C1112 −C1122 −C1132 −C1212 −C1222 −C1232 −C1312 −C1322 −C1332

−C2112 −C2122 −C2132 −C2212 −C2222 −C2232 −C2312 −C2322 −C2332

−C3112 −C3122 −C3132 −C3212 −C3222 −C3232 −C3312 −C3322 −C3332

F2 ∈ R
3×3 0 ∈ R

3×3

0 ∈ R
3×9 0 ∈ R

3×3
1 ∈ R

3×3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (77)

Ã3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∈ R
3×9 0 ∈ R

3×3 0 ∈ R
3×3

0 ∈ R
3×9 0 ∈ R

3×3 0 ∈ R
3×3

0 ∈ R
3×9 −1 ∈ R

3×3 0 ∈ R
3×3

−C1113 −C1123 −C1233 −C1213 −C1223 −C1233 −C1313 −C1323 −C1333

−C2113 −C2123 −C2133 −C2213 −C2223 −C2233 −C2313 −C2323 −C2333

−C3113 −C3123 −C3233 −C3213 −C3223 −C3233 −C3313 −C3323 −C3333

F3 ∈ R
3×3 0 ∈ R

3×3

0 ∈ R
3×9 0 ∈ R

3×3
1 ∈ R

3×3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(78)

Box II. 
form this reads

P ( v1 v2 v3 ⋮ v4 v5 v6 ⋮ v7 v8 v9 )T ∶=

⎛
⎜
⎜
⎝

0 0 0

0 1 0

0 0 1

⎞
⎟
⎟
⎠

× ( 𝑣1 𝑣2 𝑣3 ⋮ 𝑣4 𝑣5 𝑣6 ⋮ 𝑣7 𝑣8 𝑣9 )𝑇 = 0. (87)

In symmetrizing 𝐴̃𝑘 for 𝑘 = 1, 2, 3, the linear combinations (80)–(86) 
are applied, converting the matrix 𝑃 ∈ R9×9 to C𝜈 with 𝜈 = (−1, 0, 0)𝑇

in the example. This is in line with the transformation of the upper left 
9 × 9 block 1 of 𝐴̃0 to the upper left 9 × 9 block of 𝐴0 in (66).

The vector 𝑣0 for the initial values can be directly read off from (53), 
(54),

𝑣0(𝑥) =
(

𝜕1𝑢0,1(𝑥) − 𝜕1𝑢1(𝑥, 0), 𝜕1𝑢0,2(𝑥) − 𝜕1𝑢2(𝑥, 0), 𝜕1𝑢0,3(𝑥) − 𝜕1𝑢3(𝑥, 0),… ,

𝜕3𝑢0,3(𝑥) − 𝜕3𝑢3(𝑥, 0),
𝜇01(𝑥) − 𝑆1𝑘𝑙 (𝑥, 0)𝜕𝑘(𝑢0𝑙 (𝑥) + 𝑢𝑙 (𝑥, 0))

𝜚0(𝑥)
− 𝜕𝑡𝑢1(𝑥, 0),

𝜇02(𝑥) − 𝑆2𝑘𝑙 (𝑥, 0)𝜕𝑘(𝑢0𝑙 (𝑥) + 𝑢𝑙 (𝑥, 0))
𝜚0(𝑥)

− 𝜕𝑡𝑢2(𝑥, 0),

𝜇03(𝑥) − 𝑆3𝑘𝑙 (𝑥, 0)𝜕𝑘(𝑢0𝑙 (𝑥) + 𝑢𝑙 (𝑥, 0))
𝜚0(𝑥)

− 𝜕𝑡𝑢3(𝑥, 0),

𝑢0,1(𝑥) − 𝑢1(𝑥, 0), 𝑢0,2(𝑥) − 𝑢2(𝑥, 0), 𝑢0,2(𝑥) − 𝑢2(𝑥, 0)
)

𝑇 . (88)

 With (66), (67), (68) and (69), the equivalence of (63)–(65) with 
(52)–(55) has been shown. □

4. Existence and uniqueness of weak solutions

In this section we apply the existence theory for linear symmetric 
hyperbolic systems of first order to the Willis system. A good general 
introduction and overview of mathematical methods for hyperbolic 
systems can be found in Evans (2010, Chapter 7). An early 𝐿2-theory for 
linear symmetric hyperbolic systems in bounded domains is developed 
in Friedrichs (1958), see also (Friedrichs, 1954). The case where the 
boundary is non-characteristic (see Definition  1 below for explanations) 
is covered in Rauch and Massey (1974) and Lax and Phillips (1960). In 
6 
the situation studied here, 𝛤  is characteristic of constant multiplicity. 
This has been analyzed for tangential regularity in Rauch (1985) and 
more generally in Ohno et al. (1995). We also learned a lot from the 
seminal paper (Hughes and Marsden, 1977). An alternative approach 
would be the use of semigroup theory, see, e.g. Xin and Sha (2009), 
which however appears to be less flexible.

4.1. Existence theory for 𝛺 = R𝑛

As long as no boundary conditions are involved, the proof of ex-
istence and uniqueness of solutions to linear symmetric hyperbolic 
first-order systems is straightforward and we begin with this case. The 
following theorem is taken from Hughes and Marsden (1977). 

Theorem 1 (Existence and Uniqueness for 𝛺 = R𝑛).  Consider the linear 
symmetric first-order hyperbolic system (58) on R𝑛 with initial data 𝑣0. Let 
𝑠 ∈ N and assume that
(i) 𝐴0, 𝐴𝑖 and 𝐵 are in 𝐶∞

𝑏 (R𝑛 × [0, 𝑇 ]; R𝑚×𝑚).
(ii) 𝐴0 and 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑛 are symmetric.
(iii) 𝐴0 is uniformly positive definite, i.e. there exists a constant 𝛿 > 0 with

⟨𝜉, 𝐴0(𝑥, 𝑡)𝜉⟩ ≥ 𝛿 ‖𝜉‖2 for all 𝜉 ∈ R𝑚⧵{0} and all 𝑥 ∈ R𝑛, 𝑡 ∈ [0, 𝑇 ].

(89)

(iv) 𝑤 ∈ 𝐻𝑠(R𝑛 × [0, 𝑇 ]; R𝑚).
(v) 𝑣0 ∈ 𝐻𝑠(R𝑛; R𝑚).

Then there exists a unique solution 𝑣 of (58) in R𝑛 belonging to
𝐶𝑟([0, 𝑇 ]; 𝐻𝑠−𝑟(R𝑛; R𝑚)) for 0 ≤ 𝑟 ≤ 𝑠, such that 𝑣(⋅, 0) = 𝑣0. The 
solution varies continuously with the initial data in 𝐻𝑠(R𝑛; R𝑚). Finally, 
the equations are hyperbolic in the sense that if 𝑣0 and 𝑤 have compact 
support then so does 𝑣(⋅, 𝑡) for each 𝑡.

An immediate consequence is 
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Corollary 1.  Let the assumptions (A0)–(A2) and (26) hold, and let (A3) 
be satisfied for an integer 𝑠 ≥ 1. Then there exists a unique solution 

𝑣 ∈
𝑠
⋂

𝑟=0
𝐶𝑟([0, 𝑇 ]; 𝐻𝑠−𝑟(R𝑛; 𝑅𝑚)) (90)

to the symmetric linear hyperbolic system (63), (65) with 𝛺 = R𝑛. 
Consequently, there exists a unique solution vector (𝜇, 𝜎, 𝑢) to (33)–(37) 
of the Willis system in 𝛺 = R𝑛 satisfying

𝑢 ∈
𝑠+1
⋂

𝑟=0
𝐶𝑟([0, 𝑇 ]; 𝐻𝑠+1−𝑟(𝛺; R𝑛)), (91)

𝜇, 𝜎 ∈
𝑠
⋂

𝑟=0
𝐶𝑟([0, 𝑇 ]; 𝐻𝑠−𝑟(𝛺; R𝑛)). (92)

Proof. First we verify that the matrices 𝐴0, 𝐴𝑖 and 𝐵 introduced in 
Lemma  1, (66)–(68) satisfy the requirements (i)–(iii) of Theorem  1. 
Evidently, (i) follows from (A0), (A1) and (A2). The symmetry (ii) is 
a direct consequence of (20) and (66), (67). By the uniform positive 
definiteness of C, and Sylvester’s criterion, all principal minors of C
are strictly positive. Together with the positivity condition (23) on 𝜚, 
this yields that 𝐴0 is uniformly positive definite. In the case 𝛺 = R𝑛, 
one can formally set 𝑢 ∶= 0 in the derivation of the system leading 
to 𝑢 = 𝑢̃ and 𝑤(𝑥, 𝑡) ≡ 0 such that (iv) holds. Finally, due to (88) 
and (A0)–(A3), we obtain 𝑣0 ∈ 𝐻𝑠(R𝑛; R𝑚). Hence, (i) to (v) of 
Theorem  1 are satisfied, yielding the existence of a unique solution 
𝑣 ∈ 𝑊 ∶=

⋂𝑠
𝑟=0 𝐶

𝑟([0, 𝑇 ]; 𝐻𝑠−𝑟(R𝑛; R𝑚)). By (70), it holds 𝜀(𝑢), 𝐷𝑢, 
𝜕𝑡𝑢 ∈ 𝑊 , implying 𝑢 ∈

⋂𝑠
𝑟=0 𝐶

𝑟([0, 𝑇 ]; 𝐻𝑠+1−𝑟(R𝑛; R𝑚)) and 𝑢 ∈
⋂𝑠

𝑟=0 𝐶
𝑟+1([0, 𝑇 ]; 𝐻𝑠−𝑟(R𝑛; R𝑚)). This can be subsumed in one formula 

(91). With the smoothness (19), (24) of C and 𝑆, Eq. (34) yields 𝜎 ∈ 𝑊 . 
With the smoothness (22) of 𝜚 and (24) of 𝑆, Eq. (35) yields 𝜇 ∈ 𝑊 . 
This proves (92). □

Remark 3.  We can use the embedding

𝑊 𝑠,𝑝(R𝑛) ↪ 𝐶𝑟,1− 𝑛
𝑝 (R𝑛)

with 𝑝𝑠 > 𝑛, 𝑟 + 𝛼 = 𝑠 − 𝑛∕𝑝 for 𝛼 ∈ (0, 1), see Brezis (2011, 
Theorem 9.12), setting 𝑝 = 2.

In 𝑛 = 3 dimensions we obtain the continuity of the embeddings 

𝐻2(R3) ↪ 𝐶0, 12 (R3), 𝐻3(R3) ↪ 𝐶1, 12 (R3), 𝐻4(R3) ↪ 𝐶2, 12 (R3). (93)

For 𝜇0 ∈ 𝐻2(R3; R3), 𝑢0 ∈ 𝐻3(R3; R3), (92) and (93) yield
𝑢 ∈ 𝐶0([0, 𝑇 ]; 𝐶1,1∕2(R3; R3)) ∩ 𝐶1([0, 𝑇 ]; 𝐶0,1∕2(R3; R3)), (94)

𝜇, 𝜎 ∈ 𝐶0([0, 𝑇 ]; 𝐶0,1∕2(R3; R3)) ∩ 𝐶1([0, 𝑇 ]; 𝐻1(R3; R3)), (95)

while for 𝜇0 ∈ 𝐻3(R3; R3), 𝑢0 ∈ 𝐻4(R3; R3) we even obtain
𝑢∈𝐶0([0, 𝑇 ];𝐶2,1∕2(R3;R3)) ∩ 𝐶1([0, 𝑇 ];𝐶1,1∕2(R3;R3)) ∩ 𝐶0([0, 𝑇 ];

𝐶0,1∕2(R3;R3)), (96)

𝜇, 𝜎 ∈ 𝐶0([0, 𝑇 ];𝐶1,1∕2(R3;R3)) ∩ 𝐶1([0, 𝑇 ];𝐶0,1∕2(R3;R3)) (97)

for the unique solution vector (𝜇, 𝜎, 𝑢) of (33)–(37).

4.2. Existence theory in a bounded domain

Now we turn to the boundary value problem (63)–(65) for a 
bounded domain 𝛺 ⊂ R𝑛.

Corollary 2 (Classical Dirichlet Boundary Conditions).  Let 𝛺 ⊂ R𝑛 be a 
bounded domain and assume 

supp(𝑢0), supp(𝜇0), supp(𝑢𝑖(𝑡)), supp(𝜕𝑗𝑢𝑖(𝑡)) ⊂ 𝛺 for 𝑡 ∈ [0, 𝑇 ], 𝑖, 𝑗 ∈ 𝐼.

(98)

Let the assumptions (A0)–(A2) and (26) hold and let (A3) be satisfied for 
an integer 𝑠 ≥ 1. Then, Corollary  1 remains true, i.e. there exists a unique 
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solution (𝜇, 𝜎, 𝑢) to (33)–(38) and (90)–(92) hold for a bounded domain 
𝛺. In 𝑛 = 3 dimensions, if  𝛺 has Lipschitz boundary, for 𝜇0 ∈ 𝐻2(𝛺; R3), 
𝑢0 ∈ 𝐻3(𝛺; R3), it holds

𝑢 ∈ 𝐶0([0, 𝑇 ]; 𝐶1,1∕2(𝛺; R3)) ∩ 𝐶1([0, 𝑇 ]; 𝐶0,1∕2(𝛺; R3)), (99)

𝜇, 𝜎 ∈ 𝐶0([0, 𝑇 ]; 𝐶0,1∕2(𝛺; R3)), 𝜇 ∈ 𝐶1([0, 𝑇 ]; 𝐻1(𝛺; R3)) (100)

for the unique solution vector (𝜇, 𝜎, 𝑢) of (33)–(38).

Proof. The condition (98) implies supp(𝜕𝑡𝑢), supp(𝜕𝑡𝑡𝑢) ⊂ 𝛺 and supp(𝜕𝑗𝑢0)
⊂ 𝛺. So, by (51), supp((𝜚𝑒𝑖)(𝑡)) ⊂ 𝛺 for 𝑡 ∈ [0, 𝑇 ] and 𝑖 ∈ {1, 2, 3}. Using 
(69), (88) and (98), we find
supp(𝑣0), supp(𝑤(𝑡)) ⊂ 𝛺 for 𝑡 ∈ [0, 𝑇 ].

With Theorem  1, this ensures supp (𝑣(𝑡)) ⊂ 𝛺 for 𝑡 ∈ [0, 𝑇 ]. If 𝜕𝛺 is 
Lipschitz continuous, there is a compact embedding 𝐻𝑠(𝛺) ↪ 𝐶0,1∕2(𝛺)
for 𝑠 > 3∕2, see Evans (2010, Theorem 6 p.270), leading to (99), 
(100). □

Note that (98) implies 𝑢 = 0 on 𝜕𝛺, i.e. classical Dirichlet boundary 
conditions.

Now we discuss general, possibly non-regular Dirichlet boundary 
conditions. The following analysis is based on the methods developed 
in Ohno et al. (1995) and Rauch (1985).

Definition 1.  Let 𝜈(𝑥) = (𝜈1,… , 𝜈𝑛)(𝑥) be the unit outer normal to 𝛺
in 𝑥 ∈ 𝛤 = 𝜕𝛺. The boundary matrix is given by 

𝐴𝜈(𝑥) ∶=
𝑛
∑

𝑘=1
𝜈𝑘(𝑥)𝐴𝑘(𝑥, 𝑡). (101)

If 𝐴𝜈 is invertible everywhere on 𝛤 , the boundary is called non-
characteristic. If 𝐴𝜈 is not invertible but has constant rank on 𝛤 , the 
boundary is called characteristic of constant multiplicity.

A particular difficulty for the theory of boundary value problems is 
the possible loss of derivatives in normal direction. For that reason we 
need to introduce new spaces.

Let (𝑖, 𝜒𝑖)1≤𝑖≤𝑙 be a partition of unity of 𝛤 . For some 𝛿 > 0, let
𝛺𝛿 ∶= {𝑥 ∈ 𝛺 ∣ dist(𝑥, 𝛤 ) > 𝛿}

and let 𝜒0 be a smooth function with 𝜒0 = 1 in 𝛺𝛿 and 𝜒0 = 0
in a neighborhood of 𝛤 . Assume ∑𝑙

𝑖=0 𝜒
2
𝑖 = 1 in 𝛺. Introduce local 

coordinates and consider a family of diffeomorphisms (𝜏𝑖)1≤𝑖≤𝑙 from R𝑛

to R𝑛 such that 𝛤  corresponds to 𝑥1 = 0 and 𝛺 corresponds to
𝐵+
1 ∶=

{

𝑥 ∈ R𝑛 ∣ |𝑥| < 1, 𝑥1 > 0
}

.

We recall that 𝛬 ∈ 𝐶∞(𝛺; R𝑛) is a tangential vector field if 
⟨𝛬(𝑥), 𝜈(𝑥)⟩ = 0 for all 𝑥 ∈ 𝛤 . (102)

The following three definitions are taken from Ohno et al. (1995). 

Definition 2.  Let 𝑠 ≥ 0 be an integer. We introduce 𝐻𝑠
∗(𝛺) as the set 

of functions 𝑓 ∈ 𝐿2(𝛺; R) with the following property:
Let 𝛬1, 𝛬2, . . . , 𝛬𝑗 be tangential vector fields and 𝛬′

1, 𝛬′
2, . . . , 𝛬′

𝑘 be 
non-tangential vector fields. Then 
𝛬1𝛬2 …𝛬𝑗𝛬

′
1𝛬

′
2 …𝛬′

𝑘𝑓 ∈ 𝐿2(𝛺) for 𝑗 + 2𝑘 ≤ 𝑠. (103)

The norm in 𝐻𝑠
∗(𝛺) is given by 

‖𝑓‖2𝐻𝑠
∗ (𝛺) ∶= ‖𝜒0𝑓‖

2
𝐻𝑠(𝛺) +

𝑚
∑

𝑖=1

∑

|𝛼|+2𝑘≤𝑠
‖𝜕𝛼tan𝜕

𝑘
1𝑓

(𝑖)
‖

2
𝐿2(𝐵+

1 )
, (104)

where 𝑓 (𝑖) ∶= (𝜒𝑖𝑓 )◦𝜏−1𝑖 , 𝛼 = (𝛼1,… , 𝛼𝑛) is a multi-index, |𝛼| ∶=
𝛼1 +⋯ + 𝛼𝑛, and
𝜕𝛼tan ∶= (𝑥1𝜕1)𝛼1𝜕

𝛼2
2 ⋯ 𝜕𝛼𝑛𝑛 .
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The key to understanding this definition is the observation that in 
local coordinates for any point in a neighborhood of 𝛤 , 𝑥1𝜕1, 𝜕2, . . . , 𝜕𝑛
span the tangential vector fields. The normal vector field 𝜕𝜈 corresponds 
to −𝜕1 in local coordinates. The space 𝐻1

∗ (𝛺) is identical to 𝐻1
tan(𝛺)

introduced in Rauch (1985). 

Definition 3.  Let 𝑠 ≥ 0 be an integer. We introduce 𝐻𝑠
∗∗(𝛺) as the set 

of all functions 𝑓 ∈ 𝐿2(𝛺; R) with the following property:
Let 𝛬1, 𝛬2, . . . , 𝛬𝑗 be tangential vector fields and let 𝛬′

1, 𝛬′
2, . . . , 𝛬′

𝑘 be 
non-tangential vector fields. Then 

𝛬1𝛬2 ⋯𝛬𝑗𝛬
′
1𝛬

′
2 ⋯𝛬′

𝑘𝑓 ∈ 𝐿2(𝛺) for 𝑗 + 2𝑘 ≤ 𝑠 + 1 and 𝑗 + 𝑘 ≤ 𝑚.

(105)

The norm on 𝐻𝑠
∗∗(𝛺) is given by 

‖𝑓‖2𝐻𝑠
∗∗(𝛺) ∶= ‖𝜒0𝑓‖

2
𝐻𝑠(𝛺) +

𝑙
∑

𝑖=1

∑

|𝛼|+2𝑘≤𝑠+1
|𝛼|+𝑘≤𝑠

‖𝜕𝛼tan𝜕
𝑘
1𝑓

(𝑖)
‖

2
𝐿2(𝐵+

1 )
. (106)

In (104), (106), different choices of (𝑖, 𝜒𝑖)0≤𝑖≤𝑙 and (𝜏𝑖)1≤𝑖≤𝑙 lead 
to equivalent norms. For any 𝑠 ≥ 0, there is a continuous embedding 
𝐻𝑠(𝛺) ↪ 𝐻𝑠

∗∗(𝛺) ↪ 𝐻𝑠
∗(𝛺). Therefore, 𝐻𝑠

∗(𝛺) and 𝐻𝑠
∗∗(𝛺) may be 

regarded as subspaces of 𝐻𝑠(𝛺).

Definition 4.  For an integer 𝑠 ≥ 0, let 𝑋𝑠([0, 𝑇 ]; 𝛺) be the space of 
functions 𝑓 with
𝜕𝑟𝑡 𝑓 ∈ 𝐶0([0, 𝑇 ]; 𝐻𝑚−𝑟(𝛺)), 0 ≤ 𝑟 ≤ 𝑠.

Here, 𝜕𝑟𝑡 𝑓 , 0 ≤ 𝑟 ≤ 𝑠 are the derivatives of 𝑓 in the sense of distributions. 
The space 𝑋𝑠([0, 𝑇 ]; 𝛺) is a Banach space with the norm
|||𝑓 |||𝑋𝑠([0,𝑇 ];𝛺) ∶= max

𝑡∈[0,𝑇 ]
|||𝑓 (𝑡)|||𝑠, (107)

|||𝑓 (𝑡)|||2𝑠 ∶=
𝑠
∑

𝑟=0
‖𝜕𝑟𝑡 𝑓 (𝑡)‖

2
𝐻𝑠−𝑟(𝛺). (108)

Analogously, let 𝑋𝑠
∗([0, 𝑇 ]; 𝛺) be the space of functions 𝑓 with

𝜕𝑟𝑡 𝑓 ∈ 𝐶0([0, 𝑇 ]; 𝐻𝑠−𝑟
∗ (𝛺)), 0 ≤ 𝑟 ≤ 𝑠.

The space 𝑋𝑠
∗([0, 𝑇 ]; 𝛺) is a Banach space with the norm

|||𝑓 |||2𝑋𝑠
∗([0,𝑇 ];𝛺) ∶= max

𝑡∈[0,𝑇 ]
|||𝑓 (𝑡)|||𝑠,∗, (109)

|||𝑓 (𝑡)|||2𝑠,∗ ∶=
𝑠
∑

𝑟=0
‖𝜕𝑟𝑡 𝑓 (𝑡)‖

2
𝐻𝑠−𝑟

∗ (𝛺). (110)

By 𝑊 𝑠
∗ (0, 𝑇 ; 𝛺) we denote the space of functions 𝑓 such that

𝜕𝑟𝑡 𝑓 ∈ 𝐿2(0, 𝑇 ; 𝐻𝑠−𝑟
∗ (𝛺)), 0 ≤ 𝑟 ≤ 𝑠.

For vector-valued functions 𝑓 = (𝑓1,… , 𝑓𝑚) with 𝑓𝑖 ∈ 𝑋𝑠([0, 𝑇 ]; 𝛺) for 
1 ≤ 𝑖 ≤ 𝑚 we write 𝑓 ∈ 𝑋𝑠([0, 𝑇 ]; 𝛺)𝑚 and 𝑊 𝑠

∗ (0, 𝑇 ; 𝛺)𝑚 is defined 
analogously.

The following theorem is a reformulation of Ohno et al. (1995, The-
orem 2.1) which also investigates certain quasi-linear problems where 
𝐴0, 𝐴1, . . . , 𝐴𝑛 may depend on a further function. Theorem 2.1 in Ohno 
et al. (1995) is an improved version of Theorem 10 in Rauch (1985) 
which requires slightly stronger assumptions, only proves tangential 
regularity, and does not prove uniqueness of the solution. Note that 
several assumptions of Theorem 10 in Rauch (1985) are not formulated 
explicitly, but are mentioned elsewhere in the article.

Theorem 2.  Let 𝑠 ≥ 1 be an integer. Then an initial boundary value 
problem (63)–(65) has a unique solution 𝑣 ∈ 𝑋𝑠

∗([0, 𝑇 ]; 𝛺)𝑚 provided the 
following conditions are satisfied:
(i) 𝛺 ⊂ R𝑛 is a bounded open set with boundary 𝛤  of class 𝐶∞.
(ii) 𝑀(𝑥) is a real matrix-valued function with 𝑀 ∈ C∞(𝛤 ; R𝑚×𝑚).
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(iii) 𝐴𝑘(𝑥, 𝑡) ∈ R𝑚×𝑚, 0 ≤ 𝑘 ≤ 𝑛 are real symmetric matrices for every 
(𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ]. The matrix 𝐴0(𝑥, 𝑡) is positive definite for (𝑥, 𝑡) ∈
𝛺 × [0, 𝑇 ].

(iv) The dimension of  (𝑥) ∶= ker 𝐴𝜈(𝑥) and the dimension of ker𝑀(𝑥)
are constant on each component of 𝛤  and it holds 0 < dim (𝑥) < 𝑚.

(v) ker𝑀(𝑥) is a maximal non-negative subspace of 𝐴𝜈(𝑥) for 𝑥 ∈ 𝛤 .
(vi) It holds 𝑤 ∈ 𝑊 𝑠

∗ (0, 𝑇 ; 𝛺)𝑚, 𝜕𝑟𝑡𝑤(0) ∈ 𝐻𝑠−1−𝑟(𝛺; R𝑚) for 0 ≤ 𝑟 ≤ 𝑠−1
and the initial values fulfill 𝑣0 ∈ 𝐻𝑠(𝛺; R𝑚).

(vii) The data 𝑤, 𝑣0 fulfill the compatibility conditions of order 𝑠 − 1 for 
the initial boundary value problem (63)–(65).

Then the solution 𝑣 obeys for positive constants 𝑐1, 𝑐2 the estimate

|||𝑣(𝑡)|||𝑠,∗ ≤ 𝑐1
(

‖𝑣0‖𝐻𝑠(𝛺;R𝑚) + |||𝑤(0)|||𝑠−1
)

e𝑐2𝑡

+ 𝑐2 ∫

𝑡

0
e𝑐2(𝑡−𝜏)|||𝑤(𝜏)|||𝑠,∗ d𝜏, 𝑡 ∈ [0, 𝑇 ]. (111)

Remark 4.  The condition (v) in Theorem  2 means that 

⟨𝐴𝜈 (𝑥, 𝑡)𝑧, 𝑧⟩ ≥ 0 for all (𝑥, 𝑡) ∈ 𝛤 × [0, 𝑇 ], 𝑧 ∈ ker𝑀(𝑥) (112)

and ker𝑀 as a subspace of C𝑚 cannot be enlarged while (112) remains 
valid.

The compatibility conditions on 𝑤 and 𝑣0 up to order 𝑠 − 1 are 
canonical as in (31). One takes spatial derivatives up to order 𝑠 − 1
of the system, resolves 𝜕𝑝𝑡 𝑣 for 0 ≤ 𝑝 ≤ 𝑠 − 1 and evaluates the result 
at 𝑡 = 0. In detail, the procedure is as follows, cf. Ohno et al. (1995, 
p.169). For 𝑝 = 0, set 𝑣0,0 ∶= 𝑣0. For 𝑝 = 1, 2,… , 𝑠 − 1, set iteratively

𝑣0,𝑝 ∶=
𝑝−1
∑

𝑖=0

( 𝑝−1
𝑖
)

𝐺𝑖(0)𝑣0,𝑝−1−𝑖 + 𝜕𝑝−1
𝑡 (𝐴−1

0 𝑤)(0) in 𝛺,

where

𝐺0(𝑡) ∶= −
𝑛
∑

𝑘=1
𝐴−1
0 𝐴𝑘𝜕𝑘 − 𝐴−1

0 𝐵,

𝐺𝑖(𝑡) ∶= −
𝑛
∑

𝑘=1
𝜕𝑖𝑡 (𝐴

−1
0 𝐴𝑘)𝜕𝑘 − 𝜕𝑖𝑡 (𝐴

−1
0 𝐵), 𝑖 ≥ 1.

Then, the compatibility conditions up to order 𝑠 − 1 are 

𝑀𝑣0,𝑝 = 0 on 𝛤  for 0 ≤ 𝑝 ≤ 𝑠 − 1. (113)

Corollary 3.  Let 𝑛 = 3 and 𝛺 ⊂ R3 be a bounded open set with boundary 
𝛤  of class 𝐶∞. Assume (26) and let (A0)–(A4) be satisfied for an integer 
𝑠 ≥ 1. Let 𝑢0, 𝑢 satisfy the compatibility conditions up to order 𝑠+1. Let C𝜈
be defined by (61) and assume that 

dim ker(C𝜈) = const > 0 on every component of 𝛤 . (114)

Then there exists a unique solution (𝜇, 𝜎, 𝑢) of the Willis system (33)–(37) 
which satisfies

𝑢 ∈
𝑠+1
⋂

𝑟=0
𝐶𝑟([0, 𝑇 ]; 𝐻𝑠+1−𝑟

∗ (𝛺; R𝑛)), (115)

𝜇, 𝜎 ∈
𝑠
⋂

𝑟=0
𝐶𝑟([0, 𝑇 ]; 𝐻𝑠−𝑟

∗ (𝛺; R𝑛)). (116)

Proof.  We need to validate (i)–(vii) of Theorem  2 for 𝑛 = 3. Clearly (i) 
holds by assumption and (ii) follows from (A0) and (69). Condition (iii) 
follows as in Corollary  1 from Lemma  1, the symmetry (20) and the 
positivity condition (23) on 𝜚.

The condition 𝑣0 ∈ 𝐻𝑠(𝛺; R𝑚) in (vi) follows from (A0)–(A3). By 
(29) and (51) the condition on 𝜕𝑟𝑡𝑤(0) in (vi) is ensured. Finally, due 
to (30), the remaining condition 𝑤 ∈ 𝑊 𝑠

∗ (0, 𝑇 ; 𝛺)𝑚 from (vi) is also 
satisfied.
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Writing C𝜈
𝑘 ∶= 𝜈1C1

𝑘 + 𝜈2C2
𝑘 + 𝜈3C3

𝑘 for 𝑘 = 1, 2, 3, due to (67) and 
(101), we have 

A� =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −C�

1
0

0 0 0 −C�

2
0

0 0 0 −C�

3
0

−C�

1
−C�

2
−C�

3
0 0

0 0 0 0 (�1 + �2 + �3)1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈ R15×15
. (117)

Let 𝑧 ∶= (𝑧1, 𝑧2,… , 𝑧5)𝑇 ∈ R15 be a vector consisting of blocks 𝑧𝑘 ∈ R3

for 𝑘 = 1,… , 5. Evaluating 𝐴𝜈𝑧 = 0 leads to 𝑧4 = 𝑧5 = 0 and
C𝜈
1𝑧

1 + C𝜈
2𝑧

2 + C𝜈
3𝑧

3 = 0 ∈ R3

which is equivalent to 𝑧4 = 𝑧5 = 0 and 
(𝑧1, 𝑧2, 𝑧3)𝑇 ∈ ker(C𝜈 ) (118)

with C𝜈 ∈ R9×9 defined in (61). So we obtain 

ker 𝐴𝜈(𝑥) =
{

𝑧 = (𝑧1,… , 𝑧5)𝑇 ∈ R15 |
|

|

𝑧4 = 𝑧5 = 0, (𝑧1, 𝑧2, 𝑧3)𝑇 ∈ ker(C𝜈(𝑥))
}

,

𝑥 ∈ 𝛤 .

(119)

This demonstrates that 0 < dim ker 𝐴𝜈(𝑥) < 𝑚 for 𝑥 ∈ 𝛤 . Due to (69), we 
find

ker𝑀(𝑥) =
{

𝑧 = (𝑧1,… , 𝑧5)𝑇 ∈ R15 |
|

|

𝑧5 = 0, (𝑧1, 𝑧2, 𝑧3)𝑇 ∈ ker(C𝜈(𝑥))
}

, 𝑥 ∈ 𝛤 .

(120)

With Assumption (114), this implies (iv) of Theorem  2.
For a vector 𝑧 = (𝑧1,… , 𝑧5)𝑇 ∈ ker(𝑀(𝑥)), the condition (112) 

becomes with 𝜈 = 𝜈(𝑥)

⟨𝐴𝜈𝑧, 𝑧⟩ = − ⟨C𝜈
1𝑧

4, 𝑧1⟩ − ⟨C𝜈
2𝑧

4, 𝑧2⟩ − ⟨C𝜈
3𝑧

4, 𝑧3⟩

− ⟨C𝜈
1𝑧

1, 𝑧4⟩ − ⟨C𝜈
2𝑧

2, 𝑧4⟩ − ⟨C𝜈
3𝑧

3, 𝑧4⟩ ≥ 0.

Due to the symmetry of C𝜈
𝑘, this is equivalent to

⟨C𝜈
1𝑧

1 + C𝜈
2𝑧

2 + C𝜈
3𝑧

3, 𝑧4⟩ ≤ 0.

Since 𝑧4 for 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5) ∈ ker(𝑀) is arbitrary, we must have 
C𝜈
1𝑧

1 + C𝜈
2𝑧

2 + C𝜈
3𝑧

3 = 0 or 

𝜈1(C1
1𝑧

1+C1
2𝑧

2+C1
3𝑧

3)+𝜈2(C2
1𝑧

1+C2
2𝑧

2+C2
3𝑧

3)+𝜈3(C3
1𝑧

1+C3
2𝑧

2+C3
3𝑧

3) = 0.

(121)

This last condition (121) is equivalent to C𝜈 (𝑧1, 𝑧2, 𝑧3) = 0 which 
holds due to (120). Geometrically, Eq. (121) ensures that all tangen-
tial derivatives of 𝑢̃ vanish along 𝛤 . In summary, (112) holds with 
equality and enlarging ker(𝑀) violates (121). This proves the remaining 
condition (v) in Theorem  2. □

5. Concluding remarks

In this article, three existence and uniqueness results for (weak) 
solutions to a system of partial differential equations related to the 
Willis model have been derived, both for the whole space case and for 
bounded domains. The investigated system (33)–(35) differs from the 
original Willis equations in that no explicit form of 𝑆, e.g. no convo-
lution expression, is postulated. In addition to the natural symmetry 
condition (25) on 𝑆 which guarantees the symmetry of the Cauchy 
stress tensor 𝜎, a second symmetry condition (26) has to be imposed 
for the analysis. This condition appears to be necessary mathematically 
and admits to write (33)–(35) as a linear symmetric hyperbolic system 
of first order. Combined, (25) and (26) impose strong restrictions on 𝑆: 
the third-order Willis coupling tensor must be totally symmetric. It has 
to be checked experimentally whether these conditions are satisfied for 
a real-world material. At this point we have no rigorous physical justifi-
cation for (26). We refer to Muhlestein et al. (2016) for a discussion of 
9 
necessary conditions on the quantities of the Willis system in order to 
have a physically correct model. Since inhomogeneous dynamic linear 
elasticity constitutes a linear symmetric hyperbolic system, Hughes and 
Marsden (1977), Sfyris (2024), so should be any homogenized problem 
based on the former, here the Willis equations. The condition (26) 
seems to be a welcome novel restriction on the Willis coupling tensor 
𝑆 introduced by this requirement.

In summary, with the additional symmetry condition (26), after 
establishing suitable structural assumptions, mostly on 𝑆 and 𝜚, the 
existence and uniqueness of a (weak) solution follows from established 
existence results for linear symmetric first-order hyperbolic systems. If 
the initial and boundary data is regular enough, even a unique classical 
solution is obtained. Finally, in bounded domains, the condition (114) 
is essential for the existence theory. Its validity depends crucially on 
material properties.
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