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Abstract

Kohn-Sham density functional theory (K-S DFT) is widely used to study the electronic
structure of materials. The central difficulty in K-S DFT involves the solution of a non-linear
eigenvalue problem. This non-linear problem is solved numerically by the self-consistent field
method, a fixed point iteration approach, which yields linear eigenvalue problems. Typical
solution of the linear eigenvalue problem is to diagonalize the matrix of the differential operator,
the Hamiltonian of the system. There have been approximate solutions to K-S DFT that
exploit spectral theory of self-adjoint operators, known as the density matrix expansion methods.
These methods can avoid diagonalization of the Hamiltonian matrix. They are increasingly
used to study the linearized problem because of their computational efficiency. Although these
approximations have been verified numerically, the relationship between these approximations
of the linearized problem and the original non-linear problem remain incompletely understood.
Further, these methods assume smoothness that give rise to errors in conductors. In this paper,
we reformulate K-S DFT as a nested variational problem that enables density matrix expansions.
We introduce a new approximation, called the spectral binning discretization, which does not
require smoothness. We show convergence with respect to both spectral binning discretization
and with spatial discretization.

1 Introduction

The wave formulation of quantum mechanics proposed by Erwin Schrédinger in 1926 can be used in
theory to quantitatively study the electronic structure of materials. However, it is limited to only
a handful of electrons due to the high dimensionality of the resulting partial-differential equation.
An approximate formulation, called the Hartree-Fock (H-F) method, was introduced in 1930 to
reduce the dimensionality of the wave formulation. This reduction is achieved by variationally
minimizing the energy over the set of Slater—determinant combinations of independent-electron
orbitals, resulting in a non-linear eigenvalue problem in three dimensions [22]. The solution of the
H-F equations is nevertheless cumbersome.

Density functional theory (DFT) developed by Kohn and Hohenberg in 1964 lay the foundation
for the majority of approximate quantum mechanical methods used today. The Kohn-Hohenberg
theorem provides a one-to-one correspondence between the ground-state electron density and the
ground-state energy; thereby proving the existence of an ground-state energy functional that de-
pends only the ground-state electron density. However, the exact form of the energy functional



is unknown. Shortly after, Kohn and Sham introduced the Kohn-Sham density functional theory
(K-S DFT), which provided an approximate energy functional by introducing explicit models for
the kinetic energy and exchange-correlation functionals of the electron density. The resulting K-S
problem is also a non-linear eigenvalue problem in three dimensions, but its non-linearity is less
computational intensive than the H-F formulation. K-S DFT is widely used to study the electronic
structure of materials ranging from molecules, macromolecules to crystalline solids [22].

The non-linear Kohn-Sham equations are solved by fixed point iterations or the self-consistent
field method. In each step of the iteration, one calculates the sum of the N lowest eigenvalues
of the linearized Hamiltonian and the resulting electron density, where N denotes the number of
electrons in the system of interest. If this procedure is carried out using direct diagonalization, the
computational effort scales to the third power (O(N?3)) with respect to the number of electrons
N in the system. This scaling limits K-S DFT calculations routinely to systems with only a few
hundred to thousand electrons. With pseudo-potential approximations, where the core electrons
are lumped with the nuclei, K-S DFT calculations can be done for a few hundred atoms.

However, hundreds of atoms are not sufficient to study materials with defects or complex macro-
molecules. Defects often occur in real materials in parts per million concentrations. Therefore, a
number of linear-scaling algorithms, where the computational cost scales linearly (O(N)), have
been developed (see [19, 7] for a review, and [5, 20, 29, 30, 26, 32] for specific implementations).
The key idea behind these methods is to introduce the density matriz,

v= ) i ®,

1<i<N

where v; denotes the eigenvectors corresponding to the lowest eigenvalues of the linearized Hamil-
tonian H. It follows then from spectral theory (cf. for example [24]) that

where the occupancy function f: R — R is

L1, A<y,
F) = { 0, otherwise.

It is common at this stage to regularize f by introducing a temperature ¢ and to replace it with
the Fermi-Dirac distribution,

1
FD
)\ = —_—
f ( ) 1+exp )\—U)\N

(2)

Note that the regularization can be made exact in insulators/semiconductors where there is a
non-zero gap between Ay and Ay.y1, but is only approximate in conductors.

The main idea behind the linear-scaling methods is to expand f'P using polynomials, rational
functions, etc. In some methods (e.g., [5]), a proper choice of spatial discretization leads to a fast
decay of the off-diagonal elements of v. Therefore, one truncates v to obtain a banded matrix.
The expansion can then be carried out at linear-computational cost. In the recently introduced
linear-scaling spectral Gauss quadrature (LSSGQ) method, [27], one takes advantage of the sparsity
of the Hamiltonian matrix as result of an appropriate basis set in the Lanczos iteration to obtain
linear-scaling without truncating the density matrix.

All these linear-scaling methods, with or without truncation, have two significant shortcomings.
Firstly, they approximate the density matrix of the linearized problem obtained from an iteration of
the self-consistent scheme. There are results that establish the convergence in the linearized eigen-
value problem, [29]. However, to our knowledge, there is no rigorous study showing convergence



of this approach to the original Kohn-Sham equations. Secondly, they involve the regularization of
the occupancy function. These two shortcomings motivate the work presented in this paper.

The original Kohn-Sham equations may be written as a variational principle over the density
matrices, trace-class operators. In fact, Anantharaman and Cances, [2], have done so rigorously and
proved existence of solutions to this variational problem even in an unbounded domain. However,
the functional is not amenable to the application of simple spectral representation.

In this work, we reformulate the variational principle to enable simple spectral representation.
The main idea is to use duality in the exchange-correlation functional, thereby converting the
original formulation to a nested variational problem. The resulting functional is linear in the
density matrix and thus amenable to simple spectral representation.

We then introduce a new class of operator approximations, spectral binning discretization,
using simple functions on the spectrum that enables an accurate representation of the occupancy
function without regularization. We show convergence with respect to combined spatial and spectral
discretizations.

While spectral binning discretization provides an exact representation, a practical and efficient
numerical implementation remains an open issue. As a first step, we study a linear one-dimensional
model problem that has been used as a step towards Kohn-Sham equations, and show that spectral
binning discretization is potentially very attractive.

This paper is organized as follows. Section 2 recalls the Kohn-Sham density functional theory
and reformulates it as a nested variational problem. Section 3 collects the main theorems of
existence and convergence. Section 4 presents the proof of the existence of minimizers. Section 5
describes spatial and spectral discretization. Section 6 presents the proof of convergence with
combined spatial and spectral discretization. Section 7 is a numerical demonstration of spectral
binning in a one-dimensional linear model-problem.

2 Kohn-Sham density functional theory

For simplicity, we restrict ourselves to closed-shell, spin-unpolarized systems. We also restrict
ourselves to an open and bounded subset  of R3. This is an important restriction since the
formulation in R? introduces non-trivial difficulties. We also restrict ourselves to the local density
approximation (LDA) for the exchange-correlation. Finally we make, as common in this subject,
the Born-Oppenheimer hypothesis that the atomic nuclei are classical. So we hold the nuclei fixed
in the rest of the section.

We start with the operator formulation due to Anantharaman and Cances, [2]. The connection
to the traditional orbital formulation is given in Appendix B.

2.1 Operator formulation
Let V:Wé’Q(Q), H=L2(2) and &1 be the vector space of self-adjoint, trace-class operators on H,
61 ={y € SMH) : Tr(|y]) < oo}, 3)
where |y| = /v7*. &1 is a separable Banach space [4]. Within &1, we can introduce the space
X ={y€61:|V[|V]€ &},
and the constrained set of admissible reduced one-particle density operators,

Kn={yeXx :0<~y<1,Tr(y) =N} (4)



Remark 2.1 As stated in [2], for every v € Ky, we have the canonical representation in the
continuous r basis,

') = 20;6(r)&(r), (5)
=1

where & €V for all i € N, the factor of 2 simply accounting for spin unpolarization, and
oo
0 S (67 S 1, / fl(r)fj(r) dr = 51']', 22011 =N
Q i=1

We can define the electron density for every v € Ky as

P (x) = 7(x,1).

We consider a system of M atoms with nuclei located at {R} = {Ry,..., Ry} C © and nuclear
charges 71, ..., Zyr. We now follow Anantharaman and Cances, [2], and define the extended Kohn-
Sham energy functional EPXS : Iy — R as

EFKS (v) = Ts(v) + EH(p'y) + Eext (P'y) + Ezz + EXC(P'y)a (6)

where Tg is the kinetic energy of the non-interacting electrons,

Ty(y) = Tr (—;m) |

Fy is the Hartree energy representing the classical electrostatic repulsion energy for a given electron

density,
P'y /
/ / ‘r_r,‘ ) dr dr (7)

Foxt is the interaction energy between the nuclear charges and the electrons,

Zr
Ees(p) = [ proVeslr (R ar = [ o0 [ 3 22 (¥
Q Q \<I<M R; —r|
FE7y is the classical electrostatic repulsion energy due to the nuclear charges,
1 YAVA
Eyy = — St A 9
Y2 1<I;<M Ry — Ry v

and Fy.(p) is the exchange-correlation energy that is split into two terms (cf. [23]),

Buclpy) = Bulp) + Eelp) = [ hipr) . (10)

with an exchange term,

Ex(py) = —i(6>1/3/ﬂpf‘;/3(r) dr,

™

and a correlation term,

Ee(py) = /Q oo (1)) () dr,
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where €. is taken from [23]. The connection of this formulation to the traditional formulation is in
Appendix A.
The ground-state energy of the extended Kohn-Sham energy functional is

EEIS(S: inf EEKS(’y).
YEKN

The existence of minimizers of the extended Kohn-Sham energy functional has been shown in [2].

2.2 Reformulation

The above formulation of the extended K-S energy functional is not amenable to spectral dis-
cretization algorithms because of the non-linearity in the terms Fy and Ey.. To overcome this, we
reformulate these terms as follows.

2.2.1 Electrostatics

We reformulate the electrostatic terms by writing them as the solution to a Helmholtz problem
(cf., e.g., [3, 28]). We approximate the nuclear charges at a given atomic site R; by a regularized
and bounded nuclear charge distribution —Z; fr, (r) with compact support on a small ball centered
at R; satisfying

/QfRi(r) dr = 1.

We can then rewrite the electrostatic terms as the variational problem
EH(PW) + Eext(/’v) + Ezz,

~sup {—C's [ womPar+ [ o R + 5y w)o0) dr} T Cr

PEV

where

M
b(r,{R}) = > Zifw,(r),
i=1

Cgs > 0 is a constant depending on the spatial dimension S (e.g. Cg = Siw for S = 3); Cgelr is an
inessential constant that depends only on the regularization fgr, and is independent of p, and {R}.

To clarify the dependence of the electrostatic terms on -+, we introduce an unbounded local
operator,

®(r,r’) = ¢(r)d(r, '), (11)

and use its coordinate representation so that
T0(#) = [ d(r)p, (),
The Coulomb energy is

J(P’y) = EH(P’y) + Eext(P’y) + Ezz

= sup {Tr(CIYy) — CS/Q |Vo(r))? dr + /Q b(r,{R})o(r) dr} + Csels. (12)

PEV



2.2.2 Exchange-correlation energy

Next we reformulate the exchange-correlation energy Fy.. We make the following assumptions on
the integrand h(t) in the exchange-correlation energy introduced in equation (10):

(P1) Smoothness condition: the function h : Ry — R and h(t) € C*(R3).
(P2) Curvature condition: the function h is concave in R™.

(P3) Zero density condition:
h(0) = 0. (13)

(P4) Non-positivity condition: it holds h(t) < 0 for all t € R™.
(P5) Decay condition: for t € RT the function h satisfies
R'(t) < 0. (14)
(P6) Growth conditions: for t € RT, the function h satisfies the bounds
C1[t|*3 + Cy < |h(t)| < Csft|*® + Cy, (15)

for some real constants C; > 0, Cy <0, C3 > 0 and Cy4 > 0.

By reflection, we can extend h to a function from R to R, setting h(t) = h(|t|) for t < 0. This
extended function, again denoted by h, is continuous in R due to property (P3).

Remark 2.2 Since h(t) is continuous in R and since |h(t)| < Cg’t’% + Cy from the upper bound
in (15), with Fatou’s Lemma it follows that Exc(p-) is continuous in L'%(R?’).

We proceed to rewrite the exchange-correlation functional using a Legendre transform. We define

Bxe(py) = = Exe(py)-

From property (P2) of the exchange-correlation function h, By.(py) is a convex and continuous
functional in £%/3(R3). Let
U= L*R?). (16)

As explained in Appendix B, there exists a dual functional B} (u) : U — R such that

Bxe(py) = sup{(py, u) — B (u)},
uel
where the dual product (v,u) for any v € £*3(R3) and u € £L*(R3) is defined by
(v,u) = / v(r)u(r)dr.
Q

Using arguments from [13], we can rewrite the exchange-correlation functional,

EXC(/)W) = _BXC(p’Y)
= - 21615{@0% u) — By (u)}

= inf {~(p,,u) + Bio(w)}.



Finally, we introduce the unbounded local operator
Ulr, ') = u(e)o(r,r), (17)
using its coordinate representation. We can then rewrite the exchange-correlation functional as

Eyelpy) = inf {=Tr(U7) + Ble(w)}: (18)

2.2.3 Reformulated Extended Kohn-Sham Functional

Substituting (12) and (18) in (6) and omitting the inessential constant Cg.¢ for brevity, we obtain
the reformulated extended K-S(REKS) energy functional EREKS : IOy — R as

EMFES(y) = inf sup L(u, ¢,7), (19)
uel ey
where L : U x V x Ky is
L(u, 6,7) = Te(H (¢, u)y) + /Q (= CsIVé@)? + bR, r)é(r)) dr + Bl (w), (20)

with the Hamiltonian )
H(p,u) = —§A+<I> -U

and ®, U defined in (11), (17).
The ground-state energy of the system with M atoms is

eég}KS — inf EREKS (,7)
YEKN

= inf infsupl 21
ferzlcNiréuZEE (u, ,7) (21)

yEKN ueld bV

= inf inf sup {Tr(H(gZ), u)y) + /Q (— Cs|Vo(r)” + b(r, {R})e(r)) dr + B;C(u)}

3 Main results
We have the following theorems on the reformulated extended K-S functional.

Theorem 1 The reformulated extended K-S energy functional ERFES (v) in (19) possesses a min-
mmizer in KCn.

Theorem 2 The order of the infimum and supremum in the computation of the ground-state energy
of the reformulated K-S energy functional (21) can be exchanged,

REKS : :
— inf inf sup L
cas™ = il nf sup (u, &, )
= inf sup inf L(u,¢,7), 22
dnf,sup f L0w97) (22)

where L is given by (20).



Theorem 2 enables the spectral discretization. Note that v appears linearly in the functional L
and only in Tr(H (¢, u)7y). It is easy to show that for every u € U and every ¢ € V,

inf Tr(H(¢,u)y)
YEKN

is attained and the minimizer commutes with . Therefore the problem is unchanged if we seek the
infimum over a subset IC% C Ky of operators that commute with H or equivalently over the Borel
functions of H (see (41) below). We obtain a spectral discretization by limiting v to K&, made of
k simple functions of H (see (49) below). ,

We are also interested in spatial discretization. Hence we consider finite-dimensional subspaces
V; and U; of V and U respectively, with H 7, L7 to be discrete Hamiltonian and functional on these
subspaces.

We have the following result on the combined convergence with respect to spatial and spectral
discretization.

Theorem 3 Let kj — oo as j — oo. Then, the diagonal sequence of spatially and spectrally
discrete reformulated extended K-S energies converges to the full K-S ground-state energy,

lim infsup inf L7(u,¢,v) =infsup inf L(u,¢,v) = a%EKS.
Jj—oo U; . KHJ'(¢,u) U y
J N,k N

4 Existence of solutions

To establish the existence of minimizers in Ky for the KS-DFT problem in equation (19), we use
similar tools as the more general proof given by Anantharaman and Cances in [2] and restate their
results for an open, bounded, and Lipschitz domain €2 for completeness.

The proof follows the framework of the direct method in the calculus of variations. We consider
the weak*-topology of the vector space X endowed with the norm

|- Ml = Te(] - ) + Tr(

V-1V

in the convex set Ky defined in (4).

For the clarity of notation, in the remainder of this paper, we change our notation on the
repulsive energy functionals (10), (12) as to emphasize their dependence on the reduced one-particle
density operator,

Exe(7) = Exc(py),
J6) = Jipy).

Remark 4.1 Since X is a separable and normed linear space, every uniformly bounded sequence
{intnen in X contains a weak*-convergent subsequence.

For a proof of Remark 4.1, see for instance Part II of Theorem 2.2.1 in [15].



Let vol(€2) denote the 3-dimensional Lebesgue measure of the bounded domain €.

Lemma 4.2 For all v € Ky, the following inequalities hold.

1. Lower bound on the kinetic energy,
1 1 1
STV < TH(= A7) = STV 9))

2. Lower bound on the Coulomb energy,

0<J().

3. Lower bound on the exchange-correlation energy,

—C3(volQ) T3N3 — Cy(volQ) < Eye(7).

4. Lower bound on the reformulated extended K-S energy functional,

[vllx — Cs < ERFES(4)

(23)

(24)

(25)

for a constant Cs > 0 independent of . In particular, by (25), ERFRS(v) is coercive w.r.t.

the weak*-topology of X .

Proof 1. Lower bound on the kinetic energy. In the canonical representation, the electron

density is
o0
= Z 204,‘&(1‘)2
i=1
By direct inspection and Cauchy—Schwarz’s inequality, we find

o 21072 () VE(r)]?
Vvl = > ooy i&i(r)?

< 2> 2 qil&i(r )[? Do i V&(r r)|?
N Zi:1 a;&i(r ) .

After integration, this yields
1 1 1
SNVl < Tr(—5A7) = STe(Th|9)).

2. Lower bound on the Coulomb energy. It holds

—sup{/qﬁ b({R},r) + py(r ))dr—Cs/|V<z§ \2dr}>0

PEV

where we use the test function ¢(r) = 0 in Q to obtain the lower bound.

(26)



3. Lower bound on the exchange-correlation energy.

Using the bounds from equation (89) in Appendix B, the LDA exchange-correlation functional
integrand h in equation (10) is bounded from below,

Exc(’Y) = 52{{{_Tr(U7) + B;:C(“’)}

> inf {~Te(U) + Cusllullbagqy + Cro(vol2)}

= ~Tr(Uy) + sl | 1) + Cr0(vol2) (27)
> —Tr(U,y) + Cig(volf2)
> —C(vol)™/3(Tr(7))¥? + Cyo(vol)

= —C(volQ)~V3NY3 4 C19(volQ), (28)

where w., denotes a minimizer of equation (27) and U, is its corresponding operator. It is
evident that there exists a minimizer for the variational problem (27).

4. Lower bound on ERFXS  Coercivity of ERFKS,

Putting together all the inequalities in the equations (26) and (28), we end up with

ERERS(4) > T (- %m)70(v019)—1/3N4/3+019(vom) = ~(Te(|V ]y V)+Te(]7]))~Cs. (29)

N =

Here, we introduced the new constant
_ —1/3 nr4/3 N
C5 = C(volQ) N*° — Chig(volQ2) + 5

For the derivation of (29), we used that for every v € Ky, directly from the definition of this
set,
Tr(y) = Tr(ly]) = N.

The estimate (29) implies that for any ¢ € R the level sets
{veKn:EREES(q) <t}

are bounded,

1
9 72

Consequently there exists a subsequence of ~, that converges w.r.t. the weak*-topology and
we conclude that ERFKS(v) is coercive w.r.t. the weak*-topology in Ky. O

14 Cs > S (Tr(]) + TV V) =

Lemma 4.3 The set Ky is closed in X w.r.t. the weak®-topology.

Proof Let €(H) denote the vector space of compact linear operators on H. For all v, A, we
have Tr(v, W) — Tr(yW) for all W € €(H) in the limit n — oo.
We define the rank-one operator

W = [¢) (],

where [[1)]| z2(q) = 1. Due to the weak*-convergence of vy,

0 < lim Tr(y,W) = Tr(yW), (30)

n—oo

10



and
Tr(yW) = Tim Te(y,W) = Tim (¢, 7m¢) < (,4) = 1. (31)

Since the estimate (31) holds for all normalized ¢ € H, we find with (30) that 0 <~ < 1.

Since Y, — 7, ||7m|l1 is bounded independently of n, see Proposition 3.13 in [9]. From equa-
tion (23) we have that {,/p, }nen is bounded in W&’2(Q). Therefore there exists a subsequence
{\/Pn, bien that converges weakly to ,/py in W&’Q(Q). By the compact embedding of WS’Q(Q) in
LP(€), the subsequence {\/PwTi}ieN converges strongly to ,/p, in LP(Q) for all 2 < p < 6, see, e.g.,
[1]. These considerations show that

lim Tx(y,) = lim | py, de= lim [/ ]2 = /55l = / pydr = Tr(y).

n—oo

Hence the set Ky is closed w.r.t. the weak*-topology on X. [J

Lemma 4.4 The functional J(7) introduced in (12) is lower semi-continuous w.r.t. the weak"-
topology on X.

Proof We begin by showing that Tr(®-) defines a bounded linear functional on Ky,

Te(@y)] = | Yo (@6, 60| < 3 2ail(@g, )
=1 i=1

<> 20418l 2o 1€ 1 2() = 18]l 220 22057;"51'“%4(9)
i—1 i

< C||¢HL2(Q) 20y | V&H%z Q) — C||¢||L2(Q) Ir(—Ay), (32)
()
=1

where {¢;}ieny come from the canonical representation of v € Ky, cf. equation (5), and the
Gagliardo—Nirenberg—Sobolev inequality has been used to obtain equation (32). Consequently,

J(7) = sup {Tr(%) + /Q (b(r. {R})e(r) — Cs|V¢(r)|2)dr}

IS%

is the point-wise supremum over a family of continuous affine functionals on Kp. Hence it is also
lower semi-continuous with respect to the weak*-topology on Kpn. [

Lemma 4.5 Ey.(v) is continuous w.r.t. the weak*-topology on X .

Proof Similar to the proof in Lemma 4.4, we can show that Tr(U~) defines a continuous affine
functional on Ky for every u € U. We prove the continuity of Fy.(v) with respect to the weak*-
topology using techniques of I'-convergence.
For every sequence 7, such that v, — ~ in Ky, we consider the family of functionals on U
indexed by n defined by
~TH(UA) + Biu(u).

We show that this family of functionals I'-converges with respect to the weak*-topology to the
functional
—Tr(U~) + Bx.(u)

for all 7, = v in Ky.

11



For the lim-inf condition, we need to show that for every v € U and for all u,, — u,

lim inf{=Tr(Unyn) + Bye(un)} = =Tr(Uy) + By (u).

Since 7y,, = 7, for every member of a complete orthonormal basis in £2(Q), {&}ien C Wé’Q(Q), we
have

Jim (7,83, 0) = (763, 0)-

From the proof of Lemma 4.3, we have p,, — p, in L£2(Q). Therefore lim, o Tr(Uyy,) =
Tr(U#~). In addition, Bj.(u) is weakly lower semi-continuous by duality and convexity. So, the
lim-inf condition is proven.

For the lim-sup condition, we choose the trivial recovery sequence u,, = u for every u € U,
implying

lim sup{—Tr(Unyn) + Bi(un)} = =Tr(Uv) + B (u).

n—oo

Lastly, to show equi-coercivity of the functionals, from equation (89) in Appendix B,

~Tr(uyn) + Bo(u) > Cusllullf — (sup Co) ull 20y + Ciol(vol2),

where C,, = Tr(—A~,), and C,, is bounded since 7, —  in X. Therefore the family of functionals
—Tr(uym) + Bie(u)
is equi-coercive. Using Theorem 7.8 in [12], we have

Jim Exe(yn) = lim inf {=Tr(Urn) + By(u)} = inf {Tr(Un) + Bye(u)} = Bxe(7). O

Lemma 4.6 Let {v,}nen be a sequence of elements in Ky which converges to ~ in the weak*-
topology of X. Then
ERERS () < lim inf ERFES (4.
n—oo
Proof To prove the lower semi-continuity of ERFKS () we use the continuity of the functional
J(7) from Lemma 4.4 and the continuity of Fy.(v) from Remark 2.2 w.r.t. the weak*-topology.
For any orthonormal basis {1, }ren of £2(€2) such that ¢ € W2(Q) for all k, we have

Tr(=Av) = Te([VIy|V])

=Y Wl IVIIVI[n)
k=1

> T (V1) (V1))

k=1

= > lim Te(3 (|| V) (IVIx])
k=1

< Iggg.}fl;Tr(%(HV¢k><\v|¢k‘))
= 1in1)infTr(|V|’yn|V|). (33)
This proves the lower semi-continuity of the functional ERFKS (). O

12



EREKS(

Theorem 1 The reformulated extended K-S energy functional ) possesses a minimizer in

Kn.

Proof Consider a minimizing sequence {v,}neny of ERFES(5) in Ky. From Lemma 4.2 and
Lemma 4.1, we know that (y,)neny has a weak*-converging subsequence. By the closure of the
subset Kp, this subsequence converges to some 79 € K. Using the lower semi-continuity of
EREKS 1 t. the weak*-convergence in X, it follows

inf EREKS(y) < ERERS(40) < liminf ERERS () = inf EREKS(4),
vEKN n—00 vYEKN

Hence the existence of a minimizer of ERFKS in Ky is established. O

5 Discretization of the energy functional

Next we introduce both the spectral and spatial discretization of the reformulated extended K-S
energy functional and prove the convergence of simultaneously discretizing the energy functional
both spatially and spectrally.

5.1 Justification of the spectral discretization

Before we can apply spectral discretization, as it will be evident subsequently, we have to prove that
the spinless one-particle density operator that minimizes E#F%5(v) can be written as a spectral
function of the Hamiltonian H (¢, u).

We recall the definition of L : U x V x Ky from equation (20),

L(u, é,7) = Tr(H (6, u)) + /Q (= Cs|Vo() 2 + b({R}, 1)(x)) dr + Bl(u).

The ground-state energy equals, cf. the equations (19) and (20),

REKS e
€ = inf inf sup L(u, ¢,).
GS yeX N ueld qﬁeg ( (b fY)

Since we can exchange the order of the infima, the ground-state energy is also equal to

REKS : :
€ = inf inf sup L(u,®,~). 34
GS it ¢>e€ (u, ¢, 7) (34)

Now we derive sufficient properties of L(u,-,-) that enable us to exchange the order of the
infimum over v € L and the supremum over ¢ € V.

Lemma 5.1 For every u € U and every ¢ € V, the functional L(u,d,-) is convex and lower
semi-continuous with respect to v in X. In addition, for every ¢ €V,

lim  L(u,¢,v) = +o0. (35)

71l —=+00

Proof For given u and ¢, the convexity of L(u, ¢, ) is evident since the terms involving ~ are linear
functionals of ~.

Regarding the lower semi-continuity of L(u, ¢,-), from Lemma 4.6 we observe that Tr(—%A’y)
is lower semi-continuous in X’. Since for every sequence 7, — 7 in Ky by compact embedding it
holds p., — py in £2(£2), the functionals Tr(®~) and Tr(U+) are also continuous in X.

13



Since u € U C L2(Q), it holds for every v € Ky,

L(w,6,7) = Tr(~ &) + Ta(®7) — Te(U)

1

2 Te(=5A7) = (lullz2@) + 0l c2@)llprlle2@)
1 1 3

2 Tr(=5 A7) = Co(llull c2(0) + @l 2@ 1oyl 21 gy 1911 230 (36)
1 1 3

2 Tr(=5A7) = Cr(llull c2(0) + 101l 22@) Tr (VD 21V VA3l 220 (37)

for some positive real constants Cg and C7, where interpolation inequalities are used to obtain
equation (36) and the Gagliardo—Nirenberg—Sobolev inequality is used to obtain equation (37).

Hence
1 2 N
L(U,qb,’}/) > §||’Y||X - CSHV\/ p"Y”L?(Q) - ?’

where Cg = C’7N1/4(Hu\|52(9) + [|#llz2(q2)), implying the coercivity (35) of L(u, ¢,-). O

Lemma 5.2 For every u € U and every v € Ky, the functional L(u,-,v) is concave and upper
semi-continuous with respect to ¢ in V. In addition,

L(u, ¢,7v) = —o0.

llolly—-+o0
Proof For given u and =, the terms Tr(®y) and [, b(r, {R})¢(r)dr are linear functionals of ¢,
so they are concave. The term —Cg [, [V¢(r)[*dr is quadratic and concave in |[V¢(r)|. Hence,
L(u,-,7) is concave.

Concerning the upper semi-continuity of L(u,-,7), by using arguments similar to those in
Lemma 5.1, we observe that Tr(®y) and [, b(r, {R})(r) dr are continuous in V for given b(r, {R})
and v € Ky. The quadratic term —C [, [V(r)|? dr is upper semi-continuous in V as a result of
Proposition 2.1 in [12].

Finally, for every v € Ky,

~L(u,6,7) 2 Cs [Vl Zz2iq) = 0]l 20 oy +b(r, {R})l| 22(2) + Colu, 7)
> CuollélZ2() = 0l e lloy +b(r, {R})| c2(@) + Colu, ), (38)

where the Poincaré inequality has been used to derive the second estimate, Cy > 0, and with
1 *
Co(u,7) = Tr(5A7) + Tr(U7) — Bie(uw)-

Applying Young’s inequality to ||¢|z2(q)llpy+0(r, {R})[ z2(q) in (38), [[¢]l£2(q) can be absorbed in
CloH(ﬁH%(Q), implying the convergence of ¢ — L(u, ¢,7) to —oo as ||¢||y converges to +oo. O

After these ancillary results, we can now show the second main theorem which deals with
exchanging the orders of infima and supremum when computing 5%5’KS. Theorem 2 is important

as it allows to apply spectral theory to the Lagrange functional L(u, ¢, 7).

14



Let Eyand(u, ¢,7v) := Tr(H (u, ¢)7).

Theorem 2 The order of the infimum and supremum in the computation of the ground-state energy
of the reformulated K-S energy functional can be exchanged,

EEEKS = inf inf sup L(u, ¢,7)

yeKX N ueld peV

= inf sup inf L(u,o,~)
u€U pey 7EKN

= inf sup inf {Eband(u, ®,7) + / (— Cs|Ve(r))* + bR, 1)p(r)) dr + B::C(u)} (39)
uel peV yeln QO

For every uw € U and every ¢ € V, the minimizer of the band energy Epand(u, ¢,-) in Kn commutes

with the Hamiltonian H (¢, u).

Proof Using similar arguments as in Proposition 2.2 in [13], we are guaranteed the existence of at
least one saddle point {¢, 7} of L(u, -, -) for every u € U. Hence, exchanging infimum and supremum
does not affect the ground-state energy of the reformulated K-S energy functional.

Next, for every u € U and every ¢ € V, H(¢,u) is a self-adjoint unbounded operator on £2().
Associated to H(¢,u), there is a countable family of orthonormal eigenvectors that form a basis of
L£2(). From [33], since ¢(r) € V and u(r) € U, we have that H (¢, u) is semi-bounded from below.

Let A, & denote the k-th eigenvalue and k-th eigenvector of H (¢, u), respectively, with the
indices ordered by increasing magnitude of the eigenvalues. Then, since the trace is invariant with
respect to a change of basis, it follows

’yierlleN Ehand (U, b, ’7) = wieIllch TI'(H(QSa u)'y) = vier}(fzv k:1<H(¢a u)'}/gk, £k>
=, Yl 6

o0
= inf
nf > Ak &)
k=1
S
k=1
From Theorem 1.3, Supplement 1 in [6], there exists a Borel function g : R — R with

L A A,
9(\) = { 0, otherwise.

€
N
6

such that for every v € U and every ¢ € V,

argmin Fpang (u7 b, 7) - g(H(¢v U)) : (40)
yeKN

To ensure the existence of a spectral function g, we replace the minimization over Ky by the
minimization over the subset

/C]I\{,((b’u) = {’y eEln:v= g(H(qﬁ,u)) for a Borel function g over R, 0 < g < 1} (41)

and observe that
inf Eypana(u, 6,7) = inf  Tr(H(é,u)y). O 42
of B, a(u, ¢,7) yezé%“”“) v(H (¢, u)y) (42)
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We want to emphasize that every element in the set Ky H(g.w)
of H(¢,u) and is thus amenable to spectral dlscretlzatlon.

can be written as a spectral function

We proceed in the next two sections to set up the spectral discretization and the spatial dis-
cretization of the reformulated extended K-S energy functional defined in (19).
5.2 Spatial discretization

We proceed to discretize problem (34) a la Rayleigh-Ritz, i.e. by restriction to finite-dimensional
subspaces. To this end, let V; be from a family of finite-dimensional subspaces of V' spanned by
the basis {e1,...,e;}, e.g. a subspace that corresponds to a finite element discretization, and let
U; be from a family of finite-dimensional subspaces of U spanned by the basis {d1,...,d;}, e.g. the
piece-wise constant simple functions. Then the restriction of the electrostatic field to V; is of the

form 4
J
= Z Data (I‘)
a=1

The nuclear charge distribution is

r {R}) = Zb{R}

and the dual density potential u;(r) has the form

J
= E Uqdy (T
a=1

Like-wise, the restricted density operator on a finite-dimensional subspace, the discrete density
matrix, is

r17r2 Z Z 70,1 a26a1 I 602 (rQ) (43)
a1=1as=1

where 77 denotes the matrix of coefficients, and the discrete electron density follows as

Z Z Phyas€ar (T)eay (1),

a1=1as=1
where ' '
pZuaz = ’Yz]zl,ag'
The above restrictions define a sequence of subspaces in IC{V of density matrices,

IC{\,:{yeX:yeS(Vj),Ogygl},

where S(V;) denotes the vector space of symmetric linear operators on V;.
The corresponding discrete Lagrangians L7, obtained by restriction of the functional in equa-
tion (20) to U x V; x K, follow as

J J
L, 6,7) = Te(HD (6, w)7?) + 37 37 { = Cs Aan by + B Moy sy} + Bieu). (44)

a1=1as=1
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Before proceeding further, we have to clarify our notation in (44). Let H7(¢,u) denote the
matrix H7 defined by restriction of ¢ and u on the finite-dimensional subspaces V; and Uj, respec-
tively. Throughout this paper, we use a superscript index j to denote restriction of an operator or
a functional to the finite-dimensional subspace defined by V;, U; and K%,. We use a subscript index
j in general to denote the j-th element in a sequence of functions or operators. There will be cases
where an operator or a function indexed by a subscript j happens to coincide with the restriction
of the operator or the function to the finite-dimensional subspace U;,V; and K7, but there is no
ambiguity from the context when these situations arise.

Using spatial discretization, we introduce the discrete quantities,

H = A+ & —U/, (45)

1
2
Agian = /Veal - Veg,(r)dr,

Moy as =
= [ (z%ea ))or (F)cen ()
Ul o = /(Zua a >€a1 (r)eq, (r) dr.

Formally, A and M also depend on j as they are restrictions of operators to {e1,...,e;}. We ignore
this fact here to avoid heavy notation.
The discrete band energy Eb tU X VX IC becomes

and *

B ana (6, 7) = Te(H (¢, u)n7). (46)
In addition, we need to introduce the sequence of discrete constraint sets,
IC]I\{,J(QS’U) {’y IS ICN v = g(Hj(<b,u)) for a Borel function g over R, 0 < g < 1}.

With these settings, motivated by the equations (19)—(21), the corresponding sequence of discrete

energies 52?(8 becomes

£Gs; = inf sup inf Lj(ua¢7’7)- (47)

5.3 Spectral discretization

Next we proceed to spectrally discretize the minimization over v € Kﬁjwu) of the discrete band
energy from equation (46). We begin by applying the spectral decomposition theorem (cf., e. g.,
25)). |

For fixed j € N, since H7 defined in (45) is a self-adjoint operator, this theorem states that

HI = / AdPI (),
(H9)

where P is a resolution of the identity over the Borel sets of the real line, and o(H’) denotes the
spectrum of H7. Similarly, for the restricted discrete density matrices 77 in (43) defined for H7,
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there exist bounded Borel functions ¢/ : R — R with
v [ goyari.
o(H7)

Using this representation, we define

B(¢) = Te(H Z/ (A Ak, ., (V).
HY)

zww=m>=zjwymwayx

a=1779

and where ' ‘
12 ea(N) = (€a|P7(N)]€q)

is a spectral measure. For instance, if H7 has j eigenvalues {)\,, a = 1,...,j}, possibly with
repetition, then

} 0 if A< Ap,
1l e, (N) =4 (ealPI(Ap)lea) i A <A< Mgy, k=1,...,5—1,
<ea|Pj()\j)\ea) if A Z )\j.

Knowing the numbers E7(g7), N7(g7) and the spectral measures ul, ., (\) for every a, the
calculation of the energy-minimizing discrete density matrix 4/ at fixed (¢, u) reduces to the scalar
problem

inf {E7(¢’),0< ¢’ <1, N/(¢’) = N}, (48)
gieB

where B denotes the space of bounded real-valued Borel functions over the real line.

Numerically, spectral approximation consists of finding a minimizer in equation (48) by applying
the Rayleigh-Ritz method over a finite-dimensional subspace By, of 8 spanned by a chosen spectral
basis {s’f, .. .,s’g}, k € N. Any basis that spans the space of real-valued bounded measurable
functions can be chosen for spectral discretization. In practice, one would choose a basis in which
its spectral integral for each e,,a € N,

/_%w%a&
o(H7)

can be evaluated at a cost that scales better than cubic with respect to the number of electrons in
the system.
Let us introduce the subsets

Hi(pu
ICNJﬁ(d) ) = {76 "y chsg HI } (49)

q=1
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Then the band energy for a density matrix v € ICH (@)

Zc {Z/O'(Hj) /\s]q"’()\) duihei()\)} = Zcfjwf’j, (50)

and the number of electrons in the system for v € ICH (D) is

k 00 _ k 4
— chqf{ Z/(Hj) s’;()\) d,u,gi,ei()\)} = Z ]; ’; . (51)

The minimization of the energy function in equation (48) over B becomes

Ckl{leRk FEJ ( Z c >
subject to the constraints .
0<e<1 Z chng’ =
Next we give an example of spectral dlscretlzatlon, spectral binning.

5.3.1 Spectral binning

Spectral binning refers to a basis consisting of a collection of disjoint piece-wise constant functions,
also known as simple functions. The spectral binning basis is defined over a partition of the fixed
interval [\ g, Aup] into k sub-intervals, or bins, {t’;, q=0,...,k}. Werequire that t& = Al.p < A\in
and \y < A\yp = t’,z < Amax, where Apin and Apax are the minimum and maximum eigenvalues
of H, respectively. The choice of (ALg, A\yp) must ensure that the space K N, k(¢> ) includes the
minimizer ymi, to the band energy functional E7(g’). Let st;(;()\) denote the disjoint piece-wise

constant characteristic functions defined on the spectrum of H7(¢,u),

s (V) = 1, iftf o <X <tk
g ~ | 0, otherwise.

We define B, as the collection of constant simple functions {st;; }”q“:1 associated with this partition.
These functions form a natural basis because they are dense over the space of integrable real
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functions over [Arp,Aup]. The density matrix 'yi € Kﬁgk(d)’u) using the spectral theorem in the

spectral binning basis is
k
i = / 3 s (N dPI(). (52)
o(HY) =1

(¢’u) with associated coefficients {c _, as in equation (52), the corresponding

For any ~ € IC
band energy is

Fi(y) = E3<zk:cl;sté> Tr(H~)

<
Il
—

q=1 =1 q=1
and
k
N7 (y) = N9 (3 chsy ) = Te(y)
q=1
k o
k j ko k.j
D ICTP 9 IRRHETEIE) B oS
g=1 i=1 /o (H7)
where n];’] can be interpreted as the number of eigenvalues in the interval (tq 1 ), hence giving

rise to the name of the method, spectral binning.
The minimization over By, in equation (48) becomes a linear programming problem,

k

: k k,j
{cglfchk > cqwg, (53)

subject to the linear constraints

k
k, k.j
0<e S qu:' (54)

To proceed with the spectral binning discretization numerically, we have to evaluate the quan-
tities {n’;’J } and {wg’J }. In the next subsection we explain in more detail how this is done.

k

5.3.2 Numerical evaluation of {n’;’j g=1

By Sylvester’s law of inertia [31], n I equals the number of eigenvalues of HJ (¢, u) contained
in the sub-interval (t* p 1,tk). The 1nert1a of a given matrix H” is denoted by the number triple
(N_, No, N3 ), where N_ denotes the number of negative eigenvalues of H, Ny the dimension of the
kernel of H, and N the number of positive eigenvalues of H7. Sylvester proved that the inertia of
a matrix is invariant under congruent transformations of the matrix.

The congruent transformation we adopt is the decomposition H/ = LDL” | where D is a diago-
nal matrix and L is a lower triangular matrix. The number of negative elements in D corresponds
to the number of negative eigenvalues of the matrix H’, [21]. To find the number of eigenvalues
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th

", we need to perform the LDL”

of the discrete Hamiltonian matrix H7 in an interval [t*
decomposition twice,

q—1

e
B =t 2 = Lt’;let’“ Ly (55)
e
Here, Z7 denotes the j x j identity matrix. For a non-orthogonal spatial discretization, we simply
replace 77 with the corresponding mass matrix M7’. Let N_(th;) denote the number of negative
cigenvalues of Dy.. Then it holds
g = N_(Dy) = N-(Dy_).

q a1

Considering the computational cost for the LDLT decomposition, for a j x j matrix with half
bandwidth W, the number of operations for the LDL” decomposition is, see e.g. [21],
WW +1)j
—
Based on equation (56), for k partitions or ’bins’ of the spectrum, the total number of operations
to obtain the number of eigenvalues in each bin is
WW + 1)kj
—
However, the half bandwidth W of the Hamiltonian scales with respect to the number of spatial
discretizations depending on the spatial dimension of the system. According to [20], the compu-
tational cost for the LDL?T decomposition of a molecular system in 3D at worst scales like N2,
Note that by (57), the computational cost of the binning method scales linearly with respect to the
number of spectral discretizations k.

CLDLT - (56)

Cbinning = (57)

5.4 Numerical evaluation of {w}/}*_,

Unlike nl,;’j introduced in (51), we cannot evaluate wg 7 defined in (50) directly at a cost that scales
better than cubic with respect to the number of electrons in the system. Hence we proceed to make
one more approximation. Let {m’; }];:1 be the center of mass of each partition, defined by

k,j [e's)
w 1 )
m’é Z,j = "k Z (/(Hj) )‘St’;(/\) dﬂéi,ei(/\)> . (58)

g Mg~ =1

We approximate the center of mass m¥ in the interval (¢ 4—1° t’q“) by

q
tk—t
k q—1
b~ (59)

This approximation implies the spectral approximation of the band energy as
e = [ z s (V) did ()
o ]

~ Z cqmq’an’j = Tr(H (¢, u)y?). (60)

g=1

This approximation of {wq J }k 1 introduces an error over the Rayleigh-Ritz approximation of the
discrete band energy. However in the next section we are going to show that this error is control-
lable.
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6 Convergence with respect to spectral and spatial discretization
We define the relevant functionals so that we can best utilize the machineries of I'-convergence.

Part I: Definition of the limit functionals.
Starting from equation (39), we consider the minimization problem

REKS _ -
€ = inf T
GS ;réu (u),

where T : U — R is defined by
T(u) = B.(u) 4 sup S(u, ¢)
PeV
and S(u, ) :V — Ris

S(u.6) = = [ (CsITow = bir RNOw) dr -+ it { Frana(1.6.7) + [y} (61)

Here, I\ for a set M denotes the indicator function of convex analysis,

Iu(u) = 0 if u e M,
MUY= 400 otherwise.
In (61), the minimization over Ky was replaced by the minimization over ng(qb’u). This ensures

the existence of a spectral function and was justified in equation (42).

Part II: Definition of the functionals with combined spectral and spatial approximation.
For j € N, based on the identity (39), we introduce the family of energies

€jk; = 1116115 Tijj (u)v
where T)j i, : U — R U {+o0} are defined by

Tjk;(u) = Bre(u) + sup S73 (u, ¢) + I, (u)

and S7*i (u,-) : V — RU{—oc} are given by

5749 (.0) = = | (CsIV(x)Eb(r. (R()) e+ 0, { P, (0.009)+ T ey (1)} =, (0)

(62)
In (62), we introduced the approximated constrained sets of density matrices
. k;
H (¢, k; ; kj
’CN,k(jsu) = {fy EKnN:y= Zcijst’?j (H?), 0 < ¢’ < 1}
i=1 ‘
and the discrete band energies Epand; (u,¢,): X = R,
vl
Evand, ., (u, ¢,7) = Tr(H (¢,u)7), (63)

where Tr(-) (depending on k;) is the approximation of the trace operator described in equation (60).
We emphasize that this is the actual numerical approximation of the binning algorithm introduced
in Section 5.4.
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Summarizing (50) and (60), for v, € Ky k,(d)]’ 7) the approximate trace operator is

Ic

J q+1 k
T = 33 [0 )

i=1 g=1 q
o b ki k k k

= Z Z cqg'mq’ (Hei,ei (tqz‘,-l) — Hej e (tqj))a (64)
i=1 g=1

k. t 9t . . .
where m,’ = %5~ denotes as in (59) the arithmetic mean.

We show convergence w.r.t. both spectral and spatial discretization using three nested I'-
convergence proofs. We first establish the convergence of the exact band energies Tr(H7 (¢, u;j)v;).
Then, in Section 6.2, we validate the convergence of the approximate trace operators.

6.1 The I'-convergence of the exact band energies Tr(Hj(¢j,uj)7j)
Lemma 6.1 Ifu; —u inU and ¢; — ¢ in V, then

lim inf {Tr(Hj(Uja $;)vj) + T rio;) (7)} > Bbana(u, ¢,7) + Lo (7)
N k;

J]—00

for every v € X and for all v; Sy in X,
Proof We consider four disjoint cases.

1. Let v € ICHJ(QW) and {v;}jen C X be a sequence with ~; X~ such that there exists a ¢ € N

(¢], i)

so that v, € IC for all 7 > ¢;.

By the lower seml—contmmty of the kinetic energy proved in Lemma 4.6,

lim inf Tr(—A-~;) > Tr(—-Av),

J]—00

and by the compact embedding of Wé 2(Q) in L2(), 7; — « implies that Py, = Py in L2(Q).
This yields

lim Tr((®; — Uj)v;) = lim (gzbj(r) — uj(r)) py, (r) dr = / (¢(r) — u(r))py(r)dr

Jj—00 Jj—o0 Q

= Tr(((ID - U)y),

leading to '
lim inf Tr(H? (¢, u;)7v;) = Tr(H (), u)y).

Jj—0o0

2. Let v € Ky A9 and {7j}jen C X be a sequence such that there exists a g2 € N so that
Vi & /CH (%’u]) for all j > go.

In this case we have trivially

Jj—o0

lim inf {Tr(Hj(“jv‘bj)Vj) + IICHJw]-,u]-)(’Y)} = 400 2 Evand(u, ¢,7) + L1 H(w) ()
N,k
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3. Let v & Kﬁw’u) and {vj}jen C X be a sequence such that there exists a g3 € N so that
Vi & /C]}\fk(j)j’uj) for all j > g¢s.

In this case we have trivially

lim inf {TI' (HJ (u37 ¢])WJ) + I]CHj(¢j,uj) (7)} = Eband (U, d)a ’Y) + I,cﬁ(df',“) (7) = +00.
N,kj

Jj—o0

4. Now we show that if v ¢ /CH ) , then there cannot exist a sequence ~; X~ such that there

(¢]7 )

exists a g4 € N so that v; € IC for all 7 > q¢q4.

Let {&}ien C WO’ () represent the eigenvectors of H(¢,u) which are known to form an
orthonormal basis of £2(2). Similarly, for j € N, let {§] bien C W& 2(Q) be the eigenvectors
of HJ (¢j,u;). From the Rayleigh-Ritz discretization of the Hamiltonian, we can ensure the
convergence of the eigenvectors, i.e. for every i € N,

lim ¢ — Cill z2() = 0, lim & =¢&.
j—o0 j—vo0

Since v & IC]I\{,W’“), for the case considered here, there must exist an eigenvector of H which
is not an eigenvector of . Let us denote it by &;. So it holds

o0

'Yfl = Z Cquqa

q=1

and there must exist an index p € N, p # 1, such that ¢y, # 0. Consider this cy;,. Then
cip = (¥61, &) = lim (y;€1, &) = lim (g;(H?)&1,&p).
j—o0 j—o0
Therefore, for p #£ 1,
lim (g;(H7)€1, &) = lim (g;(H))é1 — & +&,6)
j—o0 j—o0
= lim (g;(H7)&{, &) + lim (g;(H7)(€1 — €1). &)
]-}OO j—)OO
= lim g;(X\){&],&) = 0.
Jj—00

We then have c1p = 0 for all p # 1, contradicting our assumption. Hence we have shown that

if v ¢ IC é.u) , there cannot be a sequence {v;}jen with v; € /CH ((bj “) for all j € N and
=

The above four cases demonstrate that for all v € X and for all ~; Syin X,

lim inf {Tr(H] (U]a ¢])'7]) +1 HJ(¢. oy )(7)} > Eband(ua ?, 7) + I,CI;(dﬁ,u) ('7) 0

]—}OO

24



Lemma 6.2 Let u; = u inU and ¢; — ¢ in V. Then for all v € /Cﬁ(d)’u), there exists a recovery
sequence ; X v such that

lim sup Tr(Hj (uj, ¢j)’yj) < Epand(u, ¢,7)

Jj—ro0
and ' .
Tr(H (uj, ¢5)7) + L nitoyp) (V) = Bana(w, &,7) + Lo ()
N.k;

with respect to the weak*-topology in X as j — oo.

Proof We consider two disjoint cases.

1. If v & IC]{,IW’“), then let the recovery sequence be defined by the finite-rank operators that
converge to 7y in || - || x. This sequence of finite-rank operators exists due to the Rayleigh-Ritz
method and is dense in X. With this recovery sequence, it trivially holds

lim supTr(Hj(uj, qzﬁj)%') < Epand(u, ¢,7) = +00.

j—o0
2. Ify € K]I\i,w’u), then without loss of generality, we write
Y= Z 20;6:) (&, (65)
i=1

where {&; }ien, {fg}ieN denote the sets of eigenvectors of H(¢,u) and H’(¢;,u;), respectively,
as in Lemma 6.1.

Let us define the sequence of finite-rank operators,

J
7 =D 2mE])e]. (66)
i=1
We proceed to show that v; — v w.r.t. || - ||x. From Theorem VI.10 in [24], there exists an
unique partial isometry P such that
Y =il = POy =) (67)

Now we show the strong convergence of v; — 7 in the norm sense of & as follows. Utilizing
equation (67), the dual operator P* of P, the Cauchy-Schwarz inequality and the fact that
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both P and P* are isometries, we find

Jim Tr(fy = 51) = lim Te(P(y = 75))
= lim Y (P(y =7)ép, &)

p=1

= gm Z<('Y —%)&ps P*Ep)
Jo0 i
< Jligloz (v = 73)&pll 2 1P pll 22
p=1

< jlifgo S I = )8l 20y 1]l 220
p=1

oo
= lim 3 1(r = 3)6l cxe) (68)
p=1

Let us consider just one of the terms in equation (68) for fixed summation index p. We now
look at its projection onto the eigen-basis {&; }ien and find with (65), (66)

)

o
2
. 2 . .
Jim 1= 0ol = fim 3 (=18 84)|

o0
= lim
Jj—00

q=1

j . .
2004 (&p, &q) — Z 20:(&p, & )(&] &)
i=1

2 00 j | |
+ 3 > 2006, €0 )

; 2
< lim { 20 — Zzai<5p’§g>2 }
Jreo i=1 q=1l,q#p | i=1
i 2
Sjlig)lo { 20, — Z2ai<fp’ (51] — &)+ &)
% ;11 , , ?
YD 2ail6 (6 -&) + E)((E] —&) + & &) }—0- (69)
g=1,g#p | i=1

The above limit converges to 0 since for every ¢ € N

j—oo

lim
J]—00
With the help of (69), we find

0=> timinf (v = 25)6 L cacoy < limint 3 167 = 1)l cxoy (70)
p=1 p=1

Similarly, by Jensen’s inequality,

timsup 31y = 996l c2ey < S limsup (7 — 17) 20 = 0. (71)

J—mee p—=1 I
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As a result of (70), (71) we have 0 < lim inf [|(y —7;)&pll £2() < limsup [[(v —77)&pll c2() <0,
j—oo ;

J—00
implying
lim Tr(|y —7;]) < Im (v = 7)éllc2) = 0
j—o0 J—o0

Now we are going to use spectral theory to approximate each 7;. By the choice of v;, there
are suitable bounded Borel functions g; such that

v = g;(H).
Next we define the sequence 7, by

k

~ k,j 1
Vik = Zci ! Stf(H])7

i=1
where '
¢ = max{g;(t}), g;(th1)},
and {t¥,...,tF} is the partition of the interval [ALp, Aup] introduced in Section 5.3.1. We
can show that for every j € N
Tr(|9)k — v51) = 0 (72)

as k — 00, see Theorem 2.29 in [34]. However, the trace of 7;; does not satisfy the trace
condition for every k, i.e.

Tr(Yjk) # N.
Nevertheless, since
lim Tr(9;x) = N,
k—o0 ’
we can normalize the trace to N by introducing

N
Yik = =~ Viko
T T ()

Here, due to (72), we may assume Tr(7; ;) # 0 for all j and k.

In conclusion, we have
Tim Ty — D) < Jim { (e = Fiad) + T30 — 21)} = 0. (73)

Eqn. (73) implies that for every j there is an index k; € N, k; — oo as j — oo, such that

1
Tr(lwe, — il < -
J
Hence the recovery sequence for every v € Ing’u) can be defined as v, € Kﬁ]ﬁj " ), and

Hm Tr(|ye, —)) < Hm A{Tre(Jyk, —v51) + Te([y — )}
j—o00 j—00

< Jim {5+ T — 2D} =0,

J]—00
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Now, in order to show that
Te(|[V|(w, = VIVI]) =0

as j — oo, we use that (v, —7) € & and
lim H’Yk:j - ’YHsup < lim Tr(|’ij —7])=0.
Jj—00 Jj—00

Combining the above arguments, it follows

lim inf Tr(|[V](y; = M)IVI[) = liminf Te(P[V](n; = )IV])

J—00

= liminf ) _(P|V|(y, —7)IVI& &)
q=1

o)
> Zlijrgggf«%j —NIVI&q: [VIP*Eg) = 0,
q=1

and similarly

lim sup Tr(HV|(’ykj — ’y)|VH) = limsup Tr(P\V|(’ykj -7V

Jj—00 Jj—00

= lim sup Z(P\V!(%j —NDIVIE: &)

jmeo T
< limsup((yk, — )|VI&, [VIP*E) = 0.

Together, (74) and (75) yield

lim T (|[V] (v, —)IVI]) = 0.
j—00

(74)

(75)

So we have shown that for indices (j, k;), we can choose 7y, € ]Cﬁ]]fj‘_f’j ) a9 the recovery
sequence and g, — v € Kﬁ(¢’u). For this sequence, the band energy converges in the limit,

lim sup Tr(Hj (uj, #)7;) = Evanda(u, 8,7),

Jj—00

where v € IC]I\{,(QS’u), ¢;j —~¢inV and u; — uin Y.

Together, the above two cases prove that the limsup condition is satisfied and that in the limit

j =
: r
T (H? (uj, ¢5)7) + I nioj0; (V) = Ebana(, 6,7) + Lo (v). - O

k]
Lemma 6.3 For every ¢; — ¢ inV and every u; — u in U, the family of functionals

Te(H (i, 6)7) + T i o }
{ ( (uy ¢J)’Y) ’Ci,];]% J)(W’) jeN
is equi-coercive with respect to the weak™-topology in X .

28



Proof This proof is similar to the proof of Lemma 5.1. It is reproduced here for the sake of

completeness. For every v € Kﬁjk(fj " ), we have the bounds from below

T (B (0, 05)7) = 5 Tr(~A9) + Te(®7) — Te(Uy)

1
2 5Tr(=A7) = (95l 2 () + lwgle)lloyll 22 ()

1 1 3

> 5Tr(=A7) = Cro(lI9ll 2 () + il 2@ oy 210y 192l 23 (76)
1 3

> STr(=A9) = Cullldsllexa) + lujllc2@) NIV /53 2 g (77)
1 3

> S Tr(=A9) = Coal|V /75|22y (78)

where interpolation inequalities are used to obtain (76), the Gagliardo—Nirenberg—Sobolev inequal-
ity is used to obtain (77), and with the constant

Ci2 = Crysup {H%ch(m + HUch?(Q)}Nl/4'
jeN

Since
Tr(=A%) > VP31 72(0):

the kinetic energy is the dominating term in the inequality. Hence, for any ¢ € R the level sets
{7vex : T (w5,07) + 1 iis,p () <1}
N,kj

are bounded,
1 s N
12 Jhlle — CuallyArllbg — 5
By the results in [15], this shows that for every j and k;, the level sets of {Tr(Hj(uj,¢j) )+

IKHj((ﬁj,uj)(’y)} are precompact and hence equi-coercive. []
N,kj

Lemma 6.4 If ¢; — ¢ inV and u; — u in U, then

Hm ’;gﬁf {TT(HJ (uj, ¢5)7) + Ilcﬁf,j;”f’“f) (7)} = vuelﬁf {Eband(ua ¢,7) + Lcrco (7)}-

Proof This is proven using Theorem 7.8 in [12], Lemma 6.2 and Lemma 6.3. [J

6.2 TI'-convergence of Eband].’kj with approximation of the trace operator

In the last section, the I'-convergence of the exact band energies has been shown. Subsequently,

we extend these convergence results to Ebandj .. introduced in (63), i.e. to the evaluation operators
)

actually used in the binning algorithm.

Lemma 6.5 Let uj ~u inl, ¢p; = ¢ inV asj — 0o and v, € Kﬁjkj for all j € N. Then

lim ‘Tr(Hj’ykj) — Tr(H )| = 0. (79)

Jj—00
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Proof By direct estimates we find

[e o] kj tkj
~ . . q+1l L. k. k.
Te(Hiy,) — Tr(Hnykj)‘ 2> /k B mb = N)sh () dpe, e, (V)
i=1 g=1"td’
< k k tsil k
=[S =) [ s ) e ) 80
1=1 g=1 tq’
< ki, k k k k
= Z Z cq’ (mg’ — Vq,Ji) (Nei,ei (tqﬂﬂ) — Hese; (tq])) ‘
i=1 g=1
By & k k
< Z Cq] TJ Z (/"Lei,ei (tqz&-l) — Heg e (tqj))}
q=1 i=1
k;
T
= chj%ngj , (81)
q=1
where hkj = maxi<i<t; -1 |tfj — tfj_1| are the widths of the binning intervals. The numbers VJ;; S
(t];j ,t];il) in equation (80) appear as a result of the mean value theorem for Riemann-Stieltjes

integrals with respect to each measure fi¢, ¢, (), see e.g. [34].
For each € > 0, there exists a k € N such that hy;, < % for all k; > k. Consequently, due to
equation (81),

‘T‘r(Hj’ykj) — Tr(ijykj)‘ < < e

kj
€ kj k;
N E :Cq Ngq
q=1

This concludes the proof of (79). O

After the convergence of Tr(-) to Tr(-) has been established, we are now ready to prove the
announced I'-convergence result.

Lemma 6.6 For every ¢; — ¢ in V, every u; — u inU and all v € X,

Tr(H (¢4, uj)y) + IKHj<¢j,uj>(’Y) = Tr(H(¢,u)y) + Lnow ()
N,k
in the limit j — oo.

Proof Let us begin with the liminf part of the I'-convergence proof. From Lemma 6.1, we have
that for all ¢; — ¢ in V and all u; — u in U, for every v € & and all ~; Aoy,

Jj—o0

Te(H(6,u)) + Lo (v) < liminf {Tr(H (67,47)75) + 1 oo,y () }-
Nkj
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Using Lemma 6.5,

lim inf {Tr(H((;S, u)y) + Ilcg(dnu) (’7)}

J—00

Jj—00

< lim inf {TY(Hj(cﬁj, uj)yj) — Te(H (¢5, uj)%’)} + lijlgg.}f {Tf(Hj(QSj, u;)v;) + I hio;y) (%‘)}

Jj—00

< lim inf {’f‘r(Hj(ij, us)y;) — Te(H7 (¢5,u5)y;) + Te(HY (65, u5)y;) + L his;.u (%‘)}

j—00

= lim inf {TT(H](@,U])’Y]) + IKHJ‘(‘ﬁjﬁuj)(’yj)}'
N,k:j

Similarly, for the limsup part, using the same recovery sequence {fykj }jen as the one constructed
in Lemma 6.2,

N,kj

Jj—00

= limsup {Tr(Hj(¢j7 w) vk, ) —Tr (H (05, ui) v, ) +Tr (HY (5, uj) v, ) +1szk<¢j,uj> (Vk]-)}
]

Jj—00

Jj—o0 Jj—00

< tim sup {Tr(H/ (&5, w5, ) = Tr(HY (6, )y, ) +limsup {Te(H7 (0,45 ,)+1 oo,y ()}
N,k;

< lim sup {Tr(H(gb, U)’Y) + I,Cg(@u) ('Y)}

Jj—00
Therefore, using the results of Lemma 6.2,
lim sup {Tr(Hj(¢j,uj)’ij) +1 Hf<¢j,uj>(7kj)} < Te(H(¢,u)y) + Leron (7)-
Jj—00 ’CN,kj N
This completes the proof. [

Lemma 6.7 If uj — w in U and ¢; — ¢ in V, then for every v € X, the family of functionals
{Tr(HJ (gbj’uj)fy) + I,CHJ'(d)].,uj)(’y)}jeN 18 equi-Ccoercive.

N,kj

Proof From Lemma 6.5, we have for every v & Kﬁj(%’“j )

7j7kj
~ i ; i k ki k k k
TT(H] (¢j7 Uj)’)/) - TI“(H] (¢ja uj)'}/) = Z(mq] - Vq])cqj (Mei,ez' (tqil) — He;e; (tq]))
q=1i=1
e k k k
2 Z(/\LB - )‘UB)CQJ (:U’@i,ei (tqzi-l) — Heje; (tqj))
q=1 i=1

>(ALB — Aup)N,

where (ALp, Aup) denote the a-priori given bounds on the spectrum of H(¢,u) for the binning
algorithm.
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Hence from Lemma 6.3, especially equation (78),
T‘r(HJ(¢]7 ’U,])’Y) + IICHj(¢>j,uj) (’Y) = rfr(Hj(qua 'U,])’Y) - Tr(Hj(¢j7 'U,])’Y)
Nokj
+ Tr(H (g5, uj)y) + IICHi(¢j,uj) ()

N,k

3
> CTr(~Ay) — Coo /Al agg) + (us — Aus)N.

DO | =

This shows that for any ¢ € R the level sets
{’y €X: 'fr(Hj((bj,uj)’y) + IKij,uj)(V) < t},
N,kj

are bounded,

1 3 N
t 2 Sllllx = Crzllvpyllze o) — 5 + (A = Aup)N. O

Lemma 6.8 If ¢; — ¢ inV and u; — u in U, then

Jim inf {Te(H (07,5)7) + Tmiteyny ()} = inf {Te(H (@ un) + L (0}

Proof This is a direct consequence of Theorem 7.8 in [12], Lemma 6.6 and Lemma 6.7. [J

6.3 TI'-convergence of the operators S/i

In the next step we consider the I-convergence of —S7*%i(uj, ¢) to —S(u, ¢) for u; — u.
Lemma 6.9 If u; — u in U, then for j — oo,

—5%¥3 (uj, 6) = ~S(u, 9)
with respect to the weak topology in V.

Proof From Lemma 6.8, for every v € U and all u; — u in U,

]hﬁnolo ;22 {Ebandj,kj (U’ja ¢7 ’Y) + I’C]If,fj’uj) (7)} = ;2‘2 {Eband(u7 ¢a 7) + I,C]I\{](d%u) (7)}

Beginning with the liminf condition, for every ¢ € V and all ¢; — ¢ in V,

/CSIqu(r)\zdrgliminf/CS\V¢j(r)]2dr,
Q I Jo
and

- / b(r, {R})é(r) dr < lim inf (- / b(r, {R})o; (r) dr).
Q J—ro0 Q
This shows '

—5(u,¢) <liminf (= 5% (uj,9)).

J]—00
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For the limsup condition, we can pick the recovery sequence ¢~)j to be the projection of ¢ € V
onto V;. From the density of the spaces V; as j — oo, we have ¢; — ¢ in V. Hence, for this
recovery sequence, we obtain

lim CS|V<;3(r)\2dr:/CS|V¢(r)2dr
Q

J—00 [¢)

and

Jim (— JRER I dr) == [ b RYo(w) .

In conclusion, for u; — u, the I'-convergence of —S%*i(u;, ¢) to —S(u, $) has been established. [

Lemma 6.10 If u; — u in U, then the family of functionals {—S*i(u;, ¢)}jen is equi-coercive
with respect to the weak topology in V.

Proof Proceeding as in Lemma 6.3, we find

S () — /Q (Cs| V()2 - br, (R})$(x)) dr
= inf {T (7 (0.0) + 1 ey (0} + 10, (9) (52)

ZCSHV¢H%2(Q) — Ib(x, AR | 2 0l c2(00) — T (H7 (¢, u)7;5) + e, -

Here, ¥; € Kﬁ%jfﬁ,uﬂ are minimal in (82) and satisfy for all j € N

Tr(H(6,u5)75) = Tr(H (¢, 15)3;) = ex;,
where due to Lemma 6.5 the sequence €; converges to 0 as j becomes infinite. It follows
=57 (uj, ¢) > Cual|gll72 0y — (16, AR 220 + 103, | 2@ 11l 220

1 .
= llwsllc2@)los; |l 20 + iTr(—Av) + e,
> C13llél 220 — Cralldll c2(0) + Cis, (83)

with a constant C13 > 0 originating from the Poincaré inequality, and with further constants

Ca = [o(r {R})llz(oy + sup [l03, 20,
J

1 .
Cis = Slelg{ = lujllc2@llps; llezi) + 5 Te(=A%) + Ekj}-

J

With (83), the equi-coercivity of —S7Fi (uj, ¢) with respect to the weak topology in V is proved. [

Lemma 6.11 Ifu; — u in U, then lim sup Sak; (uj, ) =sup S(u, ).
)R ey PEY

Proof This is proven using Theorem 7.8 in [12], Lemma 6.9 and Lemma 6.10. [J
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6.4 T'-convergence of the operators 77

Lemma 6.12 The family of functionals {T7Fi (u)}jen converges in the T'-sense, i.e. for j — oo
i koo r
T7% (u) = T'(u)
with respect to the weak topology in U.

Proof We begin by showing the lim-inf condition for

TP (u) = Bie(u) + sup S7% (u, ).
ocV

From Lemma 6.11, we have for every u; — v in U and u € U,

lim sup S7% (uj, ¢) = sup S(u, @).
J=0 pcV ey

In addition, B} (u) is weakly lower semi-continuous, see [13]. Hence the liminf condition is proved.

In order to prove the limsup condition, for every u € U, let the recovery sequence {u;};jcn be
the projections of w onto U;. For this recovery sequence, using the bounds from equation (89) in
the appendix B, the continuity of the functional B}.(u) in U can be established through Fatou’s
Lemma,

]*)OO
Hence, we have satisfied the limsup condition and have proven that in the limit j — oo, the family
of functionals T7%i (u) converges in the I'-sense with respect to the weak topology of U to T'(u). O

Lemma 6.13 The family of functionals {T%%i(u)}jen is equi-coercive with respect to the weak
topology in U.

Proof From Proposition 1.2 in [13],

Biw) = [ 1 (u(w)dr.

where h*(z) : R — R is the Legendre transform of (—h(t)) from equation (10). Using the bounds
from equation (89) in Appendix B, there exist real constants C1g > 0 and C17 such that

Bie(u) > Cigllullfy — Ciz(vol€). (84)
The estimate (84) implies natural bounds from below on the functional T7%s

T7% (w) = Bie(u) +sup 7% (u, ¢)
peV

> B* : M ( H9 (4 .
> B)tc(u) + N)\LB(an U)

> Bio(w) + N(\" 1 ¢y).
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where gZS = 01is a test fupction in V, ALp denotes the lower bound of the binning interval [Argz, Aus]
for Hj(qAS, u), and )\{{]w’u) denotes the lowest eigenvalue of Hj(qAS, u). Let

ALB = )\{Iﬂ'(@u) + Cj.

We know that sup; |C;| is uniformly bounded, because ALp is only a functional of ¢ and u and
independent of spatial discretization.
If §fﬂ @) denotes the corresponding normalized eigenvector of H7 (QAS, u), we can derive a lower

bound of )\{ij’u) by the ellipticity of the underlying variational problem,

MO0 = (1 (§, )l O 10

HI A7u
V& @2, ) — lull 220y

—llullz2(0)- (85)

v

Y

Using the inequality (85), we can bound T7%i(u) from below by a coercive functional which is
independent of j and £;,

T (u) > Bio(u) = N6 - ull 2@
> Cuollully — Nl (56)

In the limit [lullyy — oo, the term Cigllul, dominates, so we have T9% (u) — oco. Hence, the
equi-coercivity of the family of functionals 77%i (u) is established. [J

Theorem 3 In the limit of the number of spatial discretizations j — oo, and consequently in
the limit of the number of spectral discretizations k; — oo, the family of ground-state energies of
the spatially and spectrally discrete K-S energy functionals converges to the full K-S ground-state
enerqy,

lim inf 79% (u) = inf T(u) = egs.
A s T = g T = <o

Alternatively, in terms of the functional L(u, ¢,7), this means

lim infsup inf L(u,¢,v)=infsup inf L(u,¢,v) = €%EKS.
Jmoo Uiy, jeHI(¢u) u vy Kﬁ(‘f”“)
N,k

k;

Proof This is proven using Theorem 7.8 in [12], Lemma 6.12 and Lemma 6.13. [

7 Binning in one dimension, a model problem

We now test the efficiency of the binning algorithm on a one-dimensional model problem which was
first proposed in [11].

Consider a linear chain of M atoms with N electrons spaced uniformly with R; = i for i € Z.
The electrons in the atoms are non-interacting electrons that interact with an effective field that
depends on the positions of the nuclei in the chain. The effective potential V' (r) is a sum of Gaussian
potentials centered at each atom in the chain,

—(r — R;)?

o
Vir)=— é 7Trﬁ2 exp [ 252
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Finding the ground-state energy of the system amounts to finding the N lowest eigenvalues of the
linear eigenvalue problem in one dimension,

1d

Hq; :< ip‘i'v( ))?ﬁi:mﬁi-

The constants a and [ in the effective potential dictate the band gap in the band-structure of the
one-dimensional chain. Hence the model has the ability to simulate either a metal or an insulator.
In this paper, we test the binning algorithm on a "metallic” chain (setting o = 10, § = 0.45), and
an ”insulating” chain (setting o = 100, 8 = 0.3).

7.1 Binning algorithm for a linear eigenvalue problem

The binning algorithm works as follows:

do Find an initial guess to [A\rp, \uB];

Perform a LDLT decomposition of H' — \1,pZ? and H? — \ypT?;
Find /\/_(Hj - )\LBIj) and N_(Hj - )\UBIj);

if N_(H/ — \,gZ?) > 0;

then
| Decrease A\p,p until N_(H’/ — A\ gZ7) = 0.
end
if N_(H’ — \ypZ’) < N;
then
‘ Increase A\yp until N_(H7 — Ayg) > N;
else
‘ Use bisection to decrease Ayp so that N_(Hj — /\UBIj) = N + eyx with ey € Nyg;
end
do Partition [ALp, Aup] into k intervals with end points {tlg,tlf, . ,ti}, ALB = tlg and
AuB = t]g;
for g=1:k;
do
‘ Perform a LDLT decomposition of H/ — t’q“Ij and find N_(H’ — t’;l'j);
end
for q=1:k;
do

ng? = N_(HI —thT7) — N_(HI — th_, TV);
mk — (tk+tk 1)

g~ 2
end

do Minimize Z chm n];’] over coefficients {ck} C R* subject to the constraints
9=

0<c—qg" <1anchk M= N.
=

Algorithm 1: Binning Algorithm
A system of 1000 atoms and 4000 electrons with periodic boundary conditions is discretized
using a 8-th order central difference stencil in finite difference. To find an initial guess of [\r.5, Aus],
we use the smallest and largest Ritz values obtained from a Krylov subspace projection of dimension
k on an arbitrary unit vector, where k denotes the number of bins. Note that any Krylov subspace
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with dimension p > 2 may be used to obtain an initial guess of [A\rp, Aup]. We use the interior-

point method to perform the minimization of (53) with respect to the spectral binning coefficients
{c]; 15:1 subject to the constraints in equation (54).

The band energy of a "metallic” and an ”insulating” system have been calculated using spectral

binning and linear-scaling spectral Gauss quadratures (LSSGQ) from [27]. We see that spectral
binning can achieve comparable accuracies as polynomial approximations.
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Figure 1: Metal: a =10, 8 = 0.45
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Figure 2: Insulator: a = 100, 5 = 0.3
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7.2 Electron density p(r) with spectral binning

The electron density p(r) in the context of spectral binning is

q=1
& k %)
- Z CI‘; Z Stg ()‘p) <I‘(], 5]’) <£P7 I‘0> = Z Cl; Z St’; ()\p) |fp(1‘0) |2
=1 p=1 =1 p=1
k o0 00 2
= Z CI; Z Stf;()‘p) Z bhem(ro)| (87)
=1 p=1 m=1

where k k
1, iftf <\, <ttt .,
b = (&prem)s St(’;’()\p) = { 0 q p = lgp

otherwise

for an orthonormal basis set {ey, }men, and the eigen-pairs of H are denoted by {\p,&,}. In the
form of a spectral integral, as shown in [27], equation (87) can be written as

2
= /0 o (A) Aty ey

o0

Z Stk (Ap)

> Boem(ro)
m=1

and
p(ro) = ch/ St (A) At e
q=1 o(H)
where -
Mo (1) = Z ep(ro)ep(r).
p=1

In other words, evaluation of the electron density using spectral binning requires the ability to
evaluate the quantity (ny,,s(H)nr,). An efficient approach to doing this without polynomial or
rational approximations remains an open problem.
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Appendix A Orbital formulation of K-S DFT

The K-S problem [22] constitutes the minimization of the functional

1
/ 2 > Vil dr + Eu (p) + Eext (p) + Ezz + Exe (p)
Q“ <<

over
{{wiy € VY (Wiy) = 63}
where Eyp, Fext, Ezz and Fy. are given by (7), (8), (9) and (10), respectively, and with the electron

. N
density p = S 46
The Euler-Lagrange equation associated with the constrained variational problem above gives
rise to the non-linear eigenvalue problem

<—;A + v> b= N,

where

The solution to the variational problem is given by the eigenvectors v; that correspond to the N
lowest eigenvectors. The problem is non-linear because V' depends on p and thus on ;.
The operator formulation that we use is obtained formally by noting that any v € K has the
representation
y=) hi®d

1<i<N

for {1} C VN,

Appendix B The dual formulation of exchange-correlation

Let T be a topological vector space and {Fr} be a family of continuous affine functionals from 7 to
R. Let T'(T) denote the collection of functionals that are the point-wise supremum of some family
{Fr}. Since the point-wise supremum of a family of convex functionals is convex and the point-wise
supremum of a family of lower semi-continuous functionals is lower semi-continuous, see, e.g. [13],
we have that every functional in I'(V) is convex and lower semi-continuous. Further, we have the
following statement, see Proposition 3.1 in [13].

Proposition Appendix B.1 The following properties are equivalent:
1. FeI(T).

2. F is a convex lower semi-continuous functional from T to R and if F takes the value —oo,
then F' is identically equal to —oo.

Given F : T + R, the dual conjugate functional F* : T* — R, where 7* denotes the space of
linear functionals defined on 7, is

39



We see that F* is defined as the point-wise supremum of the family of continuous affine functionals
(-,u) — F(u), hence F* € T'(T™*), and F* is convex and lower semi-continuous. Furthermore, if F'
itself is convex and lower semi-continuous, the dual conjugate functional of F™* coincides with F,
(i.e. F** =F), see, e.g., Proposition 4.1 in [13].

When we apply the aforementioned properties of dual transforms to the exchange-correlation
functional, since —Fy.(py) is convex and lower semi-continuous in E%(Q), we have —Ey.(p) €

F(E%(Q)) We can then rewrite —Ey.(p) as

_Exc(p’y) = Ssup {(U,pﬁ - BXC(U)*}
ueLlr’ (Q)

== 1n,f {B:;C o <uap’7>}7 (88)
u€L™ ()

where
Byo(u) = (=Exc(p))
and By is convex and lower semi-continuous in L7 (Q) with % =1- ﬁ = i. This also explains

the choice of U in equation (16).
From Proposition 2.1 in [13], we know that

Bietw) = [ W(war,

where h*(x) = (—h(t))* = sup{zt — (—h(t))} is the Legendre transform of the function —h(t). Due
teR
to the bounds § ,
Ci]t][3 + C2 < —h(t) < Cslt[3 + Cy
on —h(t), we can arrive at the bounds

Cislz|* + Cig < h*(z) < Ciglz|* + Cir (89)

for h*(z).
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