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Abstract

Kohn-Sham density functional theory (K-S DFT) is widely used to study the electronic
structure of materials. The central difficulty in K-S DFT involves the solution of a non-linear
eigenvalue problem. This non-linear problem is solved numerically by the self-consistent field
method, a fixed point iteration approach, which yields linear eigenvalue problems. Typical
solution of the linear eigenvalue problem is to diagonalize the matrix of the differential operator,
the Hamiltonian of the system. There have been approximate solutions to K-S DFT that
exploit spectral theory of self-adjoint operators, known as the density matrix expansion methods.
These methods can avoid diagonalization of the Hamiltonian matrix. They are increasingly
used to study the linearized problem because of their computational efficiency. Although these
approximations have been verified numerically, the relationship between these approximations
of the linearized problem and the original non-linear problem remain incompletely understood.
Further, these methods assume smoothness that give rise to errors in conductors. In this paper,
we reformulate K-S DFT as a nested variational problem that enables density matrix expansions.
We introduce a new approximation, called the spectral binning discretization, which does not
require smoothness. We show convergence with respect to both spectral binning discretization
and with spatial discretization.

1 Introduction

The wave formulation of quantum mechanics proposed by Erwin Schrödinger in 1926 can be used in
theory to quantitatively study the electronic structure of materials. However, it is limited to only
a handful of electrons due to the high dimensionality of the resulting partial-differential equation.
An approximate formulation, called the Hartree-Fock (H-F) method, was introduced in 1930 to
reduce the dimensionality of the wave formulation. This reduction is achieved by variationally
minimizing the energy over the set of Slater–determinant combinations of independent-electron
orbitals, resulting in a non-linear eigenvalue problem in three dimensions [22]. The solution of the
H-F equations is nevertheless cumbersome.

Density functional theory (DFT) developed by Kohn and Hohenberg in 1964 lay the foundation
for the majority of approximate quantum mechanical methods used today. The Kohn-Hohenberg
theorem provides a one-to-one correspondence between the ground-state electron density and the
ground-state energy; thereby proving the existence of an ground-state energy functional that de-
pends only the ground-state electron density. However, the exact form of the energy functional
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is unknown. Shortly after, Kohn and Sham introduced the Kohn-Sham density functional theory
(K-S DFT), which provided an approximate energy functional by introducing explicit models for
the kinetic energy and exchange-correlation functionals of the electron density. The resulting K-S
problem is also a non-linear eigenvalue problem in three dimensions, but its non-linearity is less
computational intensive than the H-F formulation. K-S DFT is widely used to study the electronic
structure of materials ranging from molecules, macromolecules to crystalline solids [22].

The non-linear Kohn-Sham equations are solved by fixed point iterations or the self-consistent
field method. In each step of the iteration, one calculates the sum of the N lowest eigenvalues
of the linearized Hamiltonian and the resulting electron density, where N denotes the number of
electrons in the system of interest. If this procedure is carried out using direct diagonalization, the
computational effort scales to the third power (O(N3)) with respect to the number of electrons
N in the system. This scaling limits K-S DFT calculations routinely to systems with only a few
hundred to thousand electrons. With pseudo-potential approximations, where the core electrons
are lumped with the nuclei, K-S DFT calculations can be done for a few hundred atoms.

However, hundreds of atoms are not sufficient to study materials with defects or complex macro-
molecules. Defects often occur in real materials in parts per million concentrations. Therefore, a
number of linear-scaling algorithms, where the computational cost scales linearly (O(N)), have
been developed (see [19, 7] for a review, and [5, 20, 29, 30, 26, 32] for specific implementations).
The key idea behind these methods is to introduce the density matrix,

γ =
∑

1≤i≤N

ψi ⊗ ψi,

where ψi denotes the eigenvectors corresponding to the lowest eigenvalues of the linearized Hamil-
tonian H. It follows then from spectral theory (cf. for example [24]) that

γ = f(H), (1)

where the occupancy function f : R → R is

f(λ) =

{

1, if λ ≤ λN ,

0, otherwise.

It is common at this stage to regularize f by introducing a temperature σ and to replace it with
the Fermi-Dirac distribution,

fFD(λ) =
1

1 + exp λ−λN

σ

. (2)

Note that the regularization can be made exact in insulators/semiconductors where there is a
non-zero gap between λN and λN+1, but is only approximate in conductors.

The main idea behind the linear-scaling methods is to expand fFD using polynomials, rational
functions, etc. In some methods (e.g., [5]), a proper choice of spatial discretization leads to a fast
decay of the off-diagonal elements of γ. Therefore, one truncates γ to obtain a banded matrix.
The expansion can then be carried out at linear-computational cost. In the recently introduced
linear-scaling spectral Gauss quadrature (LSSGQ) method, [27], one takes advantage of the sparsity
of the Hamiltonian matrix as result of an appropriate basis set in the Lanczos iteration to obtain
linear-scaling without truncating the density matrix.

All these linear-scaling methods, with or without truncation, have two significant shortcomings.
Firstly, they approximate the density matrix of the linearized problem obtained from an iteration of
the self-consistent scheme. There are results that establish the convergence in the linearized eigen-
value problem, [29]. However, to our knowledge, there is no rigorous study showing convergence

2



of this approach to the original Kohn-Sham equations. Secondly, they involve the regularization of
the occupancy function. These two shortcomings motivate the work presented in this paper.

The original Kohn-Sham equations may be written as a variational principle over the density
matrices, trace-class operators. In fact, Anantharaman and Cancès, [2], have done so rigorously and
proved existence of solutions to this variational problem even in an unbounded domain. However,
the functional is not amenable to the application of simple spectral representation.

In this work, we reformulate the variational principle to enable simple spectral representation.
The main idea is to use duality in the exchange-correlation functional, thereby converting the
original formulation to a nested variational problem. The resulting functional is linear in the
density matrix and thus amenable to simple spectral representation.

We then introduce a new class of operator approximations, spectral binning discretization,
using simple functions on the spectrum that enables an accurate representation of the occupancy
function without regularization. We show convergence with respect to combined spatial and spectral
discretizations.

While spectral binning discretization provides an exact representation, a practical and efficient
numerical implementation remains an open issue. As a first step, we study a linear one-dimensional
model problem that has been used as a step towards Kohn-Sham equations, and show that spectral
binning discretization is potentially very attractive.

This paper is organized as follows. Section 2 recalls the Kohn-Sham density functional theory
and reformulates it as a nested variational problem. Section 3 collects the main theorems of
existence and convergence. Section 4 presents the proof of the existence of minimizers. Section 5
describes spatial and spectral discretization. Section 6 presents the proof of convergence with
combined spatial and spectral discretization. Section 7 is a numerical demonstration of spectral
binning in a one-dimensional linear model-problem.

2 Kohn-Sham density functional theory

For simplicity, we restrict ourselves to closed-shell, spin-unpolarized systems. We also restrict
ourselves to an open and bounded subset Ω of R

3. This is an important restriction since the
formulation in R

3 introduces non-trivial difficulties. We also restrict ourselves to the local density
approximation (LDA) for the exchange-correlation. Finally we make, as common in this subject,
the Born-Oppenheimer hypothesis that the atomic nuclei are classical. So we hold the nuclei fixed
in the rest of the section.

We start with the operator formulation due to Anantharaman and Cancès, [2]. The connection
to the traditional orbital formulation is given in Appendix B.

2.1 Operator formulation

Let V=W1,2
0 (Ω), H=L2(Ω) and S1 be the vector space of self-adjoint, trace-class operators on H,

S1 = {γ ∈ S(H) : Tr(|γ|) <∞}, (3)

where |γ| ≡ √
γγ∗. S1 is a separable Banach space [4]. Within S1, we can introduce the space

X = {γ ∈ S1 : |∇|γ|∇| ∈ S1},

and the constrained set of admissible reduced one-particle density operators,

KN = {γ ∈ X : 0 ≤ γ ≤ 1,Tr(γ) = N}. (4)
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Remark 2.1 As stated in [2], for every γ ∈ KN , we have the canonical representation in the
continuous r basis,

γ(r, r′) =
∞
∑

i=1

2αiξi(r)ξi(r
′), (5)

where ξi ∈ V for all i ∈ N, the factor of 2 simply accounting for spin unpolarization, and

0 ≤ αi ≤ 1,

∫

Ω
ξi(r)ξj(r) dr = δij ,

∞
∑

i=1

2αi = N.

We can define the electron density for every γ ∈ KN as

ργ(r) = γ(r, r).

We consider a system ofM atoms with nuclei located at {R} = {R1, . . . ,RM} ⊂ Ω and nuclear
charges Z1, . . . , ZM . We now follow Anantharaman and Cancès, [2], and define the extended Kohn-
Sham energy functional EEKS : KN → R as

EEKS(γ) = Ts(γ) + EH(ργ) + Eext(ργ) + EZZ + Exc(ργ), (6)

where TS is the kinetic energy of the non-interacting electrons,

TS(γ) = Tr

(

−1

2
∆γ

)

,

EH is the Hartree energy representing the classical electrostatic repulsion energy for a given electron
density,

EH(ργ) =
1

2

∫

Ω

∫

Ω

ργ(r)ργ(r
′)

|r− r′| dr dr′, (7)

Eext is the interaction energy between the nuclear charges and the electrons,

Eext(ργ) =

∫

Ω
ργ(r)Vext(r, {R}) dr =

∫

Ω
ργ(r)





∑

1≤I≤M

ZI

|RI − r|



 dr, (8)

EZZ is the classical electrostatic repulsion energy due to the nuclear charges,

EZZ =
1

2

∑

1≤I≤J≤M

ZIZJ

|RI −RJ |
, (9)

and Exc(ργ) is the exchange-correlation energy that is split into two terms (cf. [23]),

Exc(ργ) = Ex(ργ) + Ec(ργ) =

∫

Ω
h(ργ) dr, (10)

with an exchange term,

Ex(ργ) = −3

4

( 6

π

)1/3
∫

Ω
ρ4/3γ (r) dr,

and a correlation term,

Ec(ργ) =

∫

Ω
ǫc(ργ(r))ργ(r) dr,
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where ǫc is taken from [23]. The connection of this formulation to the traditional formulation is in
Appendix A.

The ground-state energy of the extended Kohn-Sham energy functional is

εEKS
GS = inf

γ∈KN

EEKS(γ).

The existence of minimizers of the extended Kohn-Sham energy functional has been shown in [2].

2.2 Reformulation

The above formulation of the extended K-S energy functional is not amenable to spectral dis-
cretization algorithms because of the non-linearity in the terms EH and Exc. To overcome this, we
reformulate these terms as follows.

2.2.1 Electrostatics

We reformulate the electrostatic terms by writing them as the solution to a Helmholtz problem
(cf., e.g., [3, 28]). We approximate the nuclear charges at a given atomic site Ri by a regularized
and bounded nuclear charge distribution −ZifRi

(r) with compact support on a small ball centered
at Ri satisfying

∫

Ω
fRi

(r) dr = 1.

We can then rewrite the electrostatic terms as the variational problem

EH(ργ) + Eext(ργ) + EZZ

= sup
φ∈V

{

−CS

∫

Ω
|∇φ(r)|2 dr+

∫

Ω
(b(r, {R}) + ργ(r))φ(r) dr

}

+ Cself,

where

b(r, {R}) =
M
∑

i=1

ZifRi
(r),

CS > 0 is a constant depending on the spatial dimension S (e.g. CS = 1
8π for S = 3); Cself is an

inessential constant that depends only on the regularization fRi
and is independent of ργ and {R}.

To clarify the dependence of the electrostatic terms on γ, we introduce an unbounded local
operator,

Φ(r, r′) = φ(r)δ(r, r′), (11)

and use its coordinate representation so that

Tr(Φγ) =

∫

Ω
φ(r)ργ(r) dr.

The Coulomb energy is

J(ργ) = EH(ργ) + Eext(ργ) + EZZ

= sup
φ∈V

{

Tr(Φγ)− CS

∫

Ω
|∇φ(r)|2 dr+

∫

Ω
b(r, {R})φ(r) dr

}

+ Cself. (12)
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2.2.2 Exchange-correlation energy

Next we reformulate the exchange-correlation energy Exc. We make the following assumptions on
the integrand h(t) in the exchange-correlation energy introduced in equation (10):

(P1) Smoothness condition: the function h : R+ → R and h(t) ∈ C1(R3).

(P2) Curvature condition: the function h is concave in R
+.

(P3) Zero density condition:
h(0) = 0. (13)

(P4) Non-positivity condition: it holds h(t) ≤ 0 for all t ∈ R
+.

(P5) Decay condition: for t ∈ R
+ the function h satisfies

h′(t) ≤ 0. (14)

(P6) Growth conditions: for t ∈ R
+, the function h satisfies the bounds

C1|t|4/3 + C2 ≤ |h(t)| ≤ C3|t|4/3 + C4, (15)

for some real constants C1 > 0, C2 ≤ 0, C3 > 0 and C4 ≥ 0.

By reflection, we can extend h to a function from R+ to R, setting h(t) ≡ h(|t|) for t < 0. This
extended function, again denoted by h, is continuous in R due to property (P3).

Remark 2.2 Since h(t) is continuous in R and since |h(t)| ≤ C3|t|
4
3 + C4 from the upper bound

in (15), with Fatou’s Lemma it follows that Exc(ργ) is continuous in L 4
3 (R3).

We proceed to rewrite the exchange-correlation functional using a Legendre transform. We define

Bxc(ργ) = −Exc(ργ).

From property (P2) of the exchange-correlation function h, Bxc(ργ) is a convex and continuous
functional in L4/3(R3). Let

U = L4(R3). (16)

As explained in Appendix B, there exists a dual functional B∗
xc(u) : U 7→ R such that

Bxc(ργ) = sup
u∈U

{〈ργ , u〉 −B∗
xc(u)},

where the dual product 〈v, u〉 for any v ∈ L4/3(R3) and u ∈ L4(R3) is defined by

〈v, u〉 =
∫

Ω
v(r)u(r) dr.

Using arguments from [13], we can rewrite the exchange-correlation functional,

Exc(ργ) = −Bxc(ργ)

= − sup
u∈U

{〈ργ , u〉 −B∗
xc(u)}

= inf
u∈U

{−〈ργ , u〉+B∗
xc(u)}.
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Finally, we introduce the unbounded local operator

U(r, r′) = u(r)δ(r, r′), (17)

using its coordinate representation. We can then rewrite the exchange-correlation functional as

Exc(ργ) = inf
u∈U

{−Tr(Uγ) +B∗
xc(u)}. (18)

2.2.3 Reformulated Extended Kohn-Sham Functional

Substituting (12) and (18) in (6) and omitting the inessential constant Cself for brevity, we obtain
the reformulated extended K-S(REKS) energy functional EREKS : KN → R as

EREKS(γ) = inf
u∈U

sup
φ∈V

L(u, φ, γ), (19)

where L : U × V × KN is

L(u, φ, γ) = Tr(H(φ, u)γ) +

∫

Ω

(

− CS |∇φ(r)|2 + b(R, r)φ(r)
)

dr+B∗
xc(u), (20)

with the Hamiltonian

H(φ, u) = −1

2
∆ + Φ− U

and Φ, U defined in (11), (17).
The ground-state energy of the system with M atoms is

εREKS
GS = inf

γ∈KN

EREKS(γ)

= inf
γ∈KN

inf
u∈U

sup
φ∈V

L(u, φ, γ) (21)

= inf
γ∈KN

inf
u∈U

sup
φ∈V

{

Tr(H(φ, u)γ) +

∫

Ω

(

− CS |∇φ(r)|2 + b(r, {R})φ(r)
)

dr+B∗
xc(u)

}

.

3 Main results

We have the following theorems on the reformulated extended K-S functional.

Theorem 1 The reformulated extended K-S energy functional EREKS(γ) in (19) possesses a min-
imizer in KN .

Theorem 2 The order of the infimum and supremum in the computation of the ground-state energy
of the reformulated K-S energy functional (21) can be exchanged,

εREKS
GS = inf

γ∈KN

inf
u∈U

sup
φ∈V

L(u, φ, γ)

= inf
u∈U

sup
φ∈V

inf
γ∈KN

L(u, φ, γ), (22)

where L is given by (20).
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Theorem 2 enables the spectral discretization. Note that γ appears linearly in the functional L
and only in Tr(H(φ, u)γ). It is easy to show that for every u ∈ U and every φ ∈ V ,

inf
γ∈KN

Tr(H(φ, u)γ)

is attained and the minimizer commutes with γ. Therefore the problem is unchanged if we seek the
infimum over a subset KH

N ⊂ KN of operators that commute with H or equivalently over the Borel
functions of H (see (41) below). We obtain a spectral discretization by limiting γ to KH

N,k made of
k simple functions of H (see (49) below).

We are also interested in spatial discretization. Hence we consider finite-dimensional subspaces
Vj and Uj of V and U respectively, with Hj , Lj to be discrete Hamiltonian and functional on these
subspaces.

We have the following result on the combined convergence with respect to spatial and spectral
discretization.

Theorem 3 Let kj → ∞ as j → ∞. Then, the diagonal sequence of spatially and spectrally
discrete reformulated extended K-S energies converges to the full K-S ground-state energy,

lim
j→∞

inf
Uj

sup
Vj

inf
K

Hj(φ,u)
N,kj

Lj(u, φ, γ) = inf
U

sup
V

inf
K

H(φ,u)
N

L(u, φ, γ) = εREKS
GS .

4 Existence of solutions

To establish the existence of minimizers in KN for the KS-DFT problem in equation (19), we use
similar tools as the more general proof given by Anantharaman and Cancès in [2] and restate their
results for an open, bounded, and Lipschitz domain Ω for completeness.

The proof follows the framework of the direct method in the calculus of variations. We consider
the weak∗-topology of the vector space X endowed with the norm

‖ · ‖X = Tr(| · |) + Tr(||∇| · |∇||)

in the convex set KN defined in (4).
For the clarity of notation, in the remainder of this paper, we change our notation on the

repulsive energy functionals (10), (12) as to emphasize their dependence on the reduced one-particle
density operator,

Exc(γ) ≡ Exc(ργ),

J(γ) ≡ J(ργ).

Remark 4.1 Since X is a separable and normed linear space, every uniformly bounded sequence
{γn}n∈N in X contains a weak∗-convergent subsequence.

For a proof of Remark 4.1, see for instance Part II of Theorem 2.2.1 in [15].
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Let vol(Ω) denote the 3-dimensional Lebesgue measure of the bounded domain Ω.

Lemma 4.2 For all γ ∈ KN , the following inequalities hold.

1. Lower bound on the kinetic energy,

1

2
‖∇√

ργ‖ ≤ Tr(−1

2
∆γ) =

1

2
Tr(|∇|γ|∇|). (23)

2. Lower bound on the Coulomb energy,

0 ≤ J(γ).

3. Lower bound on the exchange-correlation energy,

−C3(volΩ)
−1/3N4/3 − C4(volΩ) ≤ Exc(γ). (24)

4. Lower bound on the reformulated extended K-S energy functional,

‖γ‖X − C5 ≤ EREKS(γ) (25)

for a constant C5 > 0 independent of γ. In particular, by (25), EREKS(γ) is coercive w.r.t.
the weak∗-topology of X .

Proof 1. Lower bound on the kinetic energy. In the canonical representation, the electron
density is

ργ(r) =
∞
∑

i=1

2αiξi(r)
2.

By direct inspection and Cauchy–Schwarz’s inequality, we find

|∇√
ργ |2 =

2|∑∞
i=1 αiξi(r)∇ξi(r)|2
∑∞

i=1 αiξi(r)2

≤ 2
∑∞

i=1 αi|ξi(r)|2
∑∞

i=1 αi|∇ξi(r)|2
∑∞

i=1 αiξi(r)2
.

After integration, this yields

1

2
‖∇√

ργ‖L2(Ω) ≤ Tr(−1

2
∆γ) =

1

2
Tr(|∇|γ|∇|).

2. Lower bound on the Coulomb energy. It holds

J(γ) = sup
φ∈V

{

∫

Ω
φ(r)(b({R}, r) + ργ(r)) dr− CS

∫

Ω
|∇φ(r)|2 dr

}

≥ 0, (26)

where we use the test function φ(r) = 0 in Ω to obtain the lower bound.
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3. Lower bound on the exchange-correlation energy.

Using the bounds from equation (89) in Appendix B, the LDA exchange-correlation functional
integrand h in equation (10) is bounded from below,

Exc(γ) = inf
u∈U

{−Tr(Uγ) +B∗
xc(u)}

≥ inf
u∈U

{−Tr(Uγ) + C18‖u‖4L4(Ω) + C19(volΩ)}

= −Tr(Uγγ) + C18‖uγ‖4L4(Ω) + C19(volΩ) (27)

≥ −Tr(Uγγ) + C19(volΩ)

≥ −C(volΩ)−1/3
(

Tr(γ)
)4/3

+ C19(volΩ)

= −C(volΩ)−1/3N4/3 + C19(volΩ), (28)

where uγ denotes a minimizer of equation (27) and Uγ is its corresponding operator. It is
evident that there exists a minimizer for the variational problem (27).

4. Lower bound on EREKS. Coercivity of EREKS.

Putting together all the inequalities in the equations (26) and (28), we end up with

EREKS(γ) ≥ Tr
(

− 1

2
∆γ
)

−C(volΩ)−1/3N4/3+C19(volΩ) =
1

2

(

Tr(|∇|γ|∇|)+Tr(|γ|)
)

−C5. (29)

Here, we introduced the new constant

C5 ≡ C(volΩ)−1/3N4/3 − C19(volΩ) +
N

2
.

For the derivation of (29), we used that for every γ ∈ KN , directly from the definition of this
set,

Tr(γ) = Tr(|γ|) = N.

The estimate (29) implies that for any t ∈ R the level sets

{

γ ∈ KN : EREKS(γ) ≤ t
}

are bounded,

t+ C5 ≥
1

2
(Tr(|γ|) + Tr(|∇|γ|∇|)) ≡ 1

2
‖γ‖X .

Consequently there exists a subsequence of γn that converges w.r.t. the weak∗-topology and
we conclude that EREKS(γ) is coercive w.r.t. the weak∗-topology in KN . �

Lemma 4.3 The set KN is closed in X w.r.t. the weak∗-topology.

Proof Let C(H) denote the vector space of compact linear operators on H. For all γn
∗
⇀ γ, we

have Tr(γnW ) → Tr(γW ) for all W ∈ C(H) in the limit n→ ∞.
We define the rank-one operator

W = |ψ〉〈ψ|,
where ‖ψ‖L2(Ω) = 1. Due to the weak∗-convergence of γn,

0 ≤ lim
n→∞

Tr(γnW ) = Tr(γW ), (30)
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and
Tr(γW ) = lim

n→∞
Tr(γnW ) = lim

n→∞
〈ψ, γnψ〉 ≤ 〈ψ, ψ〉 = 1. (31)

Since the estimate (31) holds for all normalized ψ ∈ H, we find with (30) that 0 ≤ γ ≤ 1.

Since γn
∗
⇀ γ, ‖γn‖1 is bounded independently of n, see Proposition 3.13 in [9]. From equa-

tion (23) we have that {√ργn}n∈N is bounded in W1,2
0 (Ω). Therefore there exists a subsequence

{√ργni
}i∈N that converges weakly to

√
ργ in W1,2

0 (Ω). By the compact embedding of W1,2
0 (Ω) in

Lp(Ω), the subsequence {√ργni
}i∈N converges strongly to

√
ργ in Lp(Ω) for all 2 ≤ p < 6, see, e.g.,

[1]. These considerations show that

lim
n→∞

Tr(γn) = lim
n→∞

∫

Ω
ργn dr = lim

n→∞
‖√ργn‖2L2 = ‖√ργ‖2L2(Ω) =

∫

Ω
ργ dr = Tr(γ).

Hence the set KN is closed w.r.t. the weak∗-topology on X . �

Lemma 4.4 The functional J(γ) introduced in (12) is lower semi-continuous w.r.t. the weak∗-
topology on X .

Proof We begin by showing that Tr(Φ·) defines a bounded linear functional on KN ,

|Tr(Φγ)| =
∣

∣

∣

∞
∑

i=1

〈Φγξi, ξi〉
∣

∣

∣ ≤
∞
∑

i=1

2αi|〈Φξi, ξi〉|

≤
∞
∑

i=1

2αi‖φ‖L2(Ω)‖ξ2i ‖L2(Ω) = ‖φ‖L2(Ω)

∞
∑

i=1

2αi‖ξi‖2L4(Ω)

≤ C‖φ‖L2(Ω)

∞
∑

i=1

2αi‖∇ξi‖2L2(Ω) = C‖φ‖L2(Ω)Tr(−∆γ), (32)

where {ξi}i∈N come from the canonical representation of γ ∈ KN , cf. equation (5), and the
Gagliardo–Nirenberg–Sobolev inequality has been used to obtain equation (32). Consequently,

J(γ) = sup
φ∈V

{

Tr(Φγ) +

∫

Ω

(

b(r, {R})φ(r)− CS |∇φ(r)|2
)

dr

}

is the point-wise supremum over a family of continuous affine functionals on KN . Hence it is also
lower semi-continuous with respect to the weak∗-topology on KN . �

Lemma 4.5 Exc(γ) is continuous w.r.t. the weak∗-topology on X .

Proof Similar to the proof in Lemma 4.4, we can show that Tr(Uγ) defines a continuous affine
functional on KN for every u ∈ U . We prove the continuity of Exc(γ) with respect to the weak∗-
topology using techniques of Γ-convergence.

For every sequence γn such that γn
∗
⇀ γ in KN , we consider the family of functionals on U

indexed by n defined by
−Tr(Uγn) +B∗

xc(u).

We show that this family of functionals Γ-converges with respect to the weak∗-topology to the
functional

−Tr(Uγ) +B∗
xc(u)

for all γn
∗
⇀ γ in KN .
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For the lim-inf condition, we need to show that for every u ∈ U and for all un ⇀ u,

lim inf
n→∞

{−Tr(Unγn) +B∗
xc(un)} ≥ −Tr(Uγ) +B∗

xc(u).

Since γn
∗
⇀ γ, for every member of a complete orthonormal basis in L2(Ω), {ξi}i∈N ⊂ W1,2

0 (Ω), we
have

lim
n→∞

〈γnξi, v〉 = 〈γξi, v〉.

From the proof of Lemma 4.3, we have ργn → ργ in L2(Ω). Therefore limn→∞Tr(Unγn) =
Tr(Uγ). In addition, B∗

xc(u) is weakly lower semi-continuous by duality and convexity. So, the
lim-inf condition is proven.

For the lim-sup condition, we choose the trivial recovery sequence un = u for every u ∈ U ,
implying

lim sup
n→∞

{−Tr(Unγn) +B∗
xc(un)} ≥ −Tr(Uγ) +B∗

xc(u).

Lastly, to show equi-coercivity of the functionals, from equation (89) in Appendix B,

−Tr(uγn) +B∗
xc(u) ≥ C18‖u‖4U − (sup

n
Cn)‖u‖L2(Ω) + C19(volΩ),

where Cn ≡ Tr(−∆γn), and Cn is bounded since γn
∗
⇀ γ in X . Therefore the family of functionals

−Tr(uγn) +B∗
xc(u)

is equi-coercive. Using Theorem 7.8 in [12], we have

lim
n→∞

Exc(γn) = lim
n→∞

inf
u∈U

{−Tr(Uγn) +B∗
xc(u)} = inf

u∈U
{Tr(Uγ) +B∗

xc(u)} = Exc(γ). �

Lemma 4.6 Let {γn}n∈N be a sequence of elements in KN which converges to γ in the weak∗-
topology of X . Then

EREKS(γ) ≤ lim inf
n→∞

EREKS(γn).

Proof To prove the lower semi-continuity of EREKS(γ), we use the continuity of the functional
J(γ) from Lemma 4.4 and the continuity of Exc(γ) from Remark 2.2 w.r.t. the weak∗-topology.

For any orthonormal basis {ψk}k∈N of L2(Ω) such that ψk ∈ W1,2(Ω) for all k, we have

Tr(−∆γ) = Tr(|∇|γ|∇|)

=
∞
∑

k=1

〈ψk

∣

∣|∇|γ|∇|
∣

∣ψk〉

=
∞
∑

k=1

Tr
(

γ(
∣

∣|∇|ψk〉〈|∇|ψk

∣

∣)
)

=
∞
∑

k=1

lim
n→∞

Tr
(

γn(
∣

∣|∇|ψk〉〈|∇|ψk

∣

∣)
)

≤ lim inf
n→∞

∞
∑

k=1

Tr
(

γn(
∣

∣|∇|ψk〉〈|∇|ψk

∣

∣)
)

= lim inf
n→∞

Tr(|∇|γn|∇|). (33)

This proves the lower semi-continuity of the functional EREKS(γ). �
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Theorem 1 The reformulated extended K-S energy functional EREKS(γ) possesses a minimizer in
KN .

Proof Consider a minimizing sequence {γn}n∈N of EREKS(γ) in KN . From Lemma 4.2 and
Lemma 4.1, we know that (γn)n∈N has a weak∗-converging subsequence. By the closure of the
subset KN , this subsequence converges to some γ0 ∈ KN . Using the lower semi-continuity of
EREKS w.r.t. the weak∗-convergence in X , it follows

inf
γ∈KN

EREKS(γ) ≤ EREKS(γ0) ≤ lim inf
n→∞

EREKS(γn) = inf
γ∈KN

EREKS(γ).

Hence the existence of a minimizer of EREKS in KN is established. �

5 Discretization of the energy functional

Next we introduce both the spectral and spatial discretization of the reformulated extended K-S
energy functional and prove the convergence of simultaneously discretizing the energy functional
both spatially and spectrally.

5.1 Justification of the spectral discretization

Before we can apply spectral discretization, as it will be evident subsequently, we have to prove that
the spinless one-particle density operator that minimizes EREKS(γ) can be written as a spectral
function of the Hamiltonian H(φ, u).

We recall the definition of L : U × V × KN from equation (20),

L(u, φ, γ) = Tr(H(φ, u)γ) +

∫

Ω

(

− CS |∇φ(r)|2 + b({R}, r)φ(r)
)

dr+B∗
xc(u).

The ground-state energy equals, cf. the equations (19) and (20),

εREKS
GS = inf

γ∈KN

inf
u∈U

sup
φ∈V

L(u, φ, γ).

Since we can exchange the order of the infima, the ground-state energy is also equal to

εREKS
GS = inf

u∈U
inf

γ∈KN

sup
φ∈V

L(u, φ, γ). (34)

Now we derive sufficient properties of L(u, ·, ·) that enable us to exchange the order of the
infimum over γ ∈ KN and the supremum over φ ∈ V .

Lemma 5.1 For every u ∈ U and every φ ∈ V, the functional L(u, φ, ·) is convex and lower
semi-continuous with respect to γ in X . In addition, for every φ ∈ V,

lim
‖γ‖X→+∞

L(u, φ, γ) = +∞. (35)

Proof For given u and φ, the convexity of L(u, φ, ·) is evident since the terms involving γ are linear
functionals of γ.

Regarding the lower semi-continuity of L(u, φ, ·), from Lemma 4.6 we observe that Tr(−1
2∆γ)

is lower semi-continuous in X . Since for every sequence γn → γ in KN by compact embedding it
holds ργn → ργ in L2(Ω), the functionals Tr(Φγ) and Tr(Uγ) are also continuous in X .
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Since u ∈ U ⊂ L2(Ω), it holds for every γ ∈ KN ,

L(u, φ, γ) = Tr(−1

2
∆γ) + Tr(Φγ)− Tr(Uγ)

≥ Tr(−1

2
∆γ)− (‖u‖L2(Ω) + ‖φ‖L2(Ω))‖ργ‖L2(Ω)

≥ Tr(−1

2
∆γ)− C6(‖u‖L2(Ω) + ‖φ‖L2(Ω))‖ργ‖

1
4

L1(Ω)
‖ργ‖

3
4

L3(Ω)
(36)

≥ Tr(−1

2
∆γ)− C7(‖u‖L2(Ω) + ‖φ‖L2(Ω))Tr(|γ|)

1
4 ‖∇√

ργ‖
3
2

L2(Ω)
(37)

for some positive real constants C6 and C7, where interpolation inequalities are used to obtain
equation (36) and the Gagliardo–Nirenberg–Sobolev inequality is used to obtain equation (37).
Hence

L(u, φ, γ) ≥ 1

2
‖γ‖X − C8‖∇√

ργ‖
3
2

L2(Ω)
− N

2
,

where C8 ≡ C7N
1/4(‖u‖L2(Ω) + ‖φ‖L2(Ω)), implying the coercivity (35) of L(u, φ, ·). �

Lemma 5.2 For every u ∈ U and every γ ∈ KN , the functional L(u, ·, γ) is concave and upper
semi-continuous with respect to φ in V. In addition,

lim
‖φ‖V→+∞

L(u, φ, γ) = −∞.

Proof For given u and γ, the terms Tr(Φγ) and
∫

Ω b(r, {R})φ(r) dr are linear functionals of φ,
so they are concave. The term −CS

∫

Ω |∇φ(r)|2 dr is quadratic and concave in |∇φ(r)|. Hence,
L(u, ·, γ) is concave.

Concerning the upper semi-continuity of L(u, ·, γ), by using arguments similar to those in
Lemma 5.1, we observe that Tr(Φγ) and

∫

Ω b(r, {R})φ(r) dr are continuous in V for given b(r, {R})
and γ ∈ KN . The quadratic term −CS

∫

Ω |∇φ(r)|2 dr is upper semi-continuous in V as a result of
Proposition 2.1 in [12].

Finally, for every γ ∈ KN ,

−L(u, φ, γ) ≥ CS‖∇φ‖2L2(Ω) − ‖φ‖L2(Ω)‖ργ+b(r, {R})‖L2(Ω) + C9(u, γ)

≥ C10‖φ‖2L2(Ω) − ‖φ‖L2(Ω)‖ργ+b(r, {R})‖L2(Ω) + C9(u, γ), (38)

where the Poincaré inequality has been used to derive the second estimate, C10 > 0, and with

C9(u, γ) ≡ Tr(
1

2
∆γ) + Tr(Uγ)−B∗

xc(u).

Applying Young’s inequality to ‖φ‖L2(Ω)‖ργ+b(r, {R})‖L2(Ω) in (38), ‖φ‖L2(Ω) can be absorbed in
C10‖φ‖2L(Ω), implying the convergence of φ 7→ L(u, φ, γ) to −∞ as ‖φ‖V converges to +∞. �

After these ancillary results, we can now show the second main theorem which deals with
exchanging the orders of infima and supremum when computing εREKS

GS . Theorem 2 is important
as it allows to apply spectral theory to the Lagrange functional L(u, φ, γ).
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Let Eband(u, φ, γ) := Tr(H(u, φ)γ).

Theorem 2 The order of the infimum and supremum in the computation of the ground-state energy
of the reformulated K-S energy functional can be exchanged,

εREKS
GS = inf

γ∈KN

inf
u∈U

sup
φ∈V

L(u, φ, γ)

= inf
u∈U

sup
φ∈V

inf
γ∈KN

L(u, φ, γ)

= inf
u∈U

sup
φ∈V

inf
γ∈KN

{

Eband(u, φ, γ) +

∫

Ω

(

− CS |∇φ(r)|2 + b(R, r)φ(r)
)

dr+B∗
xc(u)

}

. (39)

For every u ∈ U and every φ ∈ V, the minimizer of the band energy Eband(u, φ, ·) in KN commutes
with the Hamiltonian H(φ, u).

Proof Using similar arguments as in Proposition 2.2 in [13], we are guaranteed the existence of at
least one saddle point {φ̄, γ̄} of L(u, ·, ·) for every u ∈ U . Hence, exchanging infimum and supremum
does not affect the ground-state energy of the reformulated K-S energy functional.

Next, for every u ∈ U and every φ ∈ V , H(φ, u) is a self-adjoint unbounded operator on L2(Ω).
Associated to H(φ, u), there is a countable family of orthonormal eigenvectors that form a basis of
L2(Ω). From [33], since φ(r) ∈ V and u(r) ∈ U , we have that H(φ, u) is semi-bounded from below.

Let λk, ξk denote the k-th eigenvalue and k-th eigenvector of H(φ, u), respectively, with the
indices ordered by increasing magnitude of the eigenvalues. Then, since the trace is invariant with
respect to a change of basis, it follows

inf
γ∈KN

Eband(u, φ, γ) = inf
γ∈KN

Tr
(

H(φ, u)γ
)

= inf
γ∈KN

∞
∑

k=1

〈H(φ, u)γξk, ξk〉

= inf
γ∈KN

∞
∑

k=1

〈γξk, H(φ, u)ξk〉

= inf
γ∈KN

∞
∑

k=1

λk〈γξk, ξk〉

=
N
∑

k=1

λk.

From Theorem 1.3, Supplement 1 in [6], there exists a Borel function g : R → R with

g(λ) =

{

1, if λ ≤ λN ,

0, otherwise.

such that for every u ∈ U and every φ ∈ V ,
argmin
γ∈KN

Eband(u, φ, γ) = g
(

H(φ, u)
)

. (40)

To ensure the existence of a spectral function g, we replace the minimization over KN by the
minimization over the subset

KH(φ,u)
N =

{

γ ∈ KN : γ = g
(

H(φ, u)
)

for a Borel function g over R, 0 ≤ g ≤ 1
}

(41)

and observe that
inf

γ∈KN

Eband(u, φ, γ) = inf
γ∈K

H(φ,u)
N

Tr
(

H(φ, u)γ
)

. � (42)
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We want to emphasize that every element in the set KH(φ,u)
N can be written as a spectral function

of H(φ, u) and is thus amenable to spectral discretization.

We proceed in the next two sections to set up the spectral discretization and the spatial dis-
cretization of the reformulated extended K-S energy functional defined in (19).

5.2 Spatial discretization

We proceed to discretize problem (34) à la Rayleigh-Ritz, i.e. by restriction to finite-dimensional
subspaces. To this end, let Vj be from a family of finite-dimensional subspaces of V spanned by
the basis {e1, . . . , ej}, e.g. a subspace that corresponds to a finite element discretization, and let
Uj be from a family of finite-dimensional subspaces of U spanned by the basis {d1, . . . , dj}, e.g. the
piece-wise constant simple functions. Then the restriction of the electrostatic field to Vj is of the
form

φj(r) =

j
∑

a=1

φaea(r).

The nuclear charge distribution is

bj(r, {R}) =
j
∑

a=1

b{R}
a ea(r)

and the dual density potential uj(r) has the form

uj(r) =

j
∑

a=1

uada(r).

Like-wise, the restricted density operator on a finite-dimensional subspace, the discrete density
matrix, is

γj(r1, r2) =

j
∑

a1=1

j
∑

a2=1

γja1,a2ea1(r1)ea2(r2), (43)

where γj denotes the matrix of coefficients, and the discrete electron density follows as

ρj(r) =

j
∑

a1=1

j
∑

a2=1

ρja1a2ea1(r)ea2(r),

where
ρja1a2 = γja1,a2 .

The above restrictions define a sequence of subspaces in Kj
N of density matrices,

Kj
N =

{

γ ∈ X : γ ∈ S(Vj), 0 ≤ γ ≤ 1
}

,

where S(Vj) denotes the vector space of symmetric linear operators on Vj .
The corresponding discrete Lagrangians Lj , obtained by restriction of the functional in equa-

tion (20) to Uj × Vj ×Kj
N , follow as

Lj(u, φ, γ) = Tr(Hj(φ, u)γj) +

j
∑

a1=1

j
∑

a2=1

{

− CSφa1Aa1,a2φa2 + b{R}
a1 Ma1,a2φa2

}

+B∗
xc(u). (44)
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Before proceeding further, we have to clarify our notation in (44). Let Hj(φ, u) denote the
matrix Hj defined by restriction of φ and u on the finite-dimensional subspaces Vj and Uj , respec-
tively. Throughout this paper, we use a superscript index j to denote restriction of an operator or
a functional to the finite-dimensional subspace defined by Vj , Uj and Kj

N . We use a subscript index
j in general to denote the j-th element in a sequence of functions or operators. There will be cases
where an operator or a function indexed by a subscript j happens to coincide with the restriction
of the operator or the function to the finite-dimensional subspace Uj ,Vj and Kj

N , but there is no
ambiguity from the context when these situations arise.

Using spatial discretization, we introduce the discrete quantities,

Hj ≡ 1

2
A+Φj − U j , (45)

Aa1,a2 ≡
∫

Ω
∇ea1(r) · ∇ea2(r) dr,

Ma1,a2 ≡
∫

Ω
ea1(r) · ea2(r) dr,

Φj
a1,a2 ≡

∫

Ω

(

j
∑

a=1

φaea(r)
)

ea1(r)ea2(r) dr,

U j
a1,a2 ≡

∫

Ω

(

j
∑

a=1

uada(r)
)

ea1(r)ea2(r) dr.

Formally, A and M also depend on j as they are restrictions of operators to {e1, . . . , ej}. We ignore
this fact here to avoid heavy notation.

The discrete band energy Ej
band : Uj × Vj ×Kj

N becomes

E
j
band(u, φ, γ) = Tr(Hj(φ, u)γj). (46)

In addition, we need to introduce the sequence of discrete constraint sets,

KHj(φ,u)
N =

{

γ ∈ Kj
N : γ = g

(

Hj(φ, u)
)

for a Borel function g over R, 0 ≤ g ≤ 1
}

.

With these settings, motivated by the equations (19)–(21), the corresponding sequence of discrete
energies εREKS

GS,j becomes

εREKS
GS,j = inf

u∈Uj

sup
φ∈Vj

inf
γ∈K

Hj(φ,u)
N

Lj(u, φ, γ). (47)

5.3 Spectral discretization

Next we proceed to spectrally discretize the minimization over γ ∈ KHj(φ,u)
N of the discrete band

energy from equation (46). We begin by applying the spectral decomposition theorem (cf., e. g.,
[25]).

For fixed j ∈ N, since Hj defined in (45) is a self-adjoint operator, this theorem states that

Hj =

∫

σ(Hj)
λ dP j(λ),

where P j is a resolution of the identity over the Borel sets of the real line, and σ(Hj) denotes the
spectrum of Hj . Similarly, for the restricted discrete density matrices γj in (43) defined for Hj ,
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there exist bounded Borel functions gj : R → R with

γj =

∫

σ(Hj)
gj(λ) dP j(λ).

Using this representation, we define

Ej(gj) ≡ Tr(Hjγj) =
∞
∑

a=1

∫

σ(Hj)
gj(λ)λ dµjea,ea(λ),

N j(gj) ≡ Tr(γj) =
∞
∑

a=1

∫

σ(Hj)
gj(λ) dµjea,ea(λ),

and where
µjea,ea(λ) ≡ 〈ea|P j(λ)|ea〉

is a spectral measure. For instance, if Hj has j eigenvalues {λa, a = 1, . . . , j}, possibly with
repetition, then

µjea,ea(λ) =







0 if λ < λ1,

〈ea|P j(λk)|ea〉 if λk ≤ λ < λk+1, k = 1, . . . , j − 1,
〈ea|P j(λj)|ea〉 if λ ≥ λj .

Knowing the numbers Ej(gj), N j(gj) and the spectral measures µjea,ea(λ) for every a, the
calculation of the energy-minimizing discrete density matrix γj at fixed (φ, u) reduces to the scalar
problem

inf
gj∈B

{

Ej(gj), 0 ≤ gj ≤ 1, N j(gj) = N
}

, (48)

where B denotes the space of bounded real-valued Borel functions over the real line.

Numerically, spectral approximation consists of finding a minimizer in equation (48) by applying
the Rayleigh-Ritz method over a finite-dimensional subspace Bk of B spanned by a chosen spectral
basis {sk1, . . . , skk}, k ∈ N. Any basis that spans the space of real-valued bounded measurable
functions can be chosen for spectral discretization. In practice, one would choose a basis in which
its spectral integral for each ea, a ∈ N,

∫

σ(Hj)
skq (λ)dµ

j
ea,ea(λ),

can be evaluated at a cost that scales better than cubic with respect to the number of electrons in
the system.

Let us introduce the subsets

KHj(φ,u)
N,k =

{

γ ∈ KHj(φ,u)
N : γ =

k
∑

q=1

ckqs
k
q (H

j)

}

. (49)
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Then the band energy for a density matrix γ ∈ KHj(φ,u)
N,k is

Ej(γ) = Ej
(

k
∑

q=1

ckqs
k
q

)

= Tr(Hjγ)

=
∞
∑

i=1

∫

σ(Hj)
λ

k
∑

q=1

ckqs
k
q (λ) dµ

j
ei,ei(λ)

=
k
∑

q=1

ckq

{

∞
∑

i=1

∫

σ(Hj)
λskq (λ) dµ

j
ei,ei(λ)

}

≡
k
∑

q=1

ckqw
k,j
q , (50)

and the number of electrons in the system for γ ∈ KHj(φ,u)
N,k is

N j(γ) = N j
(

k
∑

q=1

ckqs
k
q

)

= Tr(γ)

=
∞
∑

i=1

∫

σ(Hj)

k
∑

q=1

ckqs
k
q (λ) dµ

j
ei,ei(λ)

=
k
∑

q=1

ckq

{

∞
∑

i=1

∫

σ(Hj)
skq (λ) dµ

j
ei,ei(λ)

}

≡
k
∑

q=1

ckqn
k,j
q . (51)

The minimization of the energy function in equation (48) over Bk becomes

inf
{ckq}⊂Rk

Ej
(

k
∑

q=1

ckqs
k
q

)

,

subject to the constraints

0 ≤ ckq ≤ 1,
k
∑

q=1

ckqn
k,j
q = N.

Next we give an example of spectral discretization, spectral binning.

5.3.1 Spectral binning

Spectral binning refers to a basis consisting of a collection of disjoint piece-wise constant functions,
also known as simple functions. The spectral binning basis is defined over a partition of the fixed
interval [λLB, λUB] into k sub-intervals, or bins, {tkq , q = 0, . . . , k}. We require that tk0 = λLB ≤ λmin

and λN ≤ λUB = tkk < λmax, where λmin and λmax are the minimum and maximum eigenvalues

of Hj , respectively. The choice of (λLB, λUB) must ensure that the space KHj(φ,u)
N,k includes the

minimizer γmin to the band energy functional Ej(gj). Let stkq (λ) denote the disjoint piece-wise

constant characteristic functions defined on the spectrum of Hj(φ, u),

stkq (λ) ≡
{

1, if tkq−1 ≤ λ ≤ tkq ,

0, otherwise.

We define Bk as the collection of constant simple functions {stkq }
k
q=1 associated with this partition.

These functions form a natural basis because they are dense over the space of integrable real
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functions over [λLB, λUB]. The density matrix γ
j
k ∈ KHj(φ,u)

N,k using the spectral theorem in the
spectral binning basis is

γ
j
k =

∫

σ(Hj)

k
∑

q=1

ckqstkq (λ) dP
j(λ). (52)

For any γ ∈ KHj(φ,u)
N,k with associated coefficients {ckq}kq=1 as in equation (52), the corresponding

band energy is

Ej(γ) = Ej
(

k
∑

q=1

ckqstkq

)

= Tr(Hjγ)

=
k
∑

q=1

ckq

(

∞
∑

i=1

∫

σ(Hj)
λstkq (λ) dµ

j
ei,ei(λ)

)

=
k
∑

q=1

ckqw
k,j
q ,

and

N j(γ) = N j
(

k
∑

q=1

ckqstkq

)

= Tr(γ)

=
k
∑

q=1

ckq

(

∞
∑

i=1

∫

σ(Hj)
stkq (λ) dµ

j
ei,ei(λ)

)

=
k
∑

q=1

ckqn
k,j
q ,

where nk,jq can be interpreted as the number of eigenvalues in the interval (tkq−1, t
k
q ), hence giving

rise to the name of the method, spectral binning.
The minimization over Bk in equation (48) becomes a linear programming problem,

inf
{ckq}⊂Rk

k
∑

q=1

ckqw
k,j
q , (53)

subject to the linear constraints

0 ≤ ckq ≤ 1,
k
∑

q=1

ckqn
k,j
q = N. (54)

To proceed with the spectral binning discretization numerically, we have to evaluate the quan-
tities {nk,jq } and {wk,j

q }. In the next subsection we explain in more detail how this is done.

5.3.2 Numerical evaluation of {nk,jq }kq=1

By Sylvester’s law of inertia [31], nk,jq equals the number of eigenvalues of Hj(φ, u) contained
in the sub-interval (tkq−1, t

k
q ). The inertia of a given matrix Hj is denoted by the number triple

(N−,N0,N+), where N− denotes the number of negative eigenvalues of H, N0 the dimension of the
kernel of H, and N+ the number of positive eigenvalues of Hj . Sylvester proved that the inertia of
a matrix is invariant under congruent transformations of the matrix.

The congruent transformation we adopt is the decomposition Hj = LDLT , where D is a diago-
nal matrix and L is a lower triangular matrix. The number of negative elements in D corresponds
to the number of negative eigenvalues of the matrix Hj , [21]. To find the number of eigenvalues
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of the discrete Hamiltonian matrix Hj in an interval [tkq−1, t
k
q ], we need to perform the LDLT

decomposition twice,
Hj − tkq−1Ij = Ltkq−1

Dtkq−1
LT
tkq−1

,

Hj − tkqIj = Ltkq
Dtkq

LT
tkq
.

(55)

Here, Ij denotes the j × j identity matrix. For a non-orthogonal spatial discretization, we simply
replace Ij with the corresponding mass matrix Mj . Let N−(Dtkq

) denote the number of negative
eigenvalues of Dtkq

. Then it holds

nkq = N−(Dtkq
)−N−(Dtkq−1

).

Considering the computational cost for the LDLT decomposition, for a j × j matrix with half
bandwidth W , the number of operations for the LDLT decomposition is, see e.g. [21],

CLDLT =
W (W + 1)j

2
. (56)

Based on equation (56), for k partitions or ’bins’ of the spectrum, the total number of operations
to obtain the number of eigenvalues in each bin is

Cbinning =
W (W + 1)kj

2
. (57)

However, the half bandwidth W of the Hamiltonian scales with respect to the number of spatial
discretizations depending on the spatial dimension of the system. According to [20], the compu-
tational cost for the LDLT decomposition of a molecular system in 3D at worst scales like N2.
Note that by (57), the computational cost of the binning method scales linearly with respect to the
number of spectral discretizations k.

5.4 Numerical evaluation of {wk,j
q }kq=1

Unlike nk,jq introduced in (51), we cannot evaluate wk,j
q defined in (50) directly at a cost that scales

better than cubic with respect to the number of electrons in the system. Hence we proceed to make
one more approximation. Let {mk

q}kq=1 be the center of mass of each partition, defined by

mk
q ≡ w

k,j
q

n
k,j
q

=
1

n
k,j
q

∞
∑

i=1

(

∫

σ(Hj)
λstkq (λ) dµ

j
ei,ei(λ)

)

. (58)

We approximate the center of mass mk
q in the interval (tkq−1, t

k
q ) by

mk
q ≈

tkq − tkq−1

2
. (59)

This approximation implies the spectral approximation of the band energy as

Tr
(

Hj(φ, u)γj
)

=
∞
∑

i=1

∫

σ(Hj)

k
∑

q=1

cqλstkq (λ) dµ
j
ei,ei(λ)

≈
k
∑

q=1

cqm
k,j
q nk,jq ≡ T̃r(Hj(φ, u)γj). (60)

This approximation of {wk,j
q }kq=1 introduces an error over the Rayleigh-Ritz approximation of the

discrete band energy. However, in the next section we are going to show that this error is control-
lable.
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6 Convergence with respect to spectral and spatial discretization

We define the relevant functionals so that we can best utilize the machineries of Γ-convergence.

Part I: Definition of the limit functionals.

Starting from equation (39), we consider the minimization problem

εREKS
GS = inf

u∈U
T (u),

where T : U → R is defined by
T (u) = B∗

xc(u) + sup
φ∈V

S(u, φ)

and S(u, ·) : V → R is

S(u, φ) = −
∫

Ω

(

CS |∇φ(r)|2 − b(r, {R})φ(r)
)

dr+ inf
γ∈X

{

Eband(u, φ, γ) + I
K

H(φ,u)
N

(γ)
}

. (61)

Here, IM for a set M denotes the indicator function of convex analysis,

IM(u) ≡
{

0 if u ∈ M,

+∞ otherwise.

In (61), the minimization over KN was replaced by the minimization over KH(φ,u)
N . This ensures

the existence of a spectral function and was justified in equation (42).

Part II: Definition of the functionals with combined spectral and spatial approximation.

For j ∈ N, based on the identity (39), we introduce the family of energies

εj,kj = inf
u∈U

Tj,kj (u),

where Tj,kj : U → R ∪ {+∞} are defined by

Tj,kj (u) = B∗
xc(u) + sup

φ∈V
Sj,kj (u, φ) + IUj

(u)

and Sj,kj (u, ·) : V → R ∪ {−∞} are given by

Sj,kj (u, φ) = −
∫

Ω

(

CS |∇φ(r)|2−b(r, {R})φ(r)
)

dr+ inf
γ∈X

{

Ebandj,kj
(u, φ, γ)+I

K
Hj(φ,u)
N,kj

(γ)
}

−IVj
(φ).

(62)
In (62), we introduced the approximated constrained sets of density matrices

KHj(φ,u)
N,kj

=
{

γ ∈ KN : γ =

kj
∑

i=1

c
kj
i st

kj
i

(Hj), 0 ≤ c
kj
i ≤ 1

}

and the discrete band energies Ebandj,kj
(u, φ, ·) : X → R,

Ebandj,kj
(u, φ, γ) = T̃r

(

Hj(φ, u)γ
)

, (63)

where T̃r(·) (depending on kj) is the approximation of the trace operator described in equation (60).
We emphasize that this is the actual numerical approximation of the binning algorithm introduced
in Section 5.4.
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Summarizing (50) and (60), for γkj ∈ KHj(φj ,uj)
N,kj

the approximate trace operator is

T̃r(Hjγkj ) =
∞
∑

i=1

kj
∑

q=1

c
kj
q m

kj
q

∫ t
kj
q+1

t
kj
q

s
kj
q (λ) dµei,ei(λ)

=
∞
∑

i=1

kj
∑

q=1

c
kj
q m

kj
q

(

µei,ei(t
kj
q+1)− µei,ei(t

kj
q )
)

, (64)

where m
kj
q ≡ t

kj
q+1+t

kj
q

2 denotes as in (59) the arithmetic mean.
We show convergence w.r.t. both spectral and spatial discretization using three nested Γ-

convergence proofs. We first establish the convergence of the exact band energies Tr(Hj(φj , uj)γj).
Then, in Section 6.2, we validate the convergence of the approximate trace operators.

6.1 The Γ-convergence of the exact band energies Tr
(

Hj(φj, uj)γj
)

Lemma 6.1 If uj ⇀ u in U and φj ⇀ φ in V, then

lim inf
j→∞

{

Tr
(

Hj(uj , φj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
}

≥ Eband(u, φ, γ) + I
K

H(φ,u)
N

(γ)

for every γ ∈ X and for all γj
∗
⇀ γ in X .

Proof We consider four disjoint cases.

1. Let γ ∈ KHj(φ,u)
N and {γj}j∈N ⊂ X be a sequence with γj

∗
⇀ γ such that there exists a q1 ∈ N

so that γj ∈ KHj(φj ,uj)
N,kj

for all j ≥ q1.

By the lower semi-continuity of the kinetic energy proved in Lemma 4.6,

lim inf
j→∞

Tr(−∆γj) ≥ Tr(−∆γ),

and by the compact embedding of W1,2
0 (Ω) in L2(Ω), γj

∗
⇀ γ implies that ργj → ργ in L2(Ω).

This yields

lim
j→∞

Tr
(

(Φj − Uj)γj
)

= lim
j→∞

∫

Ω

(

φj(r)− uj(r)
)

ργj (r) dr =

∫

Ω

(

φ(r)− u(r)
)

ργ(r) dr

= Tr
(

(Φ− U)γ
)

,

leading to
lim inf
j→∞

Tr
(

Hj(φj , uj)γj
)

≥ Tr
(

H(φ, u)γ
)

.

2. Let γ ∈ KH(φ,u)
N and {γj}j∈N ⊂ X be a sequence such that there exists a q2 ∈ N so that

γj 6∈ KHj(φj ,uj)
N,kj

for all j ≥ q2.

In this case we have trivially

lim inf
j→∞

{

Tr
(

Hj(uj , φj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
}

= +∞ ≥ Eband(u, φ, γ) + I
K

H(φ,u)
N

(γ).
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3. Let γ 6∈ KH(φ,u)
N and {γj}j∈N ⊂ X be a sequence such that there exists a q3 ∈ N so that

γj 6∈ KHj(φj ,uj)
N,kj

for all j ≥ q3.

In this case we have trivially

lim inf
j→∞

{

Tr
(

Hj(uj , φj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
}

= Eband(u, φ, γ) + I
K

H(φ,u)
N

(γ) = +∞.

4. Now we show that if γ 6∈ KH(φ,u)
N , then there cannot exist a sequence γj

∗
⇀ γ such that there

exists a q4 ∈ N so that γj ∈ KHj(φj ,uj)
N,kj

for all j ≥ q4.

Let {ξi}i∈N ⊂ W1,2
0 (Ω) represent the eigenvectors of H(φ, u) which are known to form an

orthonormal basis of L2(Ω). Similarly, for j ∈ N, let {ξji }i∈N ⊂ W1,2
0 (Ω) be the eigenvectors

of Hj(φj , uj). From the Rayleigh-Ritz discretization of the Hamiltonian, we can ensure the
convergence of the eigenvectors, i.e. for every i ∈ N,

lim
j→∞

‖ξji − ξi‖L2(Ω) = 0, lim
j→∞

ξ
j
i = ξi.

Since γ 6∈ KH(φ,u)
N , for the case considered here, there must exist an eigenvector of H which

is not an eigenvector of γ. Let us denote it by ξ1. So it holds

γξ1 =
∞
∑

q=1

c1qξq,

and there must exist an index p ∈ N, p 6= 1, such that c1p 6= 0. Consider this c1p. Then

c1p = 〈γξ1, ξp〉 = lim
j→∞

〈γjξ1, ξp〉 = lim
j→∞

〈gj(Hj)ξ1, ξp〉.

Therefore, for p 6= 1,

lim
j→∞

〈gj(Hj)ξ1, ξp〉 = lim
j→∞

〈gj(Hj)ξ1 − ξ
j
1 + ξ

j
1, ξp〉

= lim
j→∞

〈gj(Hj)ξj1, ξp〉+ lim
j→∞

〈gj(Hj)(ξ1 − ξ
j
1), ξp〉

= lim
j→∞

gj(λ
j
1)〈ξj1, ξp〉 = 0.

We then have c1p = 0 for all p 6= 1, contradicting our assumption. Hence we have shown that

if γ 6∈ KH(φ,u)
N , there cannot be a sequence {γj}j∈N with γj ∈ KHj(φj ,uj)

N,kj
for all j ∈ N and

γj
∗
⇀ γ.

The above four cases demonstrate that for all γ ∈ X and for all γj
∗
⇀ γ in X ,

lim inf
j→∞

{

Tr
(

Hj(uj , φj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
}

≥ Eband(u, φ, γ) + I
K

H(φ,u)
N

(γ). �
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Lemma 6.2 Let uj ⇀ u in U and φj ⇀ φ in V. Then for all γ ∈ KH(φ,u)
N , there exists a recovery

sequence γj
∗
⇀ γ such that

lim sup
j→∞

Tr
(

Hj(uj , φj)γj
)

≤ Eband(u, φ, γ)

and
Tr
(

Hj(uj , φj)γ) + I
K

Hj(φj,uj)

N,kj

(γ)
Γ→ Eband(u, φ, γ) + I

K
H(φ,u)
N

(γ)

with respect to the weak∗-topology in X as j → ∞.

Proof We consider two disjoint cases.

1. If γ 6∈ KH(φ,u)
N , then let the recovery sequence be defined by the finite-rank operators that

converge to γ in ‖ · ‖X . This sequence of finite-rank operators exists due to the Rayleigh-Ritz
method and is dense in X . With this recovery sequence, it trivially holds

lim sup
j→∞

Tr
(

Hj(uj , φj)γj
)

≤ Eband(u, φ, γ) = +∞.

2. If γ ∈ KH(φ,u)
N , then without loss of generality, we write

γ =
∞
∑

i=1

2αiξi〉〈ξi, (65)

where {ξi}i∈N, {ξji }i∈N denote the sets of eigenvectors of H(φ, u) and Hj(φj , uj), respectively,
as in Lemma 6.1.

Let us define the sequence of finite-rank operators,

γj =

j
∑

i=1

2αiξ
j
i 〉〈ξ

j
i . (66)

We proceed to show that γj → γ w.r.t. ‖ · ‖X . From Theorem VI.10 in [24], there exists an
unique partial isometry P such that

|γ − γj | = P (γ − γj). (67)

Now we show the strong convergence of γj → γ in the norm sense of X as follows. Utilizing
equation (67), the dual operator P ∗ of P , the Cauchy-Schwarz inequality and the fact that
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both P and P ∗ are isometries, we find

lim
j→∞

Tr(|γ − γj |) = lim
j→∞

Tr(P (γ − γj))

= lim
j→∞

∞
∑

p=1

〈P (γ − γj)ξp, ξp〉

= lim
j→∞

∞
∑

p=1

〈(γ − γj)ξp, P
∗ξp〉

≤ lim
j→∞

∞
∑

p=1

‖(γ − γj)ξp‖L2(Ω)‖P ∗ξp‖L2(Ω)

≤ lim
j→∞

∞
∑

p=1

‖(γ − γj)ξp‖L2(Ω)‖ξp‖L2(Ω)

= lim
j→∞

∞
∑

p=1

‖(γ − γj)ξp‖L2(Ω). (68)

Let us consider just one of the terms in equation (68) for fixed summation index p. We now
look at its projection onto the eigen-basis {ξi}i∈N and find with (65), (66)

lim
j→∞

‖(γ − γj)ξp‖2L2(Ω) = lim
j→∞

∞
∑

q=1

∣

∣

∣〈(γ − γj)ξp, ξq〉
∣

∣

∣

2

= lim
j→∞

{

∞
∑

q=1

∣

∣

∣

∣

∣

2αq〈ξp, ξq〉 −
j
∑

i=1

2αi〈ξp, ξji 〉〈ξ
j
i , ξq〉

∣

∣

∣

∣

∣

2}

≤ lim
j→∞

{∣

∣

∣

∣

∣

2αp −
j
∑

i=1

2αi〈ξp, ξji 〉2
∣

∣

∣

∣

∣

2

+
∞
∑

q=1,q 6=p

∣

∣

∣

∣

∣

j
∑

i=1

2αi〈ξp, ξji 〉〈ξ
j
i , ξq〉

∣

∣

∣

∣

∣

2}

≤ lim
j→∞

{∣

∣

∣

∣

∣

2αp −
j
∑

i=1

2αi〈ξp, (ξji − ξi) + ξi〉2
∣

∣

∣

∣

∣

2

+

∞
∑

q=1,q 6=p

∣

∣

∣

∣

∣

j
∑

i=1

2αi〈ξp, (ξji −ξi) + ξi〉〈(ξji −ξi) + ξi, ξq〉
∣

∣

∣

∣

∣

2}

= 0. (69)

The above limit converges to 0 since for every q ∈ N

lim
j→∞

〈ξi, ξjq − ξq〉 = lim
j→∞

〈ξjq − ξq, ξi〉 = 0.

With the help of (69), we find

0 =
∞
∑

p=1

lim inf
j→∞

‖(γ − γj)ξp‖L2(Ω) ≤ lim inf
j→∞

∞
∑

p=1

‖(γ − γj)ξp‖L2(Ω). (70)

Similarly, by Jensen’s inequality,

lim sup
j→∞

∞
∑

p=1

‖(γ − γj)ξp‖L2(Ω) ≤
∞
∑

p=1

lim sup
j→∞

‖(γ − γj)ξp‖L2(Ω) = 0. (71)
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As a result of (70), (71) we have 0 ≤ lim inf
j→∞

‖(γ−γj)ξp‖L2(Ω) ≤ lim sup
j→∞

‖(γ−γj)ξp‖L2(Ω) ≤ 0,

implying
lim
j→∞

Tr(|γ − γj |) ≤ lim
j→∞

‖(γ − γj)ξp‖L2(Ω) = 0.

Now we are going to use spectral theory to approximate each γj . By the choice of γj , there
are suitable bounded Borel functions gj such that

γj = gj(H
j).

Next we define the sequence γ̃j,k by

γ̃j,k =
k
∑

i=1

c
k,j
i stki

(Hj),

where
c
k,j
i ≡ max{gj(tki ), gj(tki+1)},

and {tk1, . . . , tkk} is the partition of the interval [λLB, λUB] introduced in Section 5.3.1. We
can show that for every j ∈ N

Tr(|γ̃j,k − γj |) → 0 (72)

as k → ∞, see Theorem 2.29 in [34]. However, the trace of γ̃j,k does not satisfy the trace
condition for every k, i.e.

Tr(γ̃j,k) 6= N.

Nevertheless, since
lim
k→∞

Tr(γ̃j,k) = N,

we can normalize the trace to N by introducing

γj,k ≡ N

Tr(γ̃j,k)
γ̃j,k,

Here, due to (72), we may assume Tr(γ̃j,k) 6= 0 for all j and k.

In conclusion, we have

lim
k→∞

Tr(|γj,k − γj |) ≤ lim
k→∞

{

Tr(|γj,k − γ̃j,k|) + Tr(|γ̃j,k − γj |)
}

= 0. (73)

Eqn. (73) implies that for every j there is an index kj ∈ N, kj → ∞ as j → ∞, such that

Tr(|γkj − γj |) ≤
1

j
.

Hence the recovery sequence for every γ ∈ KH(φ,u)
N can be defined as γkj ∈ KHj(φj ,uj)

N,kj
, and

lim
j→∞

Tr(|γkj − γ|) ≤ lim
j→∞

{Tr(|γkj − γj |) + Tr(|γj − γ|)}

≤ lim
j→∞

{1

j
+Tr(|γj − γ|)

}

= 0.
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Now, in order to show that
Tr
(∣

∣|∇|(γkj − γ)|∇|
∣

∣

)

→ 0

as j → ∞, we use that (γkj − γ) ∈ X and

lim
j→∞

‖γkj − γ‖sup ≤ lim
j→∞

Tr(|γkj − γ|) = 0.

Combining the above arguments, it follows

lim inf
j→∞

Tr
(∣

∣|∇|(γkj − γ)|∇|
∣

∣

)

= lim inf
j→∞

Tr(P |∇|(γkj − γ)|∇|)

= lim inf
j→∞

∞
∑

q=1

〈P |∇|(γkj − γ)|∇|ξq, ξq〉

≥
∞
∑

q=1

lim inf
j→∞

〈(γkj − γ)|∇|ξq, |∇|P ∗ξq〉 = 0, (74)

and similarly

lim sup
j→∞

Tr
(∣

∣|∇|(γkj − γ)|∇|
∣

∣

)

= lim sup
j→∞

Tr(P |∇|(γkj − γ)|∇|)

= lim sup
j→∞

∞
∑

q=1

〈P |∇|(γkj − γ)|∇|ξq, ξq〉

≤
∞
∑

q=1

lim sup
j→∞

〈(γkj − γ)|∇|ξq, |∇|P ∗ξq〉 = 0. (75)

Together, (74) and (75) yield

lim
j→∞

Tr
(∣

∣|∇|(γkj − γ)|∇|
∣

∣

)

= 0.

So we have shown that for indices (j, kj), we can choose γkj ∈ KHj(φj ,uj)
N,kj

as the recovery

sequence and γkj → γ ∈ KH(φ,u)
N . For this sequence, the band energy converges in the limit,

lim sup
j→∞

Tr
(

Hj(uj , φj)γj
)

= Eband(u, φ, γ),

where γ ∈ KH(φ,u)
N , φj ⇀ φ in V and uj ⇀ u in U .

Together, the above two cases prove that the limsup condition is satisfied and that in the limit
j → ∞

Tr
(

Hj(uj , φj)γ
)

+ I
K

Hj(φj,uj
N,kj

(γ)
Γ→ Eband(u, φ, γ) + I

K
H(φ,u)
N

(γ). �

Lemma 6.3 For every φj ⇀ φ in V and every uj ⇀ u in U , the family of functionals

{

Tr
(

Hj(uj , φj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
}

j∈N

is equi-coercive with respect to the weak∗-topology in X .
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Proof This proof is similar to the proof of Lemma 5.1. It is reproduced here for the sake of

completeness. For every γ ∈ KHj(φj ,uj)
N,kj

, we have the bounds from below

Tr
(

Hj(uj , φj)γ
)

=
1

2
Tr(−∆γ) + Tr(Φjγ)− Tr(Ujγ)

≥ 1

2
Tr(−∆γ)− (‖φj‖L2(Ω) + ‖uj‖U )‖ργ‖L2(Ω)

≥ 1

2
Tr(−∆γ)− C10(‖φ‖L2(Ω) + ‖uj‖L2(Ω))‖ργ‖

1
4

L1(Ω)
‖ργ‖

3
4

L3(Ω)
(76)

≥ 1

2
Tr(−∆γ)− C11(‖φj‖L2(Ω) + ‖uj‖L2(Ω))N

1/4‖∇√
ργ‖

3
2

L2(Ω)
(77)

≥ 1

2
Tr(−∆γ)− C12‖∇√

ργ‖
3
2

L2(Ω)
, (78)

where interpolation inequalities are used to obtain (76), the Gagliardo–Nirenberg–Sobolev inequal-
ity is used to obtain (77), and with the constant

C12 ≡ C11 sup
j∈N

{

‖φj‖L2(Ω) + ‖uj‖L2(Ω)

}

N1/4.

Since
Tr(−∆γ) ≥ ‖∇√

ργ‖2L2(Ω),

the kinetic energy is the dominating term in the inequality. Hence, for any t ∈ R the level sets
{

γ ∈ X : Tr
(

Hj(uj , φj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ) ≤ t
}

are bounded,

t ≥ 1

2
‖γ‖X − C12‖√ργ‖

3
2

L2(Ω)
− N

2
.

By the results in [15], this shows that for every j and kj , the level sets of
{

Tr
(

Hj(uj , φj) ·
)

+

I
K

Hj(φj,uj)

N,kj

(γ)
}

are precompact and hence equi-coercive. �

Lemma 6.4 If φj ⇀ φ in V and uj ⇀ u in U , then

lim
j→∞

inf
γ∈X

{

Tr
(

Hj(uj , φj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
}

= inf
γ∈X

{

Eband(u, φ, γ) + I
K

H(φ,u)
N

(γ)
}

.

Proof This is proven using Theorem 7.8 in [12], Lemma 6.2 and Lemma 6.3. �

6.2 Γ-convergence of Ebandj,kj
with approximation of the trace operator

In the last section, the Γ-convergence of the exact band energies has been shown. Subsequently,
we extend these convergence results to Ebandj,kj

introduced in (63), i.e. to the evaluation operators

actually used in the binning algorithm.

Lemma 6.5 Let uj ⇀ u in U , φj ⇀ φ in V as j → ∞ and γkj ∈ KHj

N,kj
for all j ∈ N. Then

lim
j→∞

∣

∣T̃r(Hjγkj )− Tr(Hjγkj )
∣

∣ = 0. (79)
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Proof By direct estimates we find

∣

∣

∣
T̃r(Hjγkj )− Tr(Hjγkj )

∣

∣

∣
=

∣

∣

∣

∣

∣

∞
∑

i=1

kj
∑

q=1

∫ t
kj
q+1

t
kj
q

c
kj
q (m

kj
q − λ)s

kj
q (λ) dµei,ei(λ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

i=1

kj
∑

q=1

c
kj
q (m

kj
q − ν

kj
q,i)

∫ t
kj
q+1

t
kj
q

s
kj
q (λ) dµei,ei(λ)

∣

∣

∣

∣

∣

(80)

=

∣

∣

∣

∣

∣

∞
∑

i=1

kj
∑

q=1

c
kj
q (m

kj
q − ν

kj
q,i)
(

µei,ei(t
kj
q+1)− µei,ei(t

kj
q )
)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

kj
∑

q=1

c
kj
q
hkj

2

∞
∑

i=1

(

µei,ei(t
kj
q+1)− µei,ei(t

kj
q )
)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

kj
∑

q=1

c
kj
q
hkj

2
n
kj
q

∣

∣

∣

∣

∣

, (81)

where hkj := max1≤l≤tj−1 |tkjl − t
kj
l+1| are the widths of the binning intervals. The numbers ν

kj
q,i ∈

(t
kj
q , t

kj
q+1) in equation (80) appear as a result of the mean value theorem for Riemann-Stieltjes

integrals with respect to each measure µei,ei(λ), see e.g. [34].
For each ǫ > 0, there exists a k ∈ N such that hkj <

2ǫ
N for all kj ≥ k. Consequently, due to

equation (81),

∣

∣T̃r(Hjγkj )− Tr(Hjγkj )
∣

∣ <

∣

∣

∣

∣

∣

ǫ

N

kj
∑

q=1

c
kj
q n

kj
q

∣

∣

∣

∣

∣

< ǫ.

This concludes the proof of (79). �

After the convergence of T̃r(·) to Tr(·) has been established, we are now ready to prove the
announced Γ-convergence result.

Lemma 6.6 For every φj ⇀ φ in V, every uj ⇀ u in U and all γ ∈ X ,

T̃r
(

Hj(φj , uj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
Γ→ Tr

(

H(φ, u)γ
)

+ I
K

H(φ,u)
N

(γ)

in the limit j → ∞.

Proof Let us begin with the liminf part of the Γ-convergence proof. From Lemma 6.1, we have
that for all φj ⇀ φ in V and all uj ⇀ u in U , for every γ ∈ X and all γj

∗
⇀ γ,

Tr
(

H(φ, u)γ
)

+ I
K

H(φ,u)
N

(γ) ≤ lim inf
j→∞

{

Tr
(

Hj(φj , uj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γj)
}

.
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Using Lemma 6.5,

lim inf
j→∞

{

Tr
(

H(φ, u)γ
)

+ I
K

H(φ,u)
N

(γ)
}

≤ lim inf
j→∞

{

T̃r
(

Hj(φj , uj)γj
)

− Tr
(

Hj(φj , uj)γj
)

}

+ lim inf
j→∞

{

Tr
(

Hj(φj , uj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γj)
}

≤ lim inf
j→∞

{

T̃r
(

Hj(φj , uj)γj
)

− Tr
(

Hj(φj , uj)γj
)

+Tr
(

Hj(φj , uj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γj)
}

= lim inf
j→∞

{

T̃r
(

Hj(φj , uj)γj
)

+ I
K

Hj(φj,uj)

N,kj

(γj)
}

.

Similarly, for the limsup part, using the same recovery sequence {γkj}j∈N as the one constructed
in Lemma 6.2,

lim sup
j→∞

{

T̃r
(

Hj(φj , uj)γkj
)

+ I
K

Hj(φj,uj)

N,kj

(γkj )
}

= lim sup
j→∞

{

T̃r
(

Hj(φj , uj)γkj
)

−Tr
(

Hj(φj , uj)γkj
)

+Tr
(

Hj(φj , uj)γkj
)

+I
K

Hj(φj,uj)

N,kj

(γkj )
}

≤ lim sup
j→∞

{

T̃r
(

Hj(φj , uj)γkj
)

−Tr
(

Hj(φj , uj)γkj
)

}

+lim sup
j→∞

{

Tr
(

Hj(φj , uj)γkj
)

+I
K

Hj(φj,uj)

N,kj

(γkj )
}

≤ lim sup
j→∞

{

Tr
(

H(φ, u)γ
)

+ I
K

H(φ,u)
N

(γ)
}

.

Therefore, using the results of Lemma 6.2,

lim sup
j→∞

{

T̃r
(

Hj(φj , uj)γkj
)

+ I
K

Hj(φj,uj)

N,kj

(γkj )
}

≤ Tr
(

H(φ, u)γ
)

+ I
K

H(φ,u)
N

(γ).

This completes the proof. �

Lemma 6.7 If uj ⇀ u in U and φj ⇀ φ in V, then for every γ ∈ X , the family of functionals
{

T̃r
(

Hj(φj , uj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ)
}

j∈N
is equi-coercive.

Proof From Lemma 6.5, we have for every γ ∈ KHj(φj ,uj)
N,j,kj

T̃r
(

Hj(φj , uj)γ)− Tr
(

Hj(φj , uj)γ) =

kj
∑

q=1

∞
∑

i=1

(m
kj
q − ν

kj
q )c

kj
q

(

µei,ei(t
kj
q+1)− µei,ei(t

kj
q )
)

≥
kj
∑

q=1

∞
∑

i=1

(λLB − λUB)c
kj
q

(

µei,ei(t
kj
q+1)− µei,ei(t

kj
q )
)

≥(λLB − λUB)N,

where (λLB, λUB) denote the a-priori given bounds on the spectrum of H(φ, u) for the binning
algorithm.
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Hence from Lemma 6.3, especially equation (78),

T̃r
(

Hj(φj , uj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ) = T̃r
(

Hj(φj , uj)γ
)

− Tr
(

Hj(φj , uj)γ
)

+Tr
(

Hj(φj , uj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ)

≥ 1

2
Tr(−∆γ)− C12‖√ργ‖

3
2

L2(Ω)
+ (λLB − λUB)N.

This shows that for any t ∈ R the level sets
{

γ ∈ X : T̃r
(

Hj(φj , uj)γ
)

+ I
K

Hj(φj,uj)

N,kj

(γ) < t
}

,

are bounded,

t ≥ 1

2
‖γ‖X − C12‖√ργ‖

3
2

L2(Ω)
− N

2
+ (λLB − λUB)N. �

Lemma 6.8 If φj ⇀ φ in V and uj ⇀ u in U , then

lim
j→∞

inf
γ∈X

{

T̃r(Hj(φj , uj)γ) + I
K

Hj(φj,uj)

N,kj

(γ)
}

= inf
γ∈X

{

Tr
(

H(φ, u)γ
)

+ I
K

H(φ,u)
N

(γ)
}

.

Proof This is a direct consequence of Theorem 7.8 in [12], Lemma 6.6 and Lemma 6.7. �

6.3 Γ-convergence of the operators Sj,kj

In the next step we consider the Γ-convergence of −Sj,kj (uj , φ) to −S(u, φ) for uj ⇀ u.

Lemma 6.9 If uj ⇀ u in U , then for j → ∞,

−Sj,kj (uj , φ)
Γ→ −S(u, φ)

with respect to the weak topology in V.

Proof From Lemma 6.8, for every u ∈ U and all uj ⇀ u in U ,

lim
j→∞

inf
γ∈X

{

Ebandj,kj
(uj , φ, γ) + I

K
Hj(φ,uj)

N,kj

(γ)
}

= inf
γ∈X

{

Eband(u, φ, γ) + I
K

H(φ,u)
N

(γ)
}

.

Beginning with the liminf condition, for every φ ∈ V and all φj ⇀ φ in V ,
∫

Ω
CS |∇φ(r)|2 dr ≤ lim inf

j→∞

∫

Ω
CS |∇φj(r)|2 dr,

and

−
∫

Ω
b(r, {R})φ(r) dr ≤ lim inf

j→∞

(

−
∫

Ω
b(r, {R})φj(r) dr

)

.

This shows
−S(u, φ) ≤ lim inf

j→∞

(

− Sj,kj (uj , φ)
)

.
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For the limsup condition, we can pick the recovery sequence φ̃j to be the projection of φ ∈ V
onto Vj . From the density of the spaces Vj as j → ∞, we have φ̃j → φ in V . Hence, for this
recovery sequence, we obtain

lim
j→∞

∫

Ω
CS |∇φ̃(r)|2 dr =

∫

Ω
CS |∇φ(r)|2 dr

and

lim
j→∞

(

−
∫

Ω
b(r, {R})φ̃j(r) dr

)

= −
∫

Ω
b(r, {R})φ(r) dr.

In conclusion, for uj ⇀ u, the Γ-convergence of −Sj,kj (uj , φ) to −S(u, φ) has been established. �

Lemma 6.10 If uj ⇀ u in U , then the family of functionals {−Sj,kj (uj , φ)}j∈N is equi-coercive
with respect to the weak topology in V.

Proof Proceeding as in Lemma 6.3, we find

−Sj,kj (uj , φ) =

∫

Ω

(

CS |∇φ(r)|2 − b(r, {R})φ(r)
)

dr

− inf
γ∈X

{

T̃r
(

Hj(φ, uj)γ
)

+ I
K

Hj(φ,uj)

N,kj

(γ)
}

+ IVj
(φ) (82)

≥CS‖∇φ‖2L2(Ω) − ‖b(r, {R})‖L2(Ω)‖φ‖L2(Ω) − Tr
(

Hj(φ, uj)γ̂j
)

+ ǫkj .

Here, γ̂j ∈ KHj(φ,uj)
N,kj

are minimal in (82) and satisfy for all j ∈ N

T̃r
(

Hj(φ, uj)γ̂j
)

= Tr
(

Hj(φ, uj)γ̂j
)

− ǫkj ,

where due to Lemma 6.5 the sequence ǫkj converges to 0 as j becomes infinite. It follows

−Sj,kj (uj , φ) ≥C13‖φ‖2L2(Ω) − (‖b(r, {R})‖L2(Ω) + ‖ργ̂j‖L2(Ω))‖φ‖L2(Ω)

− ‖uj‖L2(Ω)‖ργ̂j‖L2(Ω) +
1

2
Tr(−∆γ̂) + ǫkj

≥C13‖φ‖2L2(Ω) − C14‖φ‖L2(Ω) + C15, (83)

with a constant C13 > 0 originating from the Poincaré inequality, and with further constants

C14 ≡ ‖b(r, {R})‖L2(Ω) + sup
j∈N

‖ργ̂j‖L2(Ω),

C15 ≡ sup
j∈N

{

− ‖uj‖L2(Ω)‖ργ̂j‖L2(Ω) +
1

2
Tr(−∆γ̂j) + ǫkj

}

.

With (83), the equi-coercivity of −Sj,kj (uj , φ) with respect to the weak topology in V is proved. �

Lemma 6.11 If uj ⇀ u in U , then lim
j→∞

sup
φ∈V

Sj,kj (uj , φ) = sup
φ∈V

S(u, φ).

Proof This is proven using Theorem 7.8 in [12], Lemma 6.9 and Lemma 6.10. �
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6.4 Γ-convergence of the operators T j,kj

Lemma 6.12 The family of functionals {T j,kj (u)}j∈N converges in the Γ-sense, i.e. for j → ∞

T j,kj (u)
Γ→ T (u)

with respect to the weak topology in U .

Proof We begin by showing the lim-inf condition for

T j,kj (u) = B∗
xc(u) + sup

φ∈V
Sj,kj (u, φ).

From Lemma 6.11, we have for every uj ⇀ u in U and u ∈ U ,

lim
j→∞

sup
φ∈V

Sj,kj (uj , φ) = sup
φ∈V

S(u, φ).

In addition, B∗
xc(u) is weakly lower semi-continuous, see [13]. Hence the liminf condition is proved.

In order to prove the limsup condition, for every u ∈ U , let the recovery sequence {uj}j∈N be
the projections of u onto Uj . For this recovery sequence, using the bounds from equation (89) in
the appendix B, the continuity of the functional B∗

xc(u) in U can be established through Fatou’s
Lemma,

lim
j→∞

B∗
xc(uj) = B∗

xc(u).

Hence, we have satisfied the limsup condition and have proven that in the limit j → ∞, the family
of functionals T j,kj (u) converges in the Γ-sense with respect to the weak topology of U to T (u). �

Lemma 6.13 The family of functionals {T j,kj (u)}j∈N is equi-coercive with respect to the weak
topology in U .

Proof From Proposition 1.2 in [13],

B∗
xc(u) =

∫

Ω
h∗
(

u(r)
)

dr,

where h∗(x) : R → R is the Legendre transform of (−h(t)) from equation (10). Using the bounds
from equation (89) in Appendix B, there exist real constants C16 > 0 and C17 such that

B∗
xc(u) ≥ C16‖u‖4U − C17(volΩ). (84)

The estimate (84) implies natural bounds from below on the functional T j,kj ,

T j,kj (u) = B∗
xc(u) + sup

φ∈V
Sj,kj (u, φ)

≥ B∗
xc(u) + inf

γ∈X

{

T̃r
(

Hj(φ̂, u)γ
)

+ I
K

Hj(φ̂,u)
N,kj

(γ)
}

≥ B∗
xc(u) +NλLB(φ̂, u)

≥ B∗
xc(u) +N

(

λ
Hj(φ̂,u)
1 + Cj

)

,
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where φ̂ = 0 is a test function in V , λLB denotes the lower bound of the binning interval [λLB, λUB]

for Hj(φ̂, u), and λ
Hj(φ̂,u)
1 denotes the lowest eigenvalue of Hj(φ̂, u). Let

λLB = λ
Hj(φ̂,u)
1 + Cj .

We know that supj |Cj | is uniformly bounded, because λLB is only a functional of φ̂ and u and
independent of spatial discretization.

If ξ
Hj(φ̂,u)
1 denotes the corresponding normalized eigenvector of Hj(φ̂, u), we can derive a lower

bound of λ
Hj(φ̂,u)
1 by the ellipticity of the underlying variational problem,

λ
Hj(φ̂,u)
1 =

〈

Hj(φ̂, u)ξ
Hj(φ̂,u)
1 , ξ

Hj(φ̂,u)
1

〉

≥ ‖∇ξH
j(φ̂,u)

1 ‖2L2(Ω) − ‖u‖L2(Ω)

≥ −‖u‖L2(Ω). (85)

Using the inequality (85), we can bound T j,kj (u) from below by a coercive functional which is
independent of j and kj ,

T j,kj (u) ≥ B∗
xc(u)−N‖φ̂− u‖L2(Ω)

≥ C16‖u‖4U −N‖u‖2U . (86)

In the limit ‖u‖U → ∞, the term C16‖u‖4U dominates, so we have T j,kj (u) → ∞. Hence, the
equi-coercivity of the family of functionals T j,kj (u) is established. �

Theorem 3 In the limit of the number of spatial discretizations j → ∞, and consequently in
the limit of the number of spectral discretizations kj → ∞, the family of ground-state energies of
the spatially and spectrally discrete K-S energy functionals converges to the full K-S ground-state
energy,

lim
j→∞

inf
u∈U

T j,kj (u) = inf
u∈U

T (u) = εGS.

Alternatively, in terms of the functional L(u, φ, γ), this means

lim
j→∞

inf
Uj

sup
Vj

inf
K

Hj(φ,u)
N,kj

L(u, φ, γ) = inf
U

sup
V

inf
K

H(φ,u)
N

L(u, φ, γ) = εREKS
GS .

Proof This is proven using Theorem 7.8 in [12], Lemma 6.12 and Lemma 6.13. �

7 Binning in one dimension, a model problem

We now test the efficiency of the binning algorithm on a one-dimensional model problem which was
first proposed in [11].

Consider a linear chain of M atoms with N electrons spaced uniformly with Ri = i for i ∈ Z.
The electrons in the atoms are non-interacting electrons that interact with an effective field that
depends on the positions of the nuclei in the chain. The effective potential V (r) is a sum of Gaussian
potentials centered at each atom in the chain,

V (r) = −
∑

i∈Z

α
√

2πβ2
exp

[

−(r −Ri)
2

2β2

]

.

35



Finding the ground-state energy of the system amounts to finding the N lowest eigenvalues of the
linear eigenvalue problem in one dimension,

Hψi =
(

− 1

2

d

dr2
+ V (r)

)

ψi = ǫiψi.

The constants α and β in the effective potential dictate the band gap in the band-structure of the
one-dimensional chain. Hence the model has the ability to simulate either a metal or an insulator.
In this paper, we test the binning algorithm on a ”metallic” chain (setting α = 10, β = 0.45), and
an ”insulating” chain (setting α = 100, β = 0.3).

7.1 Binning algorithm for a linear eigenvalue problem

The binning algorithm works as follows:

do Find an initial guess to [λLB, λUB];
Perform a LDLT decomposition of Hj − λLBIj and Hj − λUBIj;
Find N−(H

j − λLBIj) and N−(H
j − λUBIj);

if N−(H
j − λLBIj) > 0;

then

Decrease λLB until N−(H
j − λLBIj) = 0.

end

if N−(H
j − λUBIj) < N ;

then

Increase λUB until N−(H
j − λUB) > N ;

else

Use bisection to decrease λUB so that N−(H
j − λUBIj) = N + ǫN with ǫN ∈ N>0;

end

do Partition [λLB, λUB] into k intervals with end points {tk0, tk1, . . . , tkk}, λLB = tk0 and
λUB = tkk;
for q=1:k;
do

Perform a LDLT decomposition of Hj − tkqIj and find N−(H
j − tkqIj);

end

for q=1:k;
do

n
k,j
q = N−(H

j − tkqIj)−N−(H
j − tkq−1Ij);

mk
q =

(tkq+tkq−1)

2 ;

end

do Minimize
k
∑

q=1
ckqm

k
qn

k,j
q over coefficients {ckq} ⊂ R

k subject to the constraints

0 ≤ c− qk ≤ 1 and
k
∑

q=1
ckqn

k,j
q = N .

Algorithm 1: Binning Algorithm

A system of 1000 atoms and 4000 electrons with periodic boundary conditions is discretized
using a 8-th order central difference stencil in finite difference. To find an initial guess of [λLB, λUB],
we use the smallest and largest Ritz values obtained from a Krylov subspace projection of dimension
k on an arbitrary unit vector, where k denotes the number of bins. Note that any Krylov subspace
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with dimension p ≥ 2 may be used to obtain an initial guess of [λLB, λUB]. We use the interior-
point method to perform the minimization of (53) with respect to the spectral binning coefficients
{ckq}kq=1 subject to the constraints in equation (54).

The band energy of a ”metallic” and an ”insulating” system have been calculated using spectral
binning and linear-scaling spectral Gauss quadratures (LSSGQ) from [27]. We see that spectral
binning can achieve comparable accuracies as polynomial approximations.
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Figure 1: Metal: α = 10, β = 0.45
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Figure 2: Insulator: α = 100, β = 0.3
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7.2 Electron density ρ(r) with spectral binning

The electron density ρ(r) in the context of spectral binning is

ργ(r0) = γ(r0, r0) = 〈r0, γr0〉 =
k
∑

q=1

ckq 〈r0, stkq (H)r0〉

=

k
∑

q=1

ckq

∞
∑

p=1

stkq (λp)〈r0, ξp〉〈ξp, r0〉 =
k
∑

q=1

ckq

∞
∑

p=1

stkq (λp)|ξp(r0)|
2

=

k
∑

q=1

ckq

∞
∑

p=1

stkq (λp)

∣

∣

∣

∣

∣

∞
∑

m=1

bpmem(r0)

∣

∣

∣

∣

∣

2

, (87)

where

bpm ≡ 〈ξp, em〉, stkq (λp) ≡
{

1, if tkq ≤ λp ≤ tkq+1,

0, otherwise

for an orthonormal basis set {em}m∈N, and the eigen-pairs of H are denoted by {λp, ξp}. In the
form of a spectral integral, as shown in [27], equation (87) can be written as

∞
∑

p=1

stkq (λp)

∣

∣

∣

∣

∣

∞
∑

m=1

bpmem(r0)

∣

∣

∣

∣

∣

2

=

∫

σ(H)
stkq (λ) dµ(ηr0 ,ηr0 )

and

ρ(r0) =
k
∑

q=1

ckq

∫

σ(H)
stkq (λ) dµ(ηr0 ,ηr0 ),

where

ηr0(r) =
∞
∑

p=1

ep(r0)ep(r).

In other words, evaluation of the electron density using spectral binning requires the ability to
evaluate the quantity 〈ηr0 , s(H)ηr0〉. An efficient approach to doing this without polynomial or
rational approximations remains an open problem.
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Appendix A Orbital formulation of K-S DFT

The K-S problem [22] constitutes the minimization of the functional

∫

Ω

1

2

∑

1≤i≤N

|∇ψi|2 dr+ EH (ρ) + Eext (ρ) + EZZ + Exc (ρ)

over
{

{ψi} ∈ VN : 〈ψi, ψj〉 = δij
}

,

where EH, Eext, EZZ and Exc are given by (7), (8), (9) and (10), respectively, and with the electron
density ρ =

∑N
i=1 |ψi|2.

The Euler-Lagrange equation associated with the constrained variational problem above gives
rise to the non-linear eigenvalue problem

(

−1

2
∆ + V

)

ψ = λψ,

where

V
(

ρ(r), r
)

=

∫

Ω

ρ(r′)

|r− r′| dr
′ +

∑

1≤I≤M

ZI

|RI − r| + h′(ρ(r)).

The solution to the variational problem is given by the eigenvectors ψi that correspond to the N
lowest eigenvectors. The problem is non-linear because V depends on ρ and thus on ψi.

The operator formulation that we use is obtained formally by noting that any γ ∈ KN has the
representation

γ =
∑

1≤i≤N

ψi ⊗ ψi

for {ψi} ⊂ VN .

Appendix B The dual formulation of exchange-correlation

Let T be a topological vector space and {FI} be a family of continuous affine functionals from T to
R̄. Let Γ(T ) denote the collection of functionals that are the point-wise supremum of some family
{FI}. Since the point-wise supremum of a family of convex functionals is convex and the point-wise
supremum of a family of lower semi-continuous functionals is lower semi-continuous, see, e.g. [13],
we have that every functional in Γ(V) is convex and lower semi-continuous. Further, we have the
following statement, see Proposition 3.1 in [13].

Proposition Appendix B.1 The following properties are equivalent:

1. F ∈ Γ(T ).

2. F is a convex lower semi-continuous functional from T to R̄ and if F takes the value −∞,
then F is identically equal to −∞.

Given F : T 7→ R̄, the dual conjugate functional F ∗ : T ∗ 7→ R̄, where T ∗ denotes the space of
linear functionals defined on T , is

F ∗ = sup
u∈T

{

〈u∗, u〉 − F (u)
}

.
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We see that F ∗ is defined as the point-wise supremum of the family of continuous affine functionals
〈·, u〉 − F (u), hence F ∗ ∈ Γ(T ∗), and F ∗ is convex and lower semi-continuous. Furthermore, if F
itself is convex and lower semi-continuous, the dual conjugate functional of F ∗ coincides with F ,
(i.e. F ∗∗ = F ), see, e.g., Proposition 4.1 in [13].

When we apply the aforementioned properties of dual transforms to the exchange-correlation
functional, since −Exc(ργ) is convex and lower semi-continuous in L 4

3 (Ω), we have −Exc(ρ) ∈
Γ(L 4

3 (Ω)). We can then rewrite −Exc(ρ) as

−Exc(ργ) = sup
u∈Lr′ (Ω)

{〈u, ργ〉 −Bxc(u)
∗}

= − inf
u∈Lr′ (Ω)

{B∗
xc − 〈u, ργ〉}, (88)

where
B∗

xc(u) = (−Exc(ρ))
∗

and B∗
xc is convex and lower semi-continuous in Lr′(Ω) with 1

r′ = 1 − 1
4/3 = 1

4 . This also explains

the choice of U in equation (16).
From Proposition 2.1 in [13], we know that

B∗
xc(u) =

∫

Ω
h∗(u) dr,

where h∗(x) = (−h(t))∗ = sup
t∈R

{xt− (−h(t))} is the Legendre transform of the function −h(t). Due

to the bounds
C1|t|

4
3 + C2 ≤ −h(t) ≤ C3|t|

4
3 + C4

on −h(t), we can arrive at the bounds

C18|x|4 + C19 ≤ h∗(x) ≤ C16|x|4 + C17 (89)

for h∗(x).
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