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Abstract

The zero-order Gamma-limit of vanishing internal length scale is studied for the me-
chanical energy of a shear problem in geometrically nonlinear Cosserat elasticity. The
convergence of the minimizers is shown and the limit functional is characterized. One
main result is that Gamma-limit and pointwise limit of the energy only coincide when
µc = 0 and are different otherwise.
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1. The Cosserat model in simple shear

We investigate the deformation of an infinite layer of material in 3D with unit height,
fixed at the bottom and sheared in e1-direction with amount 0 < γ < 2 at the upper face,
cf. Fig 1. Within a geometrically non-linear Cosserat theory, [11, 13, 14], the mechanical
behaviour of the material can be modelled with the help of the standard deformation map
ϕ : Ω̂ → R

3 and the tensor field of orthogonal micro-rotations R : Ω̂ → SO(3), describing

the translation and independent rotation of a material point, respectively. Here, Ω̂⊂R
3

is the reference configuration. By µ > 0 we denote the standard elastic shear modulus,
µc ≥ 0 is the Cosserat couple modulus, λ ∈ R the second elastic Lamé parameter, a1 ≥ 0,
a2 ≥ 0, a3 ≥ 0 are non-dimensional constants; Lc > 0 is the characteristic length scale.
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Figure 1: The deformed state exhibits a homogeneous region in the interior of the structure which
motivates the kinematics of simple shear.

A detailed discussion about the physical meaning of these parameters and its relation to
other models can be found in the review article [26].

The deformed material is characterized by the minimizers (ϕ,R) of the isotropic me-
chanical energy

E3D(ϕ,R) =

∫

Ω̂
µ
∣∣sym(U − 13)

∣∣2 + µc

∣∣skew(U − 13)
∣∣2 + λ

4

[
(detU − 1)2 +

( 1

detU
− 1
)2]

+ µ
L2
c

2

(
a1
∣∣dev symRTCurlR

∣∣2 + a2
∣∣skewRTCurlR

∣∣2 + a3
3
tr(RTCurlR)2

)
dx

=

∫

Ω̂
Wmp(U) +Wdisloc(R

TCurlR) dx , U = RTDϕ (1)

subject to certain boundary conditions, see [3, 27, 26, 30, 31, 6, 5, 8] for further infor-
mation and [17] for a comparison to experiments.

The symmetry of the boundary conditions and the infinite extension in e1-direction
lead to the reduced kinematics

ϕ(x1, x2, x3) =



x1 + u(x3)

x2
x3


 , F = Dϕ(x1, x2, x3) =



1 0 u′(x3)
0 1 0
0 0 1


 , (2)

with u(0) = 0 and u(1) = γ. The microrotations R ∈ SO(3) satisfy the identity

R(x1, x2, x3) =




cosα(x3) 0 sinα(x3)
0 1 0

− sinα(x3) 0 cosα(x3)


 (3)
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with fixed axis of rotation e2, implying

CurlR =



0 − sinα(x3)α

′(x3) 0
0 0 0
0 − cosα(x3)α

′(x3) 0


 . (4)

From now on, we denote x3 by x and set

Ω := (0, 1) ⊂ R.

The deformation u introduced in (2) and the local rotation angle α around the axis
x3 = x in (3) permit to re-write the functional E3D in a simpler form, see [3]. The
solutions to the 3D-shear problem can thus be obtained as minimizers of the mechanical
energy functional and the reduced mechanical energy functional

E(u, α) =
µ

2

∫ 1

0

4L2
c |α′|2 + |u′|2 +

(
sin(α)u′ − 4 sin2

(α
2

))2
dx

+
µc

2

∫ 1

0

(
cos(α)u′ − 2 sin(α)

)2
dx, (5)

Ê(u, α) =
µ

2

∫ 1

0

4L2
c |α′|2 + |u′|2 + [α(α−u′)]2 dx+ µc

2

∫ 1

0

(2−α2

2
u′ − 6α−α3

3

)2
dx. (6)

The functional Ê(u, α) is obtained from E(u, α) in (5) after introducing the third-
order expansions cos(α) ∼ 1 − α2

2
, sin(α) ∼ α − α3

6
and dropping all higher order terms

except µc

2

(
α4

4
|u′|2 − 1

3
α5u′ + 1

9
α6
)
to finally get a complete quadratic form.

In this article we are concerned with the zero-order Gamma-limit of vanishing internal
length scale Lc of E(u, α). However, the methods of this article are also applicable to the

Gamma-limit Lc ց 0 of Ê(u, α) and we expect that Gamma-limit to be very similar to
the one obtained in this paper as long as α is small.

Formally writing Lc =
ε√
2µ

for ε ≥ 0 leads to

Eε(u, α) :=

{ ∫ 1

0
ε2|α′|2 + µ

2
|u′|2 +W (u′, α) dx, if (u, α) ∈ (W 1,2(Ω))2,

+∞, else
(7)

with the potential

W (u′, α) :=
µ

2

(
sin(α)u′ − 4 sin2

(α
2

)
︸ ︷︷ ︸

= sin(α)u′+2 cos(α)−2

)2
+
µc

2

(
cos(α)u′ − 2 sin(α)

)2
. (8)
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By Wm,2(Ω) we denote the Sobolev space of m-times weakly differentiable functions in
L2(Ω). Let C∞

# (Ω;R) denote the smooth functions g : Ω → R with g(0) = g(1) and let

W 1,2
# (Ω; R) be the closure of C∞

# (Ω; R) with respect to the W 1,2-norm, i.e. the Sobolev
functions g ∈ W 1,2(Ω) with identical traces at the boundary. The minimization of E in
(5) is carried out in the reflexive Banach space

X := Xu ×Xα :=
{
u∈W 1,2(Ω; R)

∣∣∣ u(0)=0, u(1)=γ
}
×
{
α∈W 1,2

# (Ω; [0, 2π])
}
. (9)

The function W (u′, ·) is 2π-periodic in α. Motivated by numerical considerations, see [7],
(9) confines the range of α to [0, 2π]. The interval [0, 2π] is only one possible choice but
determines the analysis for the entire article. Below, in Figures 2, 4 and 5, other ranges
of α will be displayed if it is advantageous for the presentation.

The concept of Gamma-convergence describes the asymptotic behaviour of a family of
minimization problems. It is arguably the most natural way to study the convergence of
variational problems as it supplies information not only of the minimizers itself, but also
of the convergence of the variational problems. Theorem 1 below states the circumstances.

The characterization of the zero-order Gamma-limit of Eε allows to qualitatively and
quantitatively understand the model for small characteristic length scale Lc which would
otherwise demand simulations with ultra-high spatial resolution. Clearly, the Gamma-
limit differs from the pointwise limit. This is illustrated in the following non-commutative
diagram. It is a well-known result from Gamma-convergence, cf. e.g. [16][Prop.5.7], that
a non-increasing family of functionals Gamma-converges toward the lower semicontinuous
envelope of its pointwise limit Ẽ0, i.e. E0 = lsc(Ẽ0). The task in this article is hence
similar to that of [12] and [23], see also [4] for a discrete setting.

Eε Ẽ0

E0

ε→0

Γ−lim
ε→0 /6=

The Gamma-limit functional E0 of Eε will be identified in Proposition 1. For com-
parison, the limit functional Ẽ0 for Lc ց 0 differs in general from E0 and is simply (cf.
Eqn. (5))

Ẽ0(u, α) :=
µ

2

∫ 1

0

|u′|2+
(
sin(α)u′−4 sin2

(α
2

))2
dx+

µc

2

∫ 1

0

(
cos(α)u′−2 sin(α)

)2
dx. (10)

The condensed energy Econd(u) := minα Ẽ0(u, α) can be determined explicitly, see the
appendix. Accordingly, the limit Lc ց 0 of the full functional in 3D is

Ẽ3D(ϕ,R) =

∫

Ω̂

µ
∣∣sym(U−13)

∣∣2+µc

∣∣skew(U−13)
∣∣2+λ

4

[
(detU−1)2+

( 1

detU
−1
)2]

dx (11)
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and the condensed energy Econd
3D (ϕ) := minR∈SO(3) Ẽ3D(ϕ,R) can also be determined ex-

plicitly. At this point, we are unable to compute the Gamma-limit Lc ց 0 of the full
three-dimensional functional Ẽ3D which is why we restrict ourselves here to the analysis
of the shear problem.

The paper is organized in the following way. In Section 2 we recall the theory of
Gamma-convergence as needed later. Section 3 deals with the zero-order Gamma-limit of
E as Lc ց 0. Here also the minimizers of E are classified depending on the values of µ,
µc and the amount of shear γ. In the appendix we compare the zero-order Gamma-limit
with the pointwise minimization of E for Lc = 0.

As a good starting point and for gaining first insights into the concepts of this article,

we consider for fixed u′ the term Ŵ (α) := µ
2

[
α(α−u′)

]2
from Eqn. (6), see Fig. 2. It is a

double-well potential with minima at α = 0 and α = u′ and a maximum at α = u′

2
. Similar

potentials have been used for a long time to model phase transitions and segmentation
phenomena, see, e.g., [18]. (Recent articles on phase separation commonly replace the
quartic polynomial by a logarithmic expression closer to the correct physical free energy).
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Figure 2: Comparison of the reduced energy Ŵ (α) = µ

2

[
α(α−u′)

]2
(left) and the full energy W (right)

together with its convexification W ∗∗ for µ = 1, µc = 0, u′ = 0.6 and α ∈ [−0.2, 0.8].

In the region separating the two minima, Ŵ is positive, thereby forming an energy
barrier, also called surface energy. This is the minimal amount of energy that must be
provided to let the physical system pass between the optimal states α = 0 and α = u′.
A related concept is the activation energy of chemical reactions in an Arrhenius type
equation, see, e.g., [24].

The energy barrier models analytically the resilience of the material to changes of
the inner molecular structure needed to pass from the state α = 0 to the state α = u′.
The associated molecular or atomistic restructuring can mathematically be formulated as
Markov processes, see, e.g., [22].
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Since Ŵ originates from W by a third-order Taylor expansion, one may expect that
also W displays a double well. Indeed, within a certain range of µ and µc, this is the case.
Fig. 2 compares W and Ŵ for one set of parameters with striking similarity.

If a double-well structure of W and Ŵ is present, minimizing sequences develop fine
scale oscillations. For further explanations, we refer to [25] and references therein.

The zero-order Gamma-limit goes along with a convexification of W . This convexifi-
cation connects the minima and removes the energy barrier. Using this convexified energy
E0, cf. Eqn. (16), should lead to a significant improvement in the numerical simulations.

Fig. 2 shows only a part of W . Interestingly, the double well is very flat and located
in a tiny section of the full graph of W that may easily be overlooked, cf. Fig. 5.

2. Theory of Gamma-convergence

We restrict the presentation of Gamma-convergence to metric spaces (X, d) as we do
not wish to differentiate between properties that hold only sequentially or more generally.
Convergences stated below are always with regard to d and the Gamma-limit will depend
on that metric. If Gamma-convergence is defined on a general topological space X this
space must fulfil the first axiom of countability.

Definition 1. Let (X, d) be a metric space. A family of functionals (Gn)n∈N : X →
R := R ∪ {−∞,+∞} Gamma-converges for n → ∞ to G : X → R, if the following two
conditions are met:

(i) (liminf inequality)
For all x ∈ X and every sequence (xn)n∈N ⊂ X with xn → x in X, it holds

G(x) ≤ lim inf
n→∞

Gn(xn). (12)

(ii) (recovery sequence)
For every x ∈ X, there exists a sequence (xn)n∈N ⊂ X with xn → x in X such that

G(x) ≥ lim sup
n→∞

Gn(xn).

Definition 2. Let (X, d) be a metric space.

(i) A functional G : X → R is coercive on X if for all α ∈ R the closure of the sublevel
sets {x ∈ X | G(x) ≤ α} is compact in X.

(ii) A family of functionals {Gn}n∈N : X → R is equi-coercive if there exists a lower
semi-continuous coercive functional ψ : X → R such that Gn ≥ ψ for all n ∈ N.

If G is coercive there exists a compact set K ⊂ X with infx∈X G(x) = infx∈K G(x).
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The choice of topology in X is crucial: The finer the topology in X, the easier the
lower semicontinuity property inherent in (12) is satisfied. Contrary, the compactness of
the sublevel sets Kα calls for coarser topologies. Hence, both conditions are competing.
Often, the weak topology in a Sobolev space provides a good compromise where both
properties are satisfied simultaneously.

Theorem 1 (Fundamental theorem of Gamma-convergence).
Let (X, d) be a metric space and (Gn)n∈N : X → R be an equi-coercive family of function-
als. Then

(i) Γ−lim infn→∞Gn and Γ−lim supn→∞Gn are coercive and

min
x∈X

(
Γ−lim inf

n→∞
Gn(x)

)
= lim inf

n→∞
inf
x∈X

Gn(x).

(ii) If in addition (Gn) Gamma-converges to G in X, then G is coercive and

min
x∈X

G(x) = lim
n→∞

inf
x∈X

Gn(x).

Proof. See, e.g., [16, Theorem 7.8]. �

Theorem 1 remains true in topological spaces X. It states in particular that while Gn

need not have minima, the Gamma-limit G always attends its minimum.

3. Zero-order Gamma-limit

We derive the first term in the Gamma-expansion of Eε. We introduce the closed
domain

D := [0, 2]× [0, 2π] ⊂ R
2. (13)

Writing z := u′, let (cf. Eqn. (7))

Q(z, α) :=

{
µ
2
|z|2 +W (z, α), if (z, α) ∈ D,

+∞, else
(14)

so that

Q(z, α) =
µ

2
|z|2 + µ

2

(
sin(α)z − 4 sin2

(α
2

))2
+
µc

2

(
cos(α)z − 2 sin(α)

)2
if (z, α)∈ D.
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Figure 3: Plot of Q(z, α) for α ∈ [0, 2π], z ∈ [0, 1.5], µ = 1 and µc = 0.8.

Definition 3. For Q given by (14) we denote by Q∗∗ the convex and lower-semicontinuous
envelope of Q, i.e.

Q∗∗(z, α) := sup
{
g(z, α) | g is convex, lower semi-continuous and g(z, α) ≤ Q(z, α)

}
.

(15)

The computation of Q∗∗ is postponed to Lemma 2 below.

We define the relaxed functional

E0(u, α) :=

{∫ 1

0
Q∗∗(u′, α) dx, if (u, α) ∈ X̃ ,

+∞, else
(16)

and for ε > 0 the family of functionals

Eε(u, α) :=

{ ∫ 1

0
ε2|α′|2 +Q(u′, α) dx, if (u, α) ∈ X ,

+∞, else.
(17)

In (16) we introduced the Banach space

X̃ := Xu × C0
#(Ω; [0, 2π]) (18)

The reason for introducing X̃ is that for εց0, the term
∫ 1

0
ε|α′|2 dx in Eε(u, α) disappears,

so the weak limit α of a minimizing sequence (αn)n∈N⊂W 1,2
# (Ω; [0, 2π]) need not be weakly

differentiable and may leave Xα.

Lemma 1. Let (εn)n∈N be a sequence of positive real numbers with εn ց 0 for n → ∞.
Then the family of functionals (Eεn)n∈N defined in (17) is equi-coercive with respect to
weak convergence in (L2(Ω))2.
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Proof. We are going to show that for every sequence (un, αn)n∈N ⊂ (L2(Ω))2 with
supn∈N

Eεn(un, αn)<∞ there exists a subsequence (unk
, αnk

)k∈N that converges weakly in
(L2(Ω))2. This implies the equicoercivity of (Eεn)n∈N.

Directly from (17) and (14) we obtain

µ

2
‖u′n‖2L2(Ω) ≤ Eεn(un, αn) ≤ C (19)

uniformly in n ∈ N. From the definition (17) of Eεn , this implies (un, αn) ∈ X = Xu×Xα

for every n ∈ N. Functions un ∈ Xu are absolutely continuous in Ω. Employing un(0) = 0,

this yields un(x) ≤
∫ x

0
u′n(ξ) dξ, so |un(x)| ≤

∫ 1

0
|u′n(ξ)| dξ for a.e. x ∈ Ω. Consequently,

‖un‖L2(Ω) ≤ ‖un‖L∞(Ω) ≤ ‖u′n‖L2(Ω). (20)

This shows that ‖un‖W 1,2(Ω) is bounded uniformly in n. By the Banach-Alaoglu theorem,
there exists a subsequence (unk

)k∈N that converges weakly in L2(Ω).
From (αn)n∈N ⊂ Xα follows αn ∈ [0, 2π] pointwise in Ω and hence the boundedness

‖αn‖L2(Ω) ≤ 2π uniformly in n ∈ N. Again, (see, e.g., Theorem 2.6 in [10]) this implies
the existence of a subsequence (αnk

) converging to α weakly in L2(Ω). �

Proposition 1 (Zero-order Gamma-limit). Let (εn)n∈N be a sequence of positive real
numbers converging to 0. Let Eεn on (L2(Ω))2 be given by (17), and as in (16)

E0(u, α) =

{∫ 1

0
Q∗∗(u′, α) dx, if (u, α) ∈ X̃ ,

+∞, else.

Then E0 is the Gamma-limit of Eεn with respect to weak convergence in L2(Ω) for n→ ∞.

Proof. (i) liminf inequality. Let (u, α) ∈ (L2(Ω))2 and (un, αn)n∈N ⊂ (L2(Ω))2 be a
sequence with un ⇀ u, αn ⇀ α in L2(Ω) for n→ ∞ and lim infn∈NEεn(un, αn) <∞. Up
to subsequences, we may assume that

lim
n→∞

Eεn(un, αn) exists and is finite (21)

and (un, αn) ∈ X for all n ∈ N. From Eεn(un, αn) < ∞, as in (19) in Lemma 1, up to
subsequences, we have u′n ⇀ u′ in L2(Ω). The (compact) embedding W 1,2(Ω) → C0(Ω)
implies un(x) → u(x) pointwise for all x ∈ Ω. Similarly, αn ∈ Xα implies αn(x) → α(x)
for all x ∈ Ω and α ∈ C0

#(Ω; [0, 2π]). From these pointwise convergences, (21) and (14)

we infer (u(x), α(x)) ∈ D for all x ∈ Ω and Q(u′, α) < ∞. Also, u(0) = 0, u(1) = γ,
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hence (u, α) ∈ X̃ . From (u′n, αn)⇀ (u′, α) in (L2(Ω))2 we find

lim inf
n→∞

Eεn(un, αn) = lim inf
n→∞

∫ 1

0

ε2n|α′
n|2 +Q(u′n, αn) dx

≥ lim inf
n→∞

∫ 1

0

ε2n|α′
n|2 +Q∗∗(u′n, αn) dx (22)

≥
∫ 1

0

Q∗∗(u′, α) dx = E0(u, α). (23)

Here, (22) follows from (15) and (23) holds because Q∗∗ is convex and lower semi-

continuous, consequently (u′n, αn) 7→
∫ 1

0
Q∗∗(u′n, αn) dx is weakly lower semi-continuous.

(ii) limsup inequality. Let (u, α) ∈ (L2(Ω))2 be fixed. We may assume E0(u, α) < ∞
(otherwise the Limsup inequality is evident) such that (u, α) ∈ X̃ . We must prove the
existence of a sequence (un, αn) ⊂ (L2(Ω))2 with un ⇀ u, αn ⇀ α in L2(Ω) for n → ∞
and

E0(u, α) =

∫ 1

0

Q∗∗(u′, α) dx ≥ lim sup
n→∞

Eεn(un, αn).

Because of lim supn→∞Eεn(un, αn) ≤
∫ 1

0
Q(u′, α) dx it is sufficient to show that

lim sup
n→∞

∫ 1

0

Q(u′n, αn) dx ≤
∫ 1

0

Q∗∗(u′, α) dx (24)

for a suitable recovery sequence (un, αn)n∈N. Subsequently we approximate u by piecewise
affine functions un with un(0) = 0, un(1) = γ for all n ∈ N and α by piecewise constant

functions periodic in Ω. The set of such (un, αn) approximates X̃ densely in (L2(Ω))2.

Case 1: Let [a, b] ⊂ Ω be an interval where u′ = z ≡ const, α ≡ const in [a, b]. Fix ε > 0.
Then there exist xε ∈ (0, 1) and (z1ε , α

1
ε) ∈ R

2, (z2ε , α
2
ε) ∈ R

2 with

xεQ(z
1
ε , α

1
ε) + (1− xε)Q(z

2
ε , α

2
ε) ≤ Q∗∗(z, α) + ε,

‖xε(z1ε , α1
ε) + (1− xε)(z

2
ε , α

2
ε)− (z, α)‖ < ε.

(25)

The existence of such xε, (z
1
ε , α

1
ε), (z

2
ε , α

2
ε) follows from

Q∗∗(z, α) = inf
{
lim inf
m→∞

xmQ(z
1
m, α

1
m) + (1−xm)Q(z2m, α2

m) | xm ∈ (0, 1),

lim
m→∞

xm(z
1
m, α

1
m) + (1−xm)(z2m, α2

m) = (z, α)
}
.
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Construct an affine function uε with constant derivative u′ε(x) ≡ zε := xεz
1
ε + (1− xε)z

2
ε ,

where uε(0) = 0 if a = 0 and uε(1) = γ if b = 1, as well as the constant function
αε(x) :≡ xεα

1
ε + (1− xε)α

2
ε for x ∈ Ω. Let

vε(x) :=

{
z1ε , for 0 ≤ x ≤ xε,
z2ε , for xε < x ≤ 1

wε(x) :=

{
α1
ε, for 0 ≤ x ≤ xε,
α2
ε, for xε < x ≤ 1

(26)

extended 1-periodically to functions for x ∈ R and define the 1/n-periodic functions

zεn(x) := vε(nx), αε
n(x) := wε(nx).

It holds zεn = (uεn)
′ ⇀ zε = u′ε and αε

n ⇀ αε in L2(Ω) for n → ∞, cf. [10, Example 2.5],
where the piecewise affine functions uεn are constructed as uε was above, e.g. (uεn)

′ = zεn
and uεn(0) = 0 if a = 0, uεn(1) = γ if b = 1. Formally, the limsup-inequality also requires
uεn ⇀ uε in L

2(Ω). Indeed, from (uεn)
′ ⇀ u′ε, integration by parts yields

∫ 1

0

(uεn(x)− uε(x))φ
′(x) dx→ 0 for n→ ∞ (27)

and any φ ∈ C∞
0 (Ω). Formally replacing φ′ in (27) by a new test function ζ, from the

density of the continuous functions in L2(Ω), this yields uεn ⇀ uε in L
2(Ω) for n→ ∞.

Finally, by construction,

lim
n→∞

∫ b

a

Q(zεn, α
ε
n) dx = (b−a)

[
xεQ(z

1
ε , α

1
ε)+(1−xε)Q(z2ε , α2

ε)
]
≤
∫ b

a

Q∗∗(z, α) dx+ε(b−a).

Taking the limit εց 0 this yields the desired limsup-inequality.

Case 2: u is piecewise affine, α is piecewise constant.
We may assume that u′ and α are discontinuous at identical points in Ω. Now repeat

the construction of Case 1 on each interval where u′ and α are continuous. �

For the computation of Q∗∗, we need to consider the minimizers and the minimal
energy eµ,µc

of E0 (defined in (7)),

eµ,µc
:= min

{
E0(u, α)

∣∣∣ (u, α) ∈ X̃
}
.

Table 1 below has the details.

11



Parameters Minimizers Minimal energy eµ,µc

of E0

µc = 0 (u, α−
1 =0), (u, α+

1 =2arctan(γ
2
)) µ

2
γ2

µ = µc (u, α2) µ(γ2 + 4− 2
√
γ2 + 4)

µ 6= µc, if α
±
1 exists (u, α−

1 ), (u, α
+
1 )

µ+µc

2
γ2 − 2µ2

c

|µ−µc|
µ 6= µc, else (u, α2) µ

(
γ2 + 4− 2

√
γ2 + 4

)

Table 1: Unique minimizers of E0 in X̃ and minimal energies for different parameter ranges.
The case µc = 0 is a special case of the third regime µ 6= µc and existing α±

1 , see Remark 1. The case
µ = µc is a special case of the fourth regime µ 6= µc and non-existing α±

1 . Explanations regarding the
existence of α±

1 and a characterization of the third and fourth regime are found in Remark 2.

We adopt the notations

u(x) := γ x, 0 ≤ x ≤ 1 (28)

for the homogeneous deformation which turns out to be optimal in Xu, and set

α−
1 := arctan

( µγ − f

2µ+ γ
2
f

)
, α+

1 := arctan
( µγ + f

2µ− γ
2
f

)
, α2 := arctan

(γ
2

)
(29)

for the global minimizers of E0, where

f :=
(
(γ2 + 4)(µ− µc)

2 − 4µ2
)1/2

. (30)

Remark 1. The case µc=0 is a limiting case of the third regime µ 6=µc and existing α±
1 .

For µc = 0, by Eqn. (30), f = γµ such that by Formula (29)

α−
1 = 0, α+

1 = arctan
( 4γ

4− γ2

)
. (31)

This formula had already been derived in [3]. Therein, the value α+
1 for µc = 0 had been

denoted α3 and introduced by the identity

α3 = η−1(γ), η(α) :=
4 sin2

(
α
2

)

sin(α)
. (32)

The inverse η−1(γ) in (32) exists for γ ∈ [0, π) while α+
1 in (31) is evaluated for γ ∈ [0, 2].

Due to

η(α) =
4 sin2

(
α
2

)

sin(α)
=

2 sin2
(
α
2

)

sin
(
α
2

)
cos
(
α
2

) = 2 tan
(α
2

)
,

12



Eqn. (32) can be rewritten to (only valid when µc = 0)

α+
1 = η−1(γ) = 2 arctan

(γ
2

)
= 2α2, (33)

improving (31). The identity arctan
(

4γ
4−γ2

)
= 2arctan

(
γ
2

)
can also be obtained directly

from the addition theorem

arctan(v1) + arctan(v2) = arctan
( v1v2
1− v1v2

)
for v1v2 ≤ 1

after setting v1 = v2 :=
γ
2
.
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u' =  = 0.6,  = 1, 
c
 = 0

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.002
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0.006

0.008

0.01
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0.014

u' =  = 0.6,  = 1, 
c
 = 0

α−

1
α+

1

Figure 4: Two plots of α 7→ W (γ, α) for µc = 0, µ = 1 and γ = 0.6. Left: Plot for α∈ [0, 2π]. Right:
Close-up for α ∈ [−0.2, 0.8] showing a double well with minima at α−

1 = 0 and α+

1 = 2arctan(γ
2
) ≈ 0.5829

as predicted by Eqn. (33). The double well is very flat and does not show up in the full plot on the left.

For µc < µ, α±
1 exists if µc ≤ µcrit

c with µcrit
c defined by Eqn. (37), see Remark 2 below.

For µ ≤ µc, α
±
1 exists if µ 6= µc and µc ≥ µcrit

c , where µcrit
c is now defined by (39).

Fig. 5 displays one example for the case µ > µc. In the interval α ∈ [0, 1] which
contains all minimizers, W (γ, ·) is strictly convex for µc > µcrit

c , while for µc = 0 and in
the non-classical regime µc ≤ µcrit

c , W (γ, ·) is a double-well potential with minimizers at
α−
1 and at α+

1 , cf. Fig. 5.

The limiting case µc = 0 is displayed in Fig. 4.
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c
 = 0.1
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0
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u' =  = 0.6,  = 1, 
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 = 0.1

α−
1
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1

α2

Figure 5: Plots of α 7→ W (γ, α) for µ = 1 and γ = 0.6. Left: Plots for α ∈ [0, 2π]. Right: Close-ups
for α ∈ [−0.2, 0.8]. Bottom: For µc = 0.02 < µcrit

c = 0.0422 there is a double well with minimal value

eµ,µc

= µc

2
γ2 − 2µ2

c

µ−µc

≈ 0.00278 at α−

1 ≈ 0.0783 and at α+

1 ≈ 0.5046 in accordance with Eqn. (29).

Top: Strict convexity in the interval α ∈ [0, 1] for µc = 0.1 > µcrit
c with the unique minimal value

eµ,µc

= µ
[
γ2

2
+ 4 − 2

√
γ2 + 4

]
≈ 0.003877 at α2 = arctan(γ/2) ≈ 0.2915. The double well is very flat

and practically invisible in the full plot displayed on the bottom line left. The blue box on the bottom
left illustrates the section which is enlarged on the right.
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The data of Table 1 is computed for fixed γ. For the variational problem at hand, we
write z := u′ = γ and have from now on α±

1 = α±
1 (z), α2 = α2(z) and f = f(z).

Remark 2 (Existence of α±
1 (z) and different regimes).Whenever α±

1 exist, these are
the unique global minimizers of E0. In [3], α±

1 have been computed as solutions of

z sin(α) + 2 cos(α) =
2µ

µ− µc

. (34)

Writing S := sin(α), C := cos(α), g := 2µ
µ−µc

, we find 2C = g−zS and 4C2 = 4(1−S2) =

(g − zS)2, leading to the quadratic equation

S2 − 2zg

z2 + 4
S +

g2 − 4

z2 + 4
= 0.

The solutions S± and hence α±
1 exist provided µ 6= µc and d := (z2+4−g2)1/2 = f(z)

|µ−µc| is

real-valued, where f = f(z) :=
(
(z2+4)(µ−µc)

2 − 4µ2
)1/2

, cf. Eqn. (30). We introduce
for µ 6= µc and 2µ ≥ µc the critical value of z by

zcrit :=
2

|µ− µc|
√
µc(2µ− µc), in particular z2crit + 4 =

4µ2

(µ− µc)2
. (35)

It holds f(zcrit) = 0. Hence the case z = zcrit constitutes a transition point with

α−
1 (zcrit) = α+

1 (zcrit) = α2(zcrit) = arctan
(zcrit

2

)
. (36)

1. Case: µc < µ.
We adopt temporarily the symbol µcrit

c from [3] for the critical value of µc and define

µcrit
c = µcrit

c (z) := µ
(
1− 2√

z2 + 4

)
. (37)

For µc < µ, the existence of α±
1 and the third regime of Table 1 are characterized by the

condition µc ≤ µcrit
c ensuring that d is real-valued. This can be rewritten using (35) to a

condition z ≥ zcrit, i.e.

µc ≤ µcrit
c (z) ⇐⇒ µc ≤ µ

(
1− 2√

z2 + 4

)
⇐⇒ 2√

z2 + 4
≤ µ−µc

µ
⇐⇒ 4µ2

(µ−µc)2
≤ z2 + 4

⇐⇒ 4(µ2 − (µ−µc)
2)

(µ−µc)2
≤ z2 ⇐⇒ 2

µ−µc

√
µ2 − (µ−µc)2 ≤ z

⇐⇒ 2

µ−µc

√
µc(2µ−µc) ≤ z ⇐⇒ zcrit ≤ z. (38)
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2. Case: µ ≤ µc. For µ = µc, Eqn. (34) has no solution. Let µ < µc. The critical value
of µc is then

µcrit
c = µcrit

c (z) := µ
(
1 +

2√
z2 + 4

)
. (39)

For µ < µc, as in the first case, α±
1 solves (34) provided µcrit

c ≤ µc. We assume that

µ ≥ µc

2
. (40)

Then the third regime of Table 1 for µ < µc is characterized by

µcrit
c (z) ≤ µc ⇐⇒ µ

(
1 +

2√
z2 + 4

)
≤ µc ⇐⇒ 2√

z2 + 4
≤ µc−µ

µ
⇐⇒ 4µ2

(µc−µ)2
≤ z2 + 4

⇐⇒ 4(µ2 − (µc−µ)2)
(µc−µ)2

≤ z2 ⇐⇒ 2

µc−µ
√
µ2 − (µc−µ)2 ≤ z

⇐⇒ 2

µc−µ
√
µc(2µ−µc) ≤ z ⇐⇒ zcrit ≤ z. (41)

In both cases, we find that α±
1 exist if zcrit ≤ z. For µ = µc, zcrit is undefined and the

minimizers α±
1 do not exist.

Under the assumption (40) we may repeat Table 1, now written in terms of z.

Parameters Minimizers Minimal energy eµ,µc

(z) of E0

µc = 0 (u, α−
1 =0), (u, α+

1 (z)=2 arctan( z
2
)) µ

2
z2

µ = µc (u, α2(z)) µ(z2 + 4− 2
√
z2 + 4)

µ 6= µc, zcrit ≤ z (u, α−
1 (z)), (u, α

+
1 (z))

µ+µc

2
z2 − 2µ2

c

|µ−µc|
µ 6= µc, zcrit > z (u, α2(z)) µ

(
z2 + 4− 2

√
z2 + 4

)

Table 2: The data of Table 1 for different values of z.

To complete the discussion of the zero-order Gamma-limit, it remains to compute
the convexification Q∗∗. Motivated by Eqn. (31) valid only for z ≤ 2, we restrict in the
following to z ∈ [0, 2].

16



Lemma 2 (Computation of Q∗∗). Let Q be given by (14), 0 ≤ z ≤ 2, µc ≤ 2µ and let

eµ,µc
(z) :=

{
µ
(
z2 + 4− 2

√
z2 + 4

)
if (µ = µc) or (zcrit > z),

µ+µc

2
z2 − 2µ2

c

|µ−µc| else.
(42)

For f(z) :=
(
(z2+4)(µ−µc)

2−4µ2
)1/2

, let

α−
1 (z) := arctan

( µz − f(z)

2µ+ z
2
f(z)

)
, α+

1 (z) := arctan
( µz + f(z)

2µ− z
2
f(z)

)
, α2(z) := arctan

(z
2

)
. (43)

Then, depending on µ and µc, for 0 ≤ z ≤ 2, 0 ≤ α ≤ 2π, the convexification Q∗∗(z, α)
is given by the following formulas.

(i) If µc = 0 :

Q∗∗(z, α) =
µ

2
z2. (44)

(ii) If µ = µc :

Q∗∗(z, α) =

{
W (z, α) + µ

2
z2 if α ∈ [0, α2(z)],(

µz2 − eµ,µc
(z)
)

α−α2(z)
2π−α2(z)

+ eµ,µc
(z) if α ∈ [α2(z), 2π]

. (45)

(iii) If µc 6= µ :

Q∗∗(z, α) =





W (z, α) + µ
2
z2 if (α∈ [0, α−

1 (z)) and z ≥ zcrit)
or (α∈ [0, α2(z)) and z < zcrit),

eµ,µc
(z) if α∈ [α−

1 (z), α
+
1 (z)) and z ≥ zcrit,(

µ+µc

2
z2−eµ,µc

(z)
) α−α+

1 (z)

2π−α+
1 (z)

+eµ,µc
(z) if α∈ [α+

1 (z), 2π] and z ≥ zcrit,(
µ+µc

2
z2 − eµ,µc

(z)
)

α−α2(z)
2π−α2(z)

+eµ,µc
(z) if α ∈ [α2(z), 2π] and z < zcrit.

(46)

Remark 3. Eqn. (46) is the general formula for Q∗∗ and contains both (44) and (45) as
limiting or special cases. To see this, for µc = 0, it holds zcrit = 0 by (35), eµ,µc

(z) = µ
2
z2

by (42), f(z) = µz which implies α−
1 (z)=0 by Eqn. (43). Hence, for (z, α)∈D, Eqn. (46)

simplifies to (44).
For µ = µc, α

±
1 are undefined. Formally replacing zcrit in Eqn. (46) by +∞ as the

limiting value of zcrit in Eqn. (35) for µ→ µc then leads to Formula (45).
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Proof. To compute the convex envelope of the continuous function Q in the closed
domain D :=[0, 2]×[0, 2π], the following two formulas are helpful. For (z, α) ∈ D, we have

Q∗∗(z, α) = min
t∈[0,1]

{
tQ(z1, α1) + (1−t)Q(z2, α2)

∣∣∣ tz1+(1−t)z2 = z, tα1+(1−t)α2 = α
}
,

Q∗∗(z, α) = sup
{
l(z, α)

∣∣ l ≤ Q in D, l is affine
}
.

Furthermore,
∂2Q

∂z2
(z, α) = µ

[
1 + sin2(α)

]
+ µc cos

2(α) > 0,

implying that z 7→ Q(z, α) is strictly convex.

Part (1): Explicit construction of an underestimator l(z, α).
In general, the determination of the convex envelope is a difficult task. Let l(z, α)

denote the function defined by the right of (46), and set for (z, α) ∈ D

L(z, α) := l(z, α)− µ

2
z2. (47)

Due to (14), for (z, α) ∈ D, it holds

Q(z, α) =
µ

2
z2 +W (z, α).

Hence L is an underestimator of W while l is an underestimator of Q. Subsequently, the
function L(z, α) is constructed by connecting the local minimizers of W (z, ·) for fixed z
by a function affine in α. Once L is constructed, l is obtained from (47).

The minimizers of W (z, ·) for fixed z can be read off from Table 2 and Eqn. (29) or
(43). Consider first the special case (i) with µc = 0. Here, for fixed z, the three points
(α−

1 ,W (z, α−
1 )) = (0, 0), (α+

1 (z),W (z, α+
1 (z))) =

(
2 arctan

(
z
2

)
, 0
)
and (2π,W (z, 2π)) =

(2π, 0) where W (z, ·) has minimal energy eµ,µc
− µ

2
z2=0 are connected. This leads to the

lower bound L ≡ 0 of W corresponding to l(z, α) = µ
2
z2 and eventually with Part (2)–

Part (5) below to Q∗∗(z, α) = µ
2
z2, e.g. Eqn. (44). See Fig. 8 for a visualization of this

case and Fig. 3 for a plot of Q(z, α).
Now consider (ii) with µ = µc. For α ∈ [0, α2(z)], W (z, ·) is convex, resulting in

L(z, α) = W (z, α) and Eqn. (45)1. For α ∈ [α2(z), 2π], the points (α2(z),W (z, α2)) and
(2π,W (z, 2π)) are connected by a function affine in α which results in Eqn. (45)2.
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In the case (iii) with µ 6= µc, when z < zcrit, the construction is as in (ii). When
z ≥ zcrit, W (z, ·) is convex in [0, α−

1 (z)), leading to (46)1. For α ∈ [α−
1 (z), α

+
1 (z)], W (z, ·)

forms a double-well potential. Connecting by a function affine in α the two minima

(α−
1 (z),W (z, α−

1 (z))) =
(
α−
1 (z), eµ,µc

(z)− µ

2
z2
)
,

(α+
1 (z),W (z, α+

1 (z))) =
(
α+
1 (z), eµ,µc

(z)− µ

2
z2
) (48)

leads to Eqn. (46)2. For α ∈ [α+
1 (z), 2π], the convexification of W (z, ·) is an affine

function connecting (α+
1 (z),W (z, α+

1 (z))) = (α+
1 (z), eµ,µc

(z)− µ
2
z2) and the end point

(2π,W (z, 2π)) = (2π,W (z, 0)) = (2π, µc

2
z2), yielding (46)3. This ends the construction of

L(z, α) and completely defines l(z, α) = L(z, α) + µ
2
|z|2.

It remains to validate that this function l(z, α) is indeed the convex and lower semicon-
tinuous envelope of Q for (z, α) ∈ D, i.e. that it is convex, less or equal Q and greater
or equal any convex underestimator of Q. We focus on the most general case (iii) with
µ 6= µc and l(z, α) given by the right of (46).

Part (2): Convexity of li(z, α) on Ai.
Even though l(z, α) is separately convex in z and in α, we still need to prove the joint
convexity of l as a function of two variables. Let (cf. the right hand side of Eqn. (46))

l1(z, α) :=

{
W (z, α) + µ

2
z2, if (z, α) ∈ A1,

+∞, else,
l2(z, α) :=

{
eµ,µc

(z), if (z, α) ∈ A2,
+∞, else,

l3(z, α) :=

{(
µ+µc

2
z2−eµ,µc

(z)
) α−α+

1 (z)

2π−α+
1 (z)

+eµ,µc
(z) if (z, α) ∈ A3,

+∞, else,
(49)

l4(z, α) :=

{(
µ+µc

2
z2 − eµ,µc

(z)
)

α−α2(z)
2π−α2(z)

+eµ,µc
(z) if (z, α) ∈ A4,

+∞, else

for the sets (cf. (46)1 to (46)4)

A1 :=
{
(z, α) ∈ D

∣∣ z ≥ zcrit, α ∈ [0, α−
1 (z))

}
∪
{
(z, α) ∈ D

∣∣ z < zcrit, α ∈ [0, α2(z))
}
,

A2 :=
{
(z, α) ∈ D

∣∣ z ≥ zcrit, α ∈ [α−
1 (z), α

+
1 (z))

}
,

A3 :=
{
(z, α) ∈ D

∣∣ z ≥ zcrit, α ∈ [α+
1 (z), 2π]

}
,

A4 :=
{
(z, α) ∈ D

∣∣ z < zcrit, α ∈ [α2(z), 2π]
}
.

Fig. 6 below plots the sets Ai exemplary for one set of parameters with µc < µ.
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Figure 6: Plot of the sets Ai, 1 ≤ i ≤ 4 for µ = 0.8, µc = 0.2. Γ14 := A1 ∩A4 is not a straight line.

The convexity of l2(z) = eµ,µc
(z), cf. (46)2, follows at once from l′′2(z) = µ+ µc > 0. The

convexity of l1(z, α) in the range A1 follows from checking that all three principal minors
of the Hessian of W (z, α) + µ

2
z2 are non-negative on A1. These are

∂2l1
∂2z

(z, α) = µ(sin2(α) + 1) + µc cos
2(α) > 0,

∂2l1
∂α2

(z, α) = 2µI1(z, α) + (µ− µc)
[
I2(z, α)

2 − I1(z, α)
2
]
=: I3(z, α), (50)

det(D2l1)(z, α) =
(
µ(sin2(α)+1)+µc cos

2(α)
)

︸ ︷︷ ︸
>0

[
2µI1(z, α)+(µ−µc)

(
I2(z, α)

2−I1(z, α)2
]

︸ ︷︷ ︸
= I3(z,α)

.

Here we introduced

I1(z, α) := 2 cos(α) + sin(α)z, I2(z, α) := cos(α)z − 2 sin(α). (51)

It can be checked that on A1

I1(z, α) ≥ 0, I2(z, α)
2 − I1(z, α)

2 ≥ I1(z, α). (52)

To prove convexity of l1, due to (50), it remains to show I3(z, α) ≥ 0. For µc < µ, this
follows at once from (50). For µ < µc, due to (52), (µ − µc)(I

2
2 − I21 ) ≥ (µ − µc)I1(z, α)

such that

I3(z, α) ≥ I1(z, α)
[
2µ+ (µ− µc)

]
≥ I1(z, α)

[
µc + µ− µc

]
≥ 0,

where we used the assumption (40).
With (50) this demonstrates the convexity of l1 on A1.
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To prove the convexity of l3 on A3, let w(z) := 2µz+2f(z)
4µ−zf(z)

. An elementary computa-

tion shows w′(z) ≥ 0 and w′′(z) ≥ 0 on A3. This yields the convexity of −α+
1 (z) =

− arctan(w(z)) as in general any composition g1 ◦ g2 of two functions g1 and g2 is convex,
provided g1, g2 are convex and g2 is monotone. The convexity of −α+

1 (z) implies that

∂2l3
∂z2

(z, α) =
2µ2

c

|µ− µc|
2π − α

(2π − α+
1 (z))

2

( 2(α+
1 (z)

′)2

2π − α+
1 (z)

− α+
1 (z)

′′
)
≥ 0 on A3. (53)

Since ∂2l3
∂α2 (z, α) = 0 and

∂2l3
∂z∂α

(z, α) =
2µ2

c

|µ− µc|
(
2π − α+

1 (z)
)−2 w′(z)

1 + w(z)2
≥ 0,

this proves the convexity of l3 in A3.
Finally, ∂2l4

∂α2 (z, α) = 0 and

∂2l4
∂z∂α

(z, α) =
1

(2π − α2(z))2

[
(2π − α2(z))

(
(µc − µ)z +

2µz

(z2 + 4)1/2

)

+
(µ+ µc)z

2 − 2µ(z2 + 4) + 4µ(z2 + 4)1/2

z2 + 4

]
. (54)

First let µ < µc. Then the first term in brackets [. . .] in (54) is clearly non-negative. For
the numerator of the second term in brackets we find

(µ+ µc)z
2 − 2µ(z2 + 4) + 4µ(z2 + 4)1/2 = (µc − µ)z2 − 8µ+ 4µ(z2 + 4)1/2 ≥ 0,

proving ∂2l4
∂z∂α

(z, α) ≥ 0 on A4 for µ < µc. Now let µc < µ. Reformulating (54), we find

∂2l4
∂z∂α

(z, α) =
1

(2π − α2(z))2
1

z2 + 4

[
(2π − α2(z))z I4(z) + I5(z)

]
(55)

with
I4(z) := 2µ(z2 + 4)1/2 − (µ− µc)(z

2 + 4),

I5(z) := (µ+ µc)z
2 + 4µ(z2 + 4)1/2 − 2µ(z2 + 4).

(56)

We estimate I4(z), I5(z) on A4 where 0 ≤ z < zcrit. For µc < µ, we have

I4(z) = (z2+4)1/2
[

2µ− (µ−µc)(z
2 + 4)1/2︸ ︷︷ ︸

> 2µ−(µ−µc)(z2crit+4)1/2
(35)
= 2µ−(µ−µc)

2µ
µ−µc

= 0

]
> 0,

I5(z) = (µ+ µc)z
2 + 2µ(z2 + 4)1/2

[
2− (z2 + 4)1/2︸ ︷︷ ︸

> 2−(z2crit+4)1/2
(35)
= 2− 2µ

µ−µc
= 2µc

µ−µc
≥ 0

]
> 0.

Due to (55), this demonstrates ∂2l4
∂z∂α

(z, α) > 0 on A4.
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Lengthy computations yield

∂2l4
∂z2

(z, α) = I6(z) +
2π−α

(2π−α2(z))2 (z2+4)2

[
2(µ−µc)z

3 +
1

2π−α2(z)
I7(z)

]
, (57)

where we introduced

I6(z) :=
α− α2(z)

2π − α2(z)

( 8µ− (µ−µc)(z
2 + 4)3/2

(z2+4)3/2
+

2µ[(z2+4)3/2 − 4]

(z2+4)3/2

)

=
α− α2(z)

2π−α2(z)

1

(z2+4)3/2

(
8µ+ (2µ− (µ−µc))(z

2+4)3/2 − 8µ
)

= (µ+ µc)
α− α2(z)

2π − α2(z)
≥ 0 on A4, (58)

I7(z) := 8µ(z2+4)2 − 4(µ+µc)z
2 − 16µ(z2+4)1/2.

First let µc < µ. Then, it holds on A4

I7(z) = 8µ(z2+4)2 − 4(µ+µc)z
2 − 16µ (z2+4)1/2

≥ 8µ
[
(z2+4)2 − z2 − 2(z2+4)1/2

]
as µc < µ

= 8µ
[
(z2+4)2 − (z2 + 4)− 2(z2+4)1/2 + 4

]
=: 8µ g(x̃).

Let x̃ := z2 + 4. For 4 ≤ x̃ ≤ 4µ2

(µ−µc)2
(due to (35), as z < zcrit) the function

g(x̃) := x̃2 − x̃− 2x̃1/2 + 4

has a unique minimum at x̃ = 1 and is strictly positive for all x̃ ≥ 0. This proves I7(z) > 0

on A4 and with (57) we obtain ∂2l4
∂z2

(z, α)≥0. Together with ∂2l4
∂z∂α

(z, α)>0, ∂2l4
∂α2 (z, α)=0,

this is sufficient to proof the convexity of l4(z, α) on A4 for the cone z ≥ 0, α ≥ 0.

Now let µ < µc. In order to prove ∂2

∂z2
l4 ≥ 0 we need to show that

I8(z) := 8µ (z2+4)2 − 4(µ+µc) z
2 − 16µ (z2+4)1/2 + 2(µ−µc)(2π−α2(z))z

3 ≥ 0

for 0 ≤ z ≤ 2
√
µc(2µ− µc). Using µ− µc ≥ −µ and −4(µ+ µc)z

2 ≥ −12µz2, we obtain

I8(z) ≥ 2µ
[
4(z2 + 4)2 − 6z2 − 8(z2 + 4)1/2 − (2π − α2(z))z

3
]

= 2µ
[
4z4 − 2πz3 + arctan

(z
2

)
z3 + 26z2 − 8(z2+4)1/2 + 64

]
. (59)

A straightforward discussion reveals that the right hand side of (59) is strictly positive

on A4, proving with (57) that ∂2l4
∂z2

(z, α) ≥ 0 on A4.
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Part (3): Convexity of l(z, α) on D := [0, 2]× [0, 2π].
We write as before li := l|Ai

for i ∈ {1, 2, 3, 4}. The continuity of l on Γij := Ai ∩ Aj

follows at once from the definition (49) of l1, . . . , l4 and Eqn. (36).
Due to Part (2), l is convex on each Ai. In order for l to be altogether convex, a jump

condition of ∇l on Γij must be fulfilled. With fixed (z, α) ∈ Γij, letting

Gi := lim
(z,α)→(z,α)
(z,α)∈ intAi

∇li(z, α), Gj := lim
(z,α)→(z,α)
(z,α)∈ intAj

∇lj(z, α),

this jump condition at (z, α) reads

(Gi −Gj) · ~n ≥ 0. (60)

Here ~n is the normal vector at (z, α) ∈ Γij pointing from Ai to Aj. In this context we also
refer to [2], where general conditions for the convexity of piecewise-defined functions are
derived. The results in [2] are not applicable here since the sets A1, A3, A4 are non-convex,
cf. Fig. 6. We subsequently check the validity of (60) on each Γij.

First we consider Γ14 = {(z, α2(z)) ∈ D | z < zcrit}. Direct computations yield

∂l4
∂z

(z, α2(z)) = e′µ,µc
(z) =

2µz

(z2 + 4)1/2

(
(z2 + 4)1/2 − 1

)
=
∂l1
∂z

(z, α2(z)). (61)

Because of
∂l4
∂α

(z, α2(z)) = 0 =
∂l1
∂α

(z, α2(z)), (62)

the jump condition (60) holds with equality on Γ14.
We observe that a two-dimensional curve Γ = (x(t), y(t)) possesses the normal

~n(t) =
1

(ẋ(t)2 + ẏ(t)2)1/2
(−ẏ(t), ẋ(t)). (63)

On Γ23 = {(z, α+
1 (z)) ∈ D | z ≥ zcrit}, due to (63), ~n(z) ∼ (−α+

1 (z)
′, 1). So, (60) becomes

(
2µ2

c

|µ−µc|
α−2π

(2π−α+
1 (z))2

α+
1 (z)

′

2µ2
c

|µ−µc|(2π − α+
1 (z))

−1

)
·
(

−α+
1 (z)

′

1

)
≥ 0.

This is equivalent to

2µ2
c

|µ− µc|
( 2π − α

(2π − α+
1 (z))

2
(α+

1 (z)
′)2 +

(
2π − α+

1 (z))
−1
)
≥ 0. (64)

Clearly, (64) is satisfied on D proving the validity of (60) on Γ23.
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On Γ12 = {(z, α−
1 (z)) ∈ D | z ≥ zcrit}, let v(z) := 2µz−2f(z)

4µ+zf(z)
such that α−

1 (z) =

arctan(v(z)). Direct computations show that on Γ12

∂l1
∂z

(z, α)− ∂l2
∂z

(z, α) =
v(z)

v(z)2 + 1

[
(µ− µc)(zv(z) + 2)− 2µ(v(z)2 + 1)1/2

]
,

∂l1
∂α

(z, α)− ∂l2
∂α

(z, α) =
z − 2v(z)

v(z)2 + 1

[
(µ− µc)(zv(z) + 2)− 2µ(v(z)2 + 1)1/2

]
.

(65)

Due to (63), ~n(z) = (− v′(z)
v(z)2+1

, 1) and the jump condition (60) reads

2µ(v(z)2 + 1)1/2 − (µ−µc)(zv(z) + 2)

v(z)2 + 1

(
v(z)

z − 2v(z)

)
·
(

− v′(z)
v(z)2+1

1

)
≥ 0. (66)

A straightforward computation shows that

2µ(v(z)2 + 1)1/2 − (µ− µc)(zv(z) + 2) = 0. (67)

As the prefactor in (66) vanishes the jump condition (60) holds with equality on Γ12.
On Γ34 = {(zcrit, α) ∈ D | arctan( zcrit

2
) ≤ α ≤ 2π}, ~n = (1, 0)t, cf. Fig. 6. Furthermore

α+
1 (zcrit) = α2(zcrit) = arctan( zcrit

2
) by Eqn. (36). Therefore, (60) becomes

∂l4
∂z

(zcrit, α) ≥
∂l3
∂z

(zcrit, α) for arctan
(zcrit

2

)
≤ α ≤ 2π. (68)

We find ∂l4
∂z
(zcrit, α) = e′(zcrit) and (68) turns into

2µ zcrit −
2µ zcrit

(z2crit + 4)1/2
≥ (µ+ µc)zcrit.

This simplifies to

µ− 2µ

(z2crit + 4)1/2
≥ µc. (69)

Using z2crit+4 = 4µ2

(µ−µc)2
in (69), we get µ−(µ−µc)≥µc and (60) holds on Γ34 with equality.

Part (4): l ≤ Q.
The condition l ≤ Q is equivalent to L ≤ W . The latter is evident since by construc-

tion, L(z, α) = W (z, α) in the region where W is convex, while otherwise L is an affine
function below W connecting the minimizers of W .

Part (5): l(z, α) is greater or equal any convex function less or equal Q.
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By Minkowski’s theorem, if ((z, α), s) ∈ R
2 × R is an extreme point (see, e.g., [15,

Def. 2.17] for a definition) of epi(W ∗∗), then

s = W ∗∗(z, α) = W (z, α). (70)

This implies W (z, α) = W ∗∗(z, α) = l(z, α) − µ
2
|z|2 or equivalently Q(z, α) = l(z, α) in

(z, α±
1 (z)) if z ≥ zcrit and in (z, α2(z)) if z < zcrit. Due to the result in [32], the largest

convex function l majorized by Q in D solves the nonlinear degenerate elliptic PDE

T [l](z, α) := min
{
Q(z, α)− l(z, α), λ1[D2l](z, α)

}
= 0, (71)

where λ1[D2l] denotes the smallest eigenvalue of the Hessian of l. Due to (71), in the
non-contact set {l < Q}, it holds λ1[D2l] = 0 and l must be flat in at least one direction.
In the case investigated here, l is flat in the α-direction. On the other hand, the largest
underestimator cannot be affine in z-direction because of the strict convexity of z 7→
Q(z, α). This proves the optimality of l(z, α). �

Remark 4. We doublechecked the correctness of (44)–(46) with a small MATLAB code
that generates a large set of discrete points in epi(Q) ∩ ([0, 2]× [0, 2π]) and computes the
closed convex hull of this set. Because of

epi(Q∗∗) = co(epi(Q)), (72)

this computes the epigraph of Q∗∗ from which the graph of Q∗∗ can be read off. In (72),
epi(Q) denotes the epigraph of Q and co(A) is the closed convex hull of a set A. The
MATLAB algorithm is available as supplementary material to this article.

Fig. 7 shows one example computed by the algorithm and compares its result with the
analytic formula given in Lemma 2.
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Figure 7: Left: Simplified triangulation of the convexification of epi(Q) for (z, α) ∈ [0, 2] × [0, 2π] and
µ = µc = 0.5 as computed by our algorithm. The lateral and top surfaces are in blue, the color of the
front depends on the value of z (e.g. yellow for z = 2). Right: Plot of l(z, α) for (z, α) ∈ [0, 2] × [0, 2π]
and µ = µc = 0.5 defined by the right hand side of Eqn. (45), cf. the proof of Lemma 2. In both plots
one can identify the region on the bottom left where Q(z, α) = Q∗∗(z, α) = W (z, α) + µ

2
z2.

4. Conclusion

In this paper, the zero-order Gamma-limit of E(u, α) has been computed and the
minimizers have been identified. In particular, the results reveal the fine properties of the
optimal micro-rotations α forming transition layers in Ω.

The relaxed functional E0 may also be of interest for numerical simulations. Using
E0 instead of the original Cosserat functional E given by (5) for simulations with a small
but finite Lc > 0 corresponds to a convexification or homogenization of the problem and
may help apart from a very significant speed up to avoid some of the numerical problems
encountered in [7, 8, 9].
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Figure 8: Sketch of the construction of the underestimator L(z, α) of W (z, α) in the proof of Lemma 2
leading to Q∗∗(z, α). Top: The special case (i) with µc = 0. Connecting the minima of W (z, ·) at
α = α−

1 = 0, at α = α+

1 (z) and at α = 2π with minimal energy 0 yields L(z, α) ≡ 0. Bottom: The
case (iii), here with µc < µ, for fixed z ≥ zcrit. For α ∈ [0, α−

1 (z)), W (z, ·) is strictly convex. For
α ∈ [α−

1 (z), α
+

1 (z)], L(z, α) ≡ eµ,µc

(z) − µ

2
z2 is constant, connecting the two minima by a straight line.

For α ∈ [α+

1 , 2π], L(z, α) is a slightly increasing affine function, connecting (α+

1 (z),W (z, α+

1 (z))) with
(2π,W (z, 2π)). In both plots, the double well is strongly exaggerated to better illustrate the principle.
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Appendix – Pointwise minimization of E for Lc = 0

It is instructive to compare the zero-order Gamma-limit of Eε, i.e. the results of
Proposition 1 and Lemma 2, with the following pointwise minimization. Let Ẽ0 be defined
by (10) which coincides with E given by Eqn. (5) with Lc = 0. For chosen deformation
u ∈ Xu, we denote by αopt = αopt(u

′) a corresponding optimal micro-rotation, i.e. a

rotation α ∈ Xa that minimizes α 7→ E(u, α) for fixed u. Plugging in αopt into Ẽ0, we
end up with the functional

Eopt(u) := Ẽ0(u, αopt(u
′))

=
µ

2

∫ 1

0

|u′|2 +
(
sin(αopt)u

′ − 4 sin2
(αopt

2

))2
dx

+
µc

2

∫ 1

0

(
cos(αopt)u

′ − 2 sin(αopt)
)2

dx. (73)

The following proposition computes Eopt explicitly for the different regimes.

Proposition 2 (Pointwise minimization of E for Lc = 0). Let Eopt be given by (73)
and assume u ∈ Xu. Then it holds
(i) If µ 6= µc and α

±
1 exists:

Eopt(u) =
µ+ µc

2

∫ 1

0

|u′|2 dx− 2µ2
c

|µ−µc|
. (74)

(ii) If µ = µc or (µ 6= µc and α
±
1 do not exist):

Eopt(u) = µ

∫ 1

0

|u′|2 + 4− 2
(
|u′|2 + 4)1/2 dx. (75)

The functional Eopt defined by (74) or (75) is convex in u′.

We observe that µc = 0 is a special case of (i) for which Eqn. (74) simplifies to

Eopt(u) =
µ

2

∫ 1

0

|u′|2 dx. (76)

Proof. Consider the Euler-Lagrange equation w.r.t. α of Ẽ0 defined in (10),

0 =
(
cos(α)u′−2 sin(α)

)[
(µ−µc)

(
sin(α)u′−4 sin2

(α
2

))
−2µc

]
. (77)
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Eqn. (77) states an algebraic relationship between α and u′ since Lc = 0. Resolving
Eqn. (77) leads to the minimizing optimal rotations αopt = αopt(u

′) summarized in Table 1.

(i) Let µ 6=µc and α
±
1 exists. First consider µc=0. The optimal rotations in this case are

αopt = α−
1 = 0, αopt(u

′) = α+
1 = 2arctan

(u′
2

)
, (78)

cf. Table 1 and Eqn. (33). In both cases,
(
sin(αopt)u

′ − 4 sin2(αopt/2)
)2

= 0, and (73) at
once simplifies to (76).

Now consider the case µc > 0.

With f :=
(
(|u′|2 + 4)(µ−µc)

2 − 4µ2
)1/2

, cf. Eqn. (30), the two optimal rotations are

αopt(u
′) = α+

1 = arctan
( µu′ + f

2µ− u′

2
f

)
, αopt(u

′) = α−
1 = arctan

( µu′ − f

2µ+ u′

2
f

)
.

By direct inspection, we find

sin(α−
1 )u

′ + 2 cos(α−
1 ) =

2µ

µ− µc

, cos(α−
1 )u

′ − 2 sin(α−
1 ) =

f

µ− µc

,

sin(α+
1 )u

′ + 2 cos(α+
1 ) =

2µ

µ− µc

, cos(α+
1 )u

′ − 2 sin(α+
1 ) =

−f
µ− µc

.

(79)

Plugging these identities into (73), we obtain for both choices of αopt

Eopt(u) =
µ

2

∫ 1

0

|u′|2 +
( 2µ

µ−µc

− 2
)2

dx+
µc

2

∫ 1

0

f 2

(µ−µc)2
dx

=
µ

2

∫ 1

0

|u′|2 dx+ 2µµ2
c

(µ−µc)2
+
µc

2

∫ 1

0

(|u′|2 + 4)(µ−µc)
2 − 4µ2

(µ−µc)2
dx

=
µ+ µc

2

∫ 1

0

|u′|2 dx+ 2µµ2
c

(µ−µc)2
+
µc

2

4µ2
c−8µµc

(µ−µc)2
. (80)

This simplifies to (74).
(ii) Let µ = µc or (µ 6= µc and α

±
1 do not exist). The unique optimal rotation in this case

is αopt(u
′) = α2 = arctan

(
u′

2

)
. For t ∈ R we remark the identities

cos(arctan(t)) =
1

(t2 + 1)1/2
, sin(arctan(t)) =

t

(t2 + 1)1/2
. (81)
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With (81), direct inspection yields sin(α2) =
u′

(|u′|2+4)1/2
, cos(α2) =

2
(|u′|2+4)1/2

such that

cos(α2)u
′ − 2 sin(α2) = 0,

(
sin(α2)u

′ + 2 cos(α2)− 2
)2

=
( |u′|2 + 4

(|u′|2 + 4)1/2
− 2
)2

= |u′|2 + 8− 4
(
|u′|2 + 4)1/2.

(82)

Using the identity −4 sin2
(αopt

2

)
= 2 cos(αopt)− 2, this shows for case (ii)

Eopt(u) =
µ

2

∫ 1

0

|u′|2+
(
sin(α2)u

′+2 cos(α2)− 2
)2

dx = µ

∫ 1

0

|u′|2+4− 2
(
|u′|2+4

)1/2
dx

which is (75).
The convexity of Eopt given by Eqn. (74) is evident. But also Eqn. (75) defines a

convex functional in z = u′, even though it may first not appear so. Indeed, introducing
g : R → R,

g(z) := z2 + 4− 2
(
z2 + 4

)1/2
,

a direct computation yields g′(z) = 2z − 2z
(
z2 + 4)−1/2 and

g′′(z) = 2 +
2z2

(z2 + 4)3/2
− 2

(z2 + 4)1/2
=

2(z2 + 4)3/2 − 8

(z2 + 4)3/2
> 0.

This is the convexity of g and hence of Eopt in u
′ as defined by Eqn. (75). �

Remark 5. When µc = 0, Eopt(u) coincides with E0 := Γ−limεց0Eε computed in Prop. 2
and Lemma 2. For all other cases of Proposition 2, Eopt differs from the Gamma-limit
E0. This underlines the critical role of the Cosserat couple modulus µc in the modelling.

Remark 6. A direct minimization analogous to (73) is also possible in three space di-

mensions for Ẽ3D, cf. Eqn. (11). In [28, 19, 20], the optimal rotations are computed, see
also [7, 9] for numerical considerations. However, for µc ≥ µ it is known, [29], that the
resulting functional

∫

Ω̂

µ dist2
(
F, SO(n)

)
+
λ

4

[
(detU−1)2 +

( 1

detU
−1
)2]

dx

is not rank-one convex due to the dist-function. The computation of the quasi-convex hull
w.r.t. deformations in GL+(2) in this case can be found in [21].
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