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Abstract

The zero-order Gamma-limit of vanishing internal length scale is studied for the me-
chanical energy of a shear problem in geometrically nonlinear Cosserat elasticity. The
convergence of the minimizers is shown and the limit functional is characterized. One
main result is that Gamma-limit and pointwise limit of the energy only coincide when
ite = 0 and are different otherwise.
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1. The Cosserat model in simple shear

We investigate the deformation of an infinite layer of material in 3D with unit height,
fixed at the bottom and sheared in e;-direction with amount 0 < v < 2 at the upper face,
cf. Fig 1. Within a geometrically non-linear Cosserat theory, [11, 13, 14], the mechanical
behaviour of the material can be modelled with the help of the standard deformation map
¢ : Q — R3 and the tensor field of orthogonal micro-rotations R :  — SO(3), describing
the translation and independent rotation of a material point, respectively. Here, QCR?
is the reference configuration. By p > 0 we denote the standard elastic shear modulus,
tte > 0 is the Cosserat couple modulus, A € R the second elastic Lamé parameter, a; > 0,
as > 0, ag > 0 are non-dimensional constants; L. > 0 is the characteristic length scale.

*Corresponding author
URL: t.blesgen@th-bingen.de (Thomas Blesgen), patrizio.neff@uni-due.de (Patrizio Neff)

Preprint submitted to Journal of Elasticity May 16, 2025



Bt T

Figure 1: The deformed state exhibits a homogeneous region in the interior of the structure which
motivates the kinematics of simple shear.

A detailed discussion about the physical meaning of these parameters and its relation to
other models can be found in the review article [26].

The deformed material is characterized by the minimizers (¢, R) of the isotropic me-
chanical energy
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subject to certain boundary conditions, see [3, 27, 26, 30, 31, 6, 5, 8] for further infor-
mation and [17] for a comparison to experiments.

The symmetry of the boundary conditions and the infinite extension in e;-direction
lead to the reduced kinematics

x1 + u(zs) 1 0 u(xs)
90(371,56'27953) = T2 , F= DSD($17372,5U3) =101 0 ) (2)
T3 0 0 1

with ©(0) = 0 and u(1) = 7. The microrotations R € SO(3) satisfy the identity

cosa(zrz) 0 sina(zs)
R(C(]l,l'g,xg) = 0 1 0 (3)
—sina(zs) 0 cosa(zs)



with fixed axis of rotation ey, implying

0 —sina(zs)a(zs) 0
CulR= {0 0 0] . (4)
0 —cosa(zs)d(xsz) 0

From now on, we denote x3 by x and set
Q:=(0,1) CR.

The deformation u introduced in (2) and the local rotation angle o around the axis
r3 = x in (3) permit to re-write the functional Esp in a simpler form, see [3]. The
solutions to the 3D-shear problem can thus be obtained as minimizers of the mechanical
enerqy functional and the reduced mechanical energy functional

[T 72 . / 9 Q)2
E(u,a) = 5 ALZ || + |7 + (sm(a)u — 4sin (§)> dz

+ % /01 <cos(a)u' — 2sin(a)>2dx, (5)

. 1 . 1 2_ 2 6 _ 3 2
Eu, o) :g/ AL/ + | + [a(a—u')]? dz + Be ( L O‘) da. (6)
0 0

2 2 3

The functional E(u, ) is obtained from E(u, ) in (5) after introducing the third-
order expansions cos(a) ~ 1 — o sin(a) ~ o — % and dropping all higher order terms

27 6
/’2_1 5

except & <%4|u sou’ + éoﬁ) to finally get a complete quadratic form.

In this article we are concerned with the zero-order Gamma-limit of vanishing internal
length scale L. of E(u,«). However, the methods of this article are also applicable to the

Gamma-limit L. \, 0 of E(u, @) and we expect that Gamma-limit to be very similar to
the one obtained in this paper as long as « is small.

Formally writing L. = T for € > 0 leads to

Es(u, a) = { fol 52‘0/‘2 -+ %’ul‘Q + W(u” a) dr, if (u’ Oé) c (Wl’Q(Q))27 (7>

400, else

with the potential

W' a) =

=

<sin(a)u’ — 4sin2(%) )2 + %(cos(a)u’ — QSin(a))Q. (8)

[ J/

~
= sin(a)u/+2 cos(a)—2



By W™2(Q) we denote the Sobolev space of m-times weakly differentiable functions in
L*(Q). Let C(Q;R) denote the smooth functions g : @ — R with g(0) = g(1) and let
W;Q(Q; R) be the closure of C3(Q; R) with respect to the Wh*-norm, i.e. the Sobolev
functions g € WH2(Q2) with identical traces at the boundary. The minimization of E in
(5) is carried out in the reflexive Banach space

X=X, X Xy = {uer’Q(Q; R) | u(0)=0, u(l):’y} X {aeW#Z(Q; 0, 27T])}. 9)

The function W («/, ) is 2m-periodic in . Motivated by numerical considerations, see [7],
(9) confines the range of a to [0,27]. The interval [0, 27] is only one possible choice but
determines the analysis for the entire article. Below, in Figures 2, 4 and 5, other ranges
of o will be displayed if it is advantageous for the presentation.

The concept of Gamma-convergence describes the asymptotic behaviour of a family of
minimization problems. It is arguably the most natural way to study the convergence of
variational problems as it supplies information not only of the minimizers itself, but also
of the convergence of the variational problems. Theorem 1 below states the circumstances.

The characterization of the zero-order Gamma-limit of E. allows to qualitatively and
quantitatively understand the model for small characteristic length scale L. which would
otherwise demand simulations with ultra-high spatial resolution. Clearly, the Gamma-
limit differs from the pointwise limit. This is illustrated in the following non-commutative
diagram. It is a well-known result from Gamma-convergence, cf. e.g. [16][Prop.5.7], that
a non-increasing family of functionals Gamma-converges toward the lower semicontinuous
envelope of its pointwise limit Ey, i.e. Eg = Isc(Ep). The task in this article is hence
similar to that of [12] and [23], see also [4] for a discrete setting.

Eai%Eo

F—liml /
e—0 #
Eq

The Gamma-limit functional Fy of E. will be identified in Proposition 1. For com-
parison, the limit functional Ey for L, N\, 0 differs in general from Fy and is simply (cf.

Eqn. (5))
T H ! ay) 2 e ! 2
Eo(u,a) == 5/ ]u’|2—i—(sin(a)u'—4sin2(§)) dx—i—;/ (Cos(a)u’—Qsin(&)) dz. (10)
0 £ 0
The condensed energy E<"(u) := min, Fo(u, ) can be determined explicitly, see the
appendix. Accordingly, the limit L. \, 0 of the full functional in 3D is

Esp(¢, R) :/ﬁu}sym(U—ﬂzs)‘2+Mc}skeW(U—]l3)‘2—1-2[(detU—l)z—i-(detU—l)Q] dz (11)
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and the condensed energy E$oMd(p) := mMinpeso(s) E’gD(gp, R) can also be determined ex-
plicitly. At this point, we are unable to compute the Gamma-limit L. \, 0 of the full

three-dimensional functional E3p which is why we restrict ourselves here to the analysis
of the shear problem.

The paper is organized in the following way. In Section 2 we recall the theory of
Gamma-convergence as needed later. Section 3 deals with the zero-order Gamma-limit of
E as L.\, 0. Here also the minimizers of F are classified depending on the values of p,

it and the amount of shear 7. In the appendix we compare the zero-order Gamma-limit
with the pointwise minimization of E for L. = 0.

As a good starting point and for gaining first insights into the concepts of this article,
we consider for fixed v’ the term W(«) := %[oz(a—u’)}2 from Eqn. (6), see Fig. 2. It is a
double-well potential with minima at « = 0 and @ = ' and a maximum at o = “3/ Similar

potentials have been used for a long time to model phase transitions and segmentation
phenomena, see, e.g., [18]. (Recent articles on phase separation commonly replace the
quartic polynomial by a logarithmic expression closer to the correct physical free energy).
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5 [(Jc(a—u’)]2 (left) and the full energy W (right)
together with its convexification W** for u =1, u. =0, v’ = 0.6 and « € [—0.2,0.8].

Figure 2: Comparison of t};e reduced energy W(a) =L

In the region separating the two minima, W is positive, thereby forming an energy
barrier, also called surface energy. This is the minimal amount of energy that must be
provided to let the physical system pass between the optimal states @ = 0 and o = u’.
A related concept is the activation energy of chemical reactions in an Arrhenius type
equation, see, e.g., [24].

The energy barrier models analytically the resilience of the material to changes of
the inner molecular structure needed to pass from the state o = 0 to the state a = /.

The associated molecular or atomistic restructuring can mathematically be formulated as
Markov processes, see, e.g., [22].



Since W originates from W by a third-order Taylor expansion, one may expect that
also W displays a double well. Indeed, within a certain range of y and ., this is the case.
Fig. 2 compares W and W for one set of parameters with striking similarity.

If a double-well structure of W and W is present, minimizing sequences develop fine
scale oscillations. For further explanations, we refer to [25] and references therein.

The zero-order Gamma-limit goes along with a convexification of W. This convexifi-
cation connects the minima and removes the energy barrier. Using this convexified energy
Ey, cf. Eqn. (16), should lead to a significant improvement in the numerical simulations.

Fig. 2 shows only a part of W. Interestingly, the double well is very flat and located
in a tiny section of the full graph of W that may easily be overlooked, cf. Fig. 5.

2. Theory of Gamma-convergence

We restrict the presentation of Gamma-convergence to metric spaces (X, d) as we do
not wish to differentiate between properties that hold only sequentially or more generally.
Convergences stated below are always with regard to d and the Gamma-limit will depend
on that metric. If Gamma-convergence is defined on a general topological space X this
space must fulfil the first axiom of countability.

Definition 1. Let (X,d) be a metric space. A family of functionals (Gp)nen @ X —
R := RU{—00,+00} Gamma-converges for n — oo to G : X — R, if the following two
conditions are met:

(1) (liminf inequality)
For all x € X and every sequence (x,)nen C X with x, — x in X, it holds

G(z) < liminf G,,(x,). (12)

(i1) (recovery sequence)
For every x € X, there exists a sequence (Ty)nen C X with x,, — x in X such that

G(z) > limsup G, (z,,).

n—oo

Definition 2. Let (X, d) be a metric space.

(i) A functional G : X — R is coercive on X if for all o € R the closure of the sublevel
sets {x € X | G(x) < a} is compact in X.

(i) A family of functionals {Gp}nen : X — R is equi-coercive if there exists a lower
semi-continuous coercive functional ¢ : X — R such that G,, > 1 for all n € N.

If G is coercive there exists a compact set K C X with inf,cx G(z) = inf,cx G(z).
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The choice of topology in X is crucial: The finer the topology in X, the easier the
lower semicontinuity property inherent in (12) is satisfied. Contrary, the compactness of
the sublevel sets K, calls for coarser topologies. Hence, both conditions are competing.
Often, the weak topology in a Sobolev space provides a good compromise where both
properties are satisfied simultaneously.

Theorem 1 (Fundamental theorem of Gamma-convergence).
Let (X,d) be a metric space and (Gp)nen : X — R be an equi-coercive family of function-
als. Then

(i) I'=liminf, . G, and I'=limsup,,_, . G, are coercive and

min (I'—liminf G,(z)) = liminf inf G, ().

rzeX n—o00 n—oo x€X

(11) If in addition (G,) Gamma-converges to G in X, then G is coercive and

pp ) = i, e ),

Proof. See, e.g., [16, Theorem 7.8|. O

Theorem 1 remains true in topological spaces X. It states in particular that while G,
need not have minima, the Gamma-limit G always attends its minimum.

3. Zero-order Gamma-limit

We derive the first term in the Gamma-expansion of E.. We introduce the closed
domain
[0,2] x [0,27] C R?. (13)

Writing z := o/, let (cf. Eqn. (7

D=
)
{ gz\hrw z,a), if (z,a) € D, (14)

else

so that

Qz,a) = g|z|2 + %(sin(a)z — 4sin2(%)>2+ % (cos(a)z - 2sin(a))2 if (z,a)€ D.



p=1, B = 0.8
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Figure 3: Plot of Q(z, ) for « € [0,27], z € [0,1.5], p =1 and p, = 0.8.

Definition 3. For @ given by (14) we denote by Q™ the convezr and lower-semicontinuous
envelope of @, i.e.

Q™ (z,a) :==sup {g(z,a) | g is convez, lower semi-continuous and g(z,a) < Q(z,a)}.

(15)
The computation of Q** is postponed to Lemma 2 below.
We define the relaxed functional
1 e . S
Fo(u, a) = Jo @, a)dz, if (u,a) € X, (16)
’ +00, else
and for € > 0 the family of functionals
1 .
E.(u,0) = fy P+ QW a)de, if (u,0) € X, (17)
= +o0, else.
In (16) we introduced the Banach space
X = X, x C5( [0, 2n]) (18)

The reason for introducing X is that for N0, the term fol ela’]? dx in E.(u, ) disappears,
so the weak limit «v of a minimizing sequence (o, )pen C W#Q(Q; [0, 27]) need not be weakly
differentiable and may leave &X,.

Lemma 1. Let (g,)nen be a sequence of positive real numbers with €, \, 0 for n — oc.

Then the family of functionals (E.,)nen defined in (17) is equi-coercive with respect to

weak convergence in (L*(2))%.



Proof. We are going to show that for every sequence (u,,y,)nen C (L*(Q))? with
SUPpen Een(tn, ) <00 there exists a subsequence (uy, , oy, )ren that converges weakly in
(L?(£2))%. This implies the equicoercivity of (E., )nen-

Directly from (17) and (14) we obtain

m
5”%”%2(9) < B, (un, ) < C (19)

uniformly in n € N. From the definition (17) of E., , this implies (u,, ;) € X = X, x X,
for every n € N. Functions u,, € &, are absolutely continuous in 2. Employing u, (0) = 0,
this yields u,(z) < [ ul,(€)dE, so Ju,(x)] < fol |ul, (€)] d€ for a.e. z € Q. Consequently,

lunllr2@) < llunlle@) < llugllr2)- (20)

This shows that ||u,||w12(q) is bounded uniformly in n. By the Banach-Alaoglu theorem,
there exists a subsequence (uy, )ren that converges weakly in L?(Q).

From (ay)nen C &, follows a,, € [0,27] pointwise in €2 and hence the boundedness
lon||2() < 27 uniformly in n € N. Again, (see, e.g., Theorem 2.6 in [10]) this implies
the existence of a subsequence («,, ) converging to o weakly in L?(2). O

Proposition 1 (Zero-order Gamma-limit). Let (¢,)nen be a sequence of positive real
numbers converging to 0. Let E., on (L*(Q))?* be given by (17), and as in (16)

1 sy 0 . ~
Eolu, ) = {&g wa)de, i (u,0) € %

Then Ey is the Gamma-limit of E., with respect to weak convergence in L?(2) forn — oo.
Proof. (i) liminf inequality. Let (u,a) € (L*(Q))? and (un, an)nen C (L*(2))? be a
sequence with u,, — u, a,, — « in L?(Q) for n — oo and liminf,cy E., (un, o) < 0o. Up
to subsequences, we may assume that

111;1& E., (un, o) exists and is finite (21)
and (u,,a,) € X for all n € N. From E. (un,q,) < 0o, as in (19) in Lemma 1, up to
subsequences, we have u/, — ' in L?(2). The (compact) embedding W12(Q2) — C°(Q)
implies u,(z) — u(z) pointwise for all z € Q. Similarly, o, € X, implies a,(z) — a(z)
for all z € Q and a € CY(Q; [0,2x]). From these pointwise convergences, (21) and (14)
we infer (u(z),a(z)) € D for all x € Q and Q(u',a) < oo. Also, u(0) = 0, u(l) =,



hence (u, ) € X. From (v, o) — (v, @) in (L2(Q))? we find

1
liminf E. (u,,a,) = lim inf/ 2l |? + Q(ul,, ) da
0

n—oo n— o0
1
> liminf/ e2lal |* + Q™ (ul,, o) da (22)
1
> / Q" (v, a)dx = Ep(u,a). (23)
0

Here, (22) follows from (15) and (23) holds because Q** is convex and lower semi-

1 / L T, : . .
continuous, consequently (ul,, o) — [, Q@**(ul,, ay) dz is weakly lower semi-continuous.
(ii) limsup inequality. Let (u,a) € (L*(Q2))* be fixed. We may assume Ey(u,a) < oo
(otherwise the Limsup inequality is evident) such that (u,«) € X. We must prove the
existence of a sequence (u,,a,) C (L*(Q))* with u,, — u, a,, = « in L*(Q) for n — oo
and

n—oo

1
FEo(u,a) = / Q™ (v, ) dx > limsup E., (un, ).
0

Because of limsup,, ., F-, (tn, o) < fol Q (v, ) dx it is sufficient to show that

1 1
lim sup/ Qu,, ) dz < / Q" (v, a) do (24)
n—o0 0 0

for a suitable recovery sequence (u,, ., )nen. Subsequently we approximate u by piecewise
affine functions u, with wu,(0) =0, u,(1) = 7 for all n € N and « by piecewise constant

functions periodic in Q. The set of such (u,, a,) approximates X densely in (L2(£2))2.

Case 1: Let [a,b] C € be an interval where v’ = z = const, o = const in [a, b]. Fix e > 0.
Then there exist x. € (0,1) and (2}, al) € R? (22, a?) € R? with

7eQ(zz, 00) + (1 - 2)Q(2, af) < Q™(2,0) +¢,

lze(22, ad) + (1 = 2.)(2,02) = (z,0)|| < e. (25)

The existence of such z., (2, al), (22,a?) follows from

Q" (z,a) = inf { liminf 2,,Q(2} , ol )+ (1—2,)Q(22,a2) | zm € (0,1),

m—r0o0

lim 2, (z),al) + (1—2,,)(22,a%) = (z,a)}.
m—0o0
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Construct an affine function u. with constant derivative u’(z) = z. := z.z! + (1 — z.)22,
where u.(0) = 0 if a = 0 and u.(1) = v if b = 1, as well as the constant function
a.(x) = x.al + (1 —z.)a? for x € Q. Let

{zl for 0 <z < x.,

- al, for 0 <z <z,
22, forx, <ax <1

ve(®) = 2 we(x) := o, forz. <z <1 (26)

[

2
g

extended 1-periodically to functions for x € R and define the 1/n-periodic functions

zi (x) == v.(nx), a; (x) == w.(nx).

It holds 25 = (uf)" — 2. = ul and of — a. in L*(Q) for n — oo, cf. [10, Example 2.5],

n

where the piecewise affine functions uS are constructed as u. was above, e.g. (ug) = 28

and u5(0) =0if a =0, w5 (1) = v if b = 1. Formally, the limsup-inequality also requires
u — u. in L*(Q). Indeed, from (uf)" — ul, integration by parts yields

n

/0 (U (2) — uo(2))d (x) de — 0 for n — 00 (27)

and any ¢ € C§°(Q2). Formally replacing ¢' in (27) by a new test function ¢, from the
density of the continuous functions in L?(Q), this yields uf, — u. in L?(Q) for n — oo.
Finally, by construction,

lim bQ(Zi,ai) dz = (b—a) [:U{_:Q(z;,ai)—k(l—xE)Q(zg,a?)} < /b Q™ (2, @) dz+e(b—a).

n—0o0 a

Taking the limit € N\, 0 this yields the desired limsup-inequality.

Case 2: u is piecewise affine, o is piecewise constant.
We may assume that v’ and « are discontinuous at identical points in 2. Now repeat
the construction of Case 1 on each interval where v’ and « are continuous. 0]

For the computation of Q**, we need to consider the minimizers and the minimal
energy e, of Fy (defined in (7)),

€, ., = min{Eo(u,a) ’ (u,ar) € /'F}

=t e

Table 1 below has the details.
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’ Parameters | Minimizers | Minimal energy e of Fy ‘
pe =20 u,a; =0), (u,of =2arctan(3)) | 44

(

= fle (@, ap) n(? +4—2y/72+4)
(
(

e

e = =) (7 At ptpie 2 22
2 7£ M, if aq exists U, 0y )7 (ua al) 2 1T \u—;cl

T, ay) (72 +4—2/1+4)

jo 7 pre,  else

Table 1: Unique minimizers of Ey in X and minimal energies for different parameter ranges.
The case . = 0 is a special case of the third regime pu # p. and existing af, see Remark 1. The case
1t = i is a special case of the fourth regime p # p. and non-existing af. Explanations regarding the
existence of ai and a characterization of the third and fourth regime are found in Remark 2.

We adopt the notations
u(r) =y, 0<z<1 (28)

for the homogeneous deformation which turns out to be optimal in X, and set

af = arctan(@), af = arctan(w——i_f>, Qg = arctan<z> (29)
2u+3f 21— 5 2

for the global minimizers of Ej, where
2 2 2\ /2
f= ((7 +4) (1 — pe)” — 4p ) : (30)

Remark 1. The case j.=0 is a limiting case of the third regime u# . and existing i .
For . =0, by Eqn. (30), f = ~yu such that by Formula (29)

4
a; =0, af = arctan<4 _772) (31)

This formula had already been derived in [3]. Therein, the value of for u. = 0 had been
denoted ag and introduced by the identity

. L as(s)
as=1n""(7), n(a) = Sin(a)

(32)
The inverse n='(v) in (82) exists for v € [0, ) while af in (31) is evaluated for v € [0,2)].
Due to - -
o) = ) 20
sin(a) sm(%) cos(%) 2

12



Eqn. (32) can be rewritten to (only valid when p. =0)

af =07 y) =2 arctan(%) =2y, (33)

improving (31). The identity arctan ( 422) = 2arctan(%> can also be obtained directly
from the addition theorem

V1V
arctan(vy) + arctan(vy) = arctan<i> for vivy <1
— U102

after setting vy = vy 1= 3.

u=y=06,p=1,p,=0 U'=7=06p=1,p=0
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!
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Figure 4: Two plots of a — W(vy,a) for p. =0, p =1 and v = 0.6. Left: Plot for « € [0, 27]. Right:
Close-up for o € [0.2,0.8] showing a double well with minima at a; = 0 and af = 2arctan(2) ~ 0.5829
as predicted by Eqn. (33). The double well is very flat and does not show up in the full plot on the left.

For pi. < p1, o exists if p, < p& with p& defined by Eqn. (37), see Remark 2 below.
For p < pt., ai exists if g # e and p, > p&*, where p* is now defined by (39).

Fig. 5 displays one example for the case u > p.. In the interval o € [0,1] which
contains all minimizers, W (v, -) is strictly convex for p, > p&, while for ., = 0 and in

the non-classical regime p, < ™t W(+,-) is a double-well potential with minimizers at
a7 and at of , cf. Fig. 5.

The limiting case p. = 0 is displayed in Fig. 4.
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Figure 5: Plots of o — W (v, ) for 4 = 1 and v = 0.6. Left: Plots for a € [0,2n]. Right: Close-ups
for a € [-0.2,0.8]. Bottom: For p. = 0.02 < pt = 0.0422 there is a double well with minimal value

Cup = B2 - %50 ~ 0.00278 at a; =~ 0.0783 and at o = 0.5046 in accordance with Eqn. (29).
Top: Strict convexity in the interval a € [0,1] for . = 0.1 > p'it with the unique minimal value
€ = M[%z +4 —2y/92 +4] ~ 0.003877 at as = arctan(y/2) &~ 0.2915. The double well is very flat
and practically invisible in the full plot displayed on the bottom line left. The blue box on the bottom

left illustrates the section which is enlarged on the right.
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The data of Table 1 is computed for fixed . For the variational problem at hand, we
write z := @ =  and have from now on ai = o (2), ay = ay(z) and f = f(2).

Remark 2 (Existence of o (z) and different regimes). Whenever ai exist, these are
the unique global minimizers of Ey. In [3], af have been computed as solutions of

24
zsin(a) + 2 cos(a) = . (34)
M= fe
Writing S := sin(a), C := cos(a), g := ME—’;C, we find 2C = g— 28 and 4C? = 4(1—5?%) =
(9 — 29)2, leading to the quadratic equation
S% — 229 92_4—0.

2244 2244

The solutions S* and hence oi exist provided p # je and d = (2> +4—g?)'/? = % 15

real-valued, where f = f(z) == ((z*+4)(p—pc)? — 4u2)1/2, cf. Eqn. (30). We introduce
for p # pe and 2p0 > . the critical value of z by

2 (2 ) ' ticul 2 4 4 (35)

Zerit -= 71 V Mel2t — Ue), m particular Ziri =

T el T S e

It holds f(zeit) = 0. Hence the case z = zgy constitutes a transition point with
Oé; (ZCrit) - Oé1+(zcrit) - aQ(ZCrit) - arCtan<Z(:2rit) . (36>

1. Case: . < p.
We adopt temporarily the symbol

crit
c

. . 2
crit crit
=i (z) =l — —) 37
i = () = (1= S (37)
For pi. < i, the existence of af and the third regime of Table 1 are characterized by the
condition . < pt ensuring that d is real-valued. This can be rewritten using (35) to a
condition z > Zuit, i.€.

from [3] for the critical value of . and define

- 2 2 fi—pu Ap®
<) <1 - 2 QhThe W
e S T (2) < pe S 2244 2447 p (h=pe)® —

42 — (u—pe)? 2
(1 — (u 5))§z2 = (- < =
(= ptc) f1—fc
— Vite(u—pie) < 2 <= zZaip < 2. (38)
K= He
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2. Case: i < p.. For u= p., Eqn. (34) has no solution. Let jn < p.. The critical value
of pe is then

) . 2
crit — crit 2) = (1 + > 39
pet = pe(2) = 1t o = (39)

For 11 < pie, as in the first case, o5 solves (34) provided pe* < p.. We assume that
> He (40)

Then the third regime of Table 1 for p < p. is characterized by

2

Mzrlt(2)§#c<:>/£<1+#>§ﬂc<:> 2 SMC_M@LzSZ2+4
V22 +4 22 +4 7 (pe—p)
A2 = (pe—p)? 2
(p* — (p 2#) ) ¢ 2 2 — (g’ < 2
(pte—p) fle— 14
= u—pe) € 7 =z < 2. (41)
He— 1

In both cases, we find that af exist if zaiyw < 2. For p = ¢, Zait 1S undefined and the
minimizers af do not exist.

Under the assumption (40) we may repeat Table 1, now written in terms of z.

’ Parameters | Minimizers | Minimal energy e, , (2) of Eqg ‘
pe =0 (u, 07 =0), (T, ai (z) =2arctan(%)) | £z
= pe (@, aa(2)) p(z? +4-2v22 4+ 4)
o e, 2o < 7 | (@07 (2), (@0 (2)) e — it
BF fhe; Zeriv > 2| (U, aa(2)) p(z2+4—2v22 4+ 1)

Table 2: The data of Table 1 for different values of z.

To complete the discussion of the zero-order Gamma-limit, it remains to compute
the convexification Q@**. Motivated by Eqn. (31) valid only for z < 2, we restrict in the
following to z € [0, 2].
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Lemma 2 (Computation of Q™). Let Q be given by (14), 0 < z < 2, u. < 2u and let

bgker? — e else.
For f(2) = ((2+4) (n—pe)*—4ps2) ", let
oy pr—=f2)\ o pz + f(2) - z
aj (z) := arctan <2,u+—§f(2)>’al (2) := arctan <2M_—§(z)),0@(z) = arctan<§>. (43)

Then, depending on p and p., for 0 < z <2, 0 < a < 2w, the convezification Q**(z, )
is given by the following formulas.

Q" (z,a) = %22' (44)

(i) If = pu :

Wz, a)+ L2 if a €10, (2],

Q™ (z,a) = { (n2? — eum(z))% +e,,.(2) if a € aa(2), 27 (45)

(iii) If pe # po:

(W(z,a) + 52° if (ae [O, 1(2) and z > zey)

or (e [0 ,Oég( ) and z < zet),

0 (2,a) = Cup?) . zfae (a7 (2), 07 (2)) and 2 > 2,
(/Héuc z2_§wuc(2)) 207‘;0%(8) +e,. Mc(z) if a€ [af (2),27] and 2 > Zes,
[ (B2 —e,, (2)) 2(;—_0;22((22) +e,,.(2) if a € |aa(2),27] and 2 < e

(46)

Remark 3. Eqn. (46) is the general formula for Q™ and contains both (44) and (45) as
limiting or special cases. To see this, for u. =0, it holds zui, = 0 by (35), €puy uc( z) = %22
by (42), f(2) = pz which implies oy (2)=0 by Eqn. (43). Hence, for (z,a)€ D, Eqn. (46)
simplifies to (44).

For u = p., oi are undefined. Formally replacing zei in Eqn. (46) by +o0o as the
limiting value of z.i in Eqn. (35) for p — p. then leads to Formula (45).
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Proof. To compute the convex envelope of the continuous function () in the closed
domain D:=[0, 2]x[0, 27], the following two formulas are helpful. For (z,«) € D, we have

Q" (z,a) = min {t@(zl,ozl) + (1—1)Q(22, a2)

te[0,1]

Q™ (z,a) = sup{l(z,a) | I < Q in D, is affine}.

tz1+(1—t)ze = 2, tan+(1—t)an = a},

Furthermore,

0°Q .2 2
W(Z’ a) = p[l+sin®*(a)] + pecos®(a) >0,

implying that z — Q(z, ) is strictly convex.
Part (1): Explicit construction of an underestimator (z, «).

In general, the determination of the convex envelope is a difficult task. Let I(z, a)
denote the function defined by the right of (46), and set for (z,a) € D

L(z,a) == (z,a) — gz? (47)

Due to (14), for (z,«) € D, it holds
L)
Qz,a) = 5% + W(z, ).

Hence L is an underestimator of W while [ is an underestimator of (). Subsequently, the
function L(z, ) is constructed by connecting the local minimizers of W(z,-) for fixed z
by a function affine in . Once L is constructed, [ is obtained from (47).

The minimizers of W (z,-) for fixed z can be read off from Table 2 and Eqn. (29) or
(43). Consider first the special case (i) with p. = 0. Here, for fixed z, the three points
(a7, W(z,07)) = (0,0), (o (2), W(z, a7 (2))) = (2arctan(%),0) and (2m, W (z,2n7)) =
(27,0) where W (z,-) has minimal energy ¢, , — 52°=0 are connected. This leads to the
lower bound L = 0 of W corresponding to [(z, ) = £2* and eventually with Part (2)-
Part (5) below to Q**(z, o) = £2°, e.g. Eqn. (44). See Fig. 8 for a visualization of this
case and Fig. 3 for a plot of Q(z, ).

Now consider (ii) with p = p.. For a € [0,a9(2)], W(z,-) is convex, resulting in
L(z,a) = W(z,«) and Eqn. (45);. For a € [as(2), 27], the points (as(2), W(z, az)) and
(2w, W (z,2m)) are connected by a function affine in o which results in Eqn. (45)s.
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In the case (iii) with g # p., when z < zuj, the construction is as in (ii). When
2 > Zerit, W(z,+) is convex in [0, a; (2)), leading to (46);. For a € [a; (2), af (2)], W (z, )
forms a double-well potential. Connecting by a function affine in o the two minima

(07 (2), W (2,07 (2))) = (07 (), €y () = 522).

(48)
L
(af (2). W (2,01 (2))) = (0 (2), €. (2) = 52°)
leads to Eqn. (46)s. For a € [af(2),27], the convexification of W(z,-) is an affine
function connecting (af (2), W(z, f(z))g (af(2),e,,.(2) —52*) and the end point

(2m, W (z,2m)) = (27, W (z,0)) = (27r, Be2?), yleldlng (46)3. This ends the construction of
L(z,«) and completely defines I(z, o) = L(z, ) + &|2]%.

It remains to validate that this function I(z, «) is indeed the convex and lower semicon-
tinuous envelope of @ for (z,a) € D, i.e. that it is convex, less or equal @ and greater
or equal any convex underestimator of (). We focus on the most general case (iii) with
p # pe and [(z, ) given by the right of (46).

Part (2): Convexity of [;(z, a) on A;.
Even though I(z, ) is separately convex in z and in «, we still need to prove the joint
convexity of [ as a function of two variables. Let (cf. the right hand side of Eqn. (46))

[ Wi(z,a)+ 522, if (z,a) € Ay, S (2), if (z,0) € Ay,
11(27 Oé) T { +OO7 else 12(27 Oé) T +OO, 81867
ptpe 2 @ al (2 7
Iy(z,0) o= | (357 e )i e (s) 1 (0) € 4, (49)
400, else,
Lz, ) = (152" = €. (2) ey 0;22(( )) e (2) 1f (z,0) € Ay,
+00, else
for the sets (cf. (46); to (46),)
Al ::{<27Q)GE‘22201“11:705€[07 )}U{ZC( GE‘Z<ZCHt’a€[O OQ( ))}
AQ 3:{(Z,Ol) S E ‘ z > Zerit, O € [al_(Z),Oéii_(Z))},
A3 ::{<Z,Oé) S E ‘ Z 2 Zeit, O € [OéT(ZLQ’iT]},
Ay ::{(z,a) eD ‘ 2 < Zerit, O € [a2(z),27r]}

Fig. 6 below plots the sets A; exemplary for one set of parameters with u. < p.
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Figure 6: Plot of the sets A;, 1 <i <4 for p=0.8, p. = 0.2. I'14 := A; N A, is not a straight line.

The convexity of Iy(z) = e, , (2), cf. (46)2, follows at once from I5(z) = y + p. > 0. The

convexity of [;(z, «) in the range A; follows from checking that all three principal minors
of the Hessian of W (z,a) + £2* are non-negative on A;. These are

%(z, a) = p(sin?(a) + 1) + e cos?(a) > 0,
P (e0) = 2uh(z.0) + (u—p)[B(z.0) ~ h(za)] = hlza) (50
det(D?1})(z, ) = \(u(sinz(oz)—i-l)—i-uccos (c )) [2u[1(z )+ (pu—pe ( =1 (z,a) 1
>0 Is(z,0)
Here we introduced
Ii(z,a) := 2cos(a) + sin(a)z, L(z,a) := cos(a)z — 2sin(a). (51)
It can be checked that on A,
Li(z,a) >0, L(z,a)? — L(z,0)* > I,(z,a). (52)

To prove convexity of [y, due to (50), it remains to show I3(z,«) > 0. For p. < u, this
follows at once from (50). For p < p., due to (52), (u — pe)(I3 — 13) > (u — pe) 1 (2, @)
such that

13(Z705) > Il(zva) [2“ + (:u - MC)] 2 ]1(Z,a) [:uc +p— NC] >0,

where we used the assumption (40).
With (50) this demonstrates the convexity of [; on A;.
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2uz+2f(2)
dp—zf(z)
tion shows w'(z) > 0 and w”(z) > 0 on Az. This yields the convexity of —af (z) =

— arctan(w(z)) as in general any composition g; o go of two functions g; and g5 is convex,
provided gy, g, are convex and g, is monotone. The convexity of —a; (z) implies that

To prove the convexity of I3 on As, let w(z) = An elementary computa-

0?13 2012 21 — « 2(af (2))? N
— = £ — "1>0 As. 53
520 = ] Grmaf P \ar—af(y ~ D) 20 nds 63
Since glé”( ,a) =0 and

0?13 241 —2 w'(z)

0 — c o — af >

azﬁa(z’ @) I — pel (27 — i (2) 14+ w(z)? — 0

this proves the convexity of I3 in As.
Finally, 2% (2, a) = 0 and

gl e - [(277—042 ( )z—i—L)

azaoz< @) = (21 — aa(2))? (22 + 4)1/2
+ p1e) 2% = 2u(2 + 4) + 4p(2? + 4)1/2
First let p < p.. Then the first term in brackets [...] in (54) is clearly non-negative. For
the numerator of the second term in brackets we find
(14 o)z = 2p(2% + 4) + 4p(2% + 42 = (e — p)2* = 8+ 4u(2* +4)'2 > 0,
proving gé“ (z,a) > 0 on Ay for p < pre. Now let p. < pu. Reformulating (54), we find
9Ly 1 1
o) = o — I(z) + I5(2)| 55
828a(z @) (2m — ay(z))? 22 +4 [( = a2(2))2 i(2) + I5(2) (55)
ith
v 1) = 20 42— (= )2+ 4), 56

I5(2) = (4 pe)2 +4p(2" + )17 = 2u(2" + 4).

We estimate I4(z), I5(z) on Ay where 0 < z < zuy. For p. < p, we have
L(z) = (Z*+4)"[ 2 — (p—pe)(2 + 4)"2 ] >0,
> 2u—(p—pc) (22, +4)1/2 (—) 2u—(u—pe) 24— =0
Is5(z) = (u+uc)22+2u(z2+4)1/2[ 2 — (224 4)1/2 } > 0.
—_———

@y 2 _ 2w 5

> 27(zgrit+4)1/2 H—Hc H—Hc

Due to (55), this demonstrates gjal‘;(z, a) > 0 on Ay.
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Lengthy computations yield

9%l 2T —«

1
gz (@) = L&)+ o s

2 —as(z)

25— )2 ne| 67

where we introduced

_a—ao(2) (8 — (u—p) (2P + 4P 2u[(2°+4)°2 — 4]
Io(=) =5 — a2(2)< (21 4)32 (P47 )
- 5 i (e O o )
a— ay(z)

— _ >
<1u + II’C) o — OéQ(Z) >0 on A4’ (58)

I(2) = 8u(22+4)? — 4(putpe)2® — 16p(22+4)Y2.
First let . < pu. Then, it holds on Ay
Ir(2) = 8u(2°+4)> — 4(ptpe)z® — 164 (2°+4)'/?
> 8u[(22+4)? — 22 — 2(22+4)'/?] as e <
= 8u[(2*+4)? — (2 +4) — 2(2+4)* + 4] =: 8ug(7).

Let 7:=224+4. For4 <z < (due to (35), as z < zqit) the function

4
(n—pic)?
(&) =32 — 7 —28% +4

has a unique minimum at & = 1 and is strictly positive for all Z > 0. This proves I7(z) > 0
0

on Ay and with (57) we obtain %% (z,a) >0. Together with 6 2l (2,a)>0, glé (z,a) =

this is sufficient to proof the convexity of I4(z, «) on Ay for the cone z >0, a > 0.

Now let u < pie. In order to prove C,?—222l4 > 0 we need to show that
Is(2) = 8p (22 4+4)% — 4(ptpe) 2 — 164 (22 +4)"% + 2(p—pe) (2m —5(2))2° > 0
for 0 < 2 < 24/p(2p — pte). Using pp — pre > —p and —4(p + p1.)2? > —12u2°, we obtain
Is(z) >2u[4(z* +4)* — 627 — 8(z% + 4)'/? — (21 — an(2))2"]
— 2 [42 — o+ arctan<2>z 42622 — 8(22+4)12 + 64] (59)

A straightforward discussion reveals that the right hand side of (59) is strictly positive
on Ay, proving with (57) that %(z, a) >0 on Ay.
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Part (3): Convexity of {(z,a) on D := [0,2] x [0, 27].

We write as before [; := [|4, for ¢ € {1,2,3,4}. The continuity of [ on I';; := A;NA;
follows at once from the definition (49) of [y, ...,l; and Eqn. (36).

Due to Part (2), [ is convex on each A;. In order for [ to be altogether convex, a jump
condition of VI on I';; must be fulfilled. With fixed (Z,@) € I';;, letting

Gi = lim Vli(z,a), Gj = lim Vlj(Z,Oé),
(z,0)—(Z,@) (z,0)—(Z,@)
(z,0) €int A; (z,0) €intA;

this jump condition at (Z,@) reads
(Gi —G,) -1 >0. (60)

Here 7 is the normal vector at (Z, @) € I';; pointing from A; to A;. In this context we also
refer to [2], where general conditions for the convexity of piecewise-defined functions are
derived. The results in [2] are not applicable here since the sets Ay, A3, A, are non-convex,
cf. Fig. 6. We subsequently check the validity of (60) on each I';;.

First we consider I'iy = {(2,@2(2)) € D | 2 < 2ei ;. Direct computations yield

i) = ) = (P 0 -1) = et o)
Because of ol al
6_04(27 052(2)) =0= a_a(z70‘2(z))v (62>

the jump condition (60) holds with equality on I'y4.
We observe that a two-dimensional curve I' = (z(t),y(t)) possesses the normal

1

'r_i
On Ty = {(2,0](2)) € D | 2 > zait}, due to (63), 7i(z) ~ (—a; (2),1). So, (60) becomes

242 a—2m + ’
= @r—at(z)2 M () _ ( —a () ) >0
e (2m — af (2))7! 1 -

lp—tec|

This is equivalent to

|,u2fi¢c| ((%2_7?0}0(;»2 (af (2)')" + (2 — QT(Z))_1> > 0. (64)

Clearly, (64) is satisfied on D proving the validity of (60) on I'ys.
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On Ty = {(2,07(2)) € D | 2 > Zzaw}, let v(z) = 24’“:5;2;6((5) such that oy (z) =

arctan(v(z)). Direct computations show that on I'jo

oly Oly o v(z) 2 1/2
2 (20) = 52(200) = S (= ) (e(e) +2) = 20 + 1)), -
O (o) = 22(zr0) = 228 [ ) e(e) +2) = 2p((? + 1))
55 20 — 5 (0 =+ p— pe)(zv(z p(v(z :
Due to (63), 7i(z) = (—v(i)(—f)ﬂ, 1) and the jump condition (60) reads
20(0(z)* + DY~ (uppe) (z0(2) +2) [ 0(2) o
v(2)2 + 1 ( z —2v(z) ) ' ( S = 0. (66)
A straightforward computation shows that
2u(u()? + V2 — (i — o) (20(2) +2) = 0. (67)

As the prefactor in (66) vanishes the jump condition (60) holds with equality on I',.
On Ty = {(2ait, @) € D | arctan(Z%t) < o < 27}, 7 = (1,0)", cf. Fig. 6. Furthermore
o (Zerit) = 2 (2erit) = arctan(®2) by Eqn. (36). Therefore, (60) becomes
oly Ol

g(zcm,oz) > E(Zcrit,oz) for arctan(z;rit> < o< 2. (68)

We find %(zcrit, a) = €/(zui) and (68) turns into

2/14 Zerit
2 crit = 7o, N1/9 Z c)~crit-
H Zerit (Zgrit _'_4)1/2 (/J—}—,U )Z t
This simplifies to
2 (69)
SNCIE
Using 22,44 = (M4_’i)2 in (69), we get u— (pu—pe) > pe and (60) holds on I'sy with equality.

Part (4): | < Q.

The condition [ < @ is equivalent to L < W. The latter is evident since by construc-
tion, L(z,a) = W(z,«) in the region where W is convex, while otherwise L is an affine
function below W connecting the minimizers of W.

Part (5): I(z,«) is greater or equal any convex function less or equal Q.
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By Minkowski’s theorem, if ((z,),s) € R? x R is an extreme point (see, e.g., [15,
Def. 2.17] for a definition) of epi(W**), then

s=W"(z,a) =W(za). (70)

This implies W (z,«) = W**(z,a) = l(z, ) — §|2|* or equivalently Q(z,a) = I(z, ) in
(2,05°(2)) if 2 > 2ey and in (2, a9(2)) if 2 < zaie. Due to the result in [32], the largest
convex function [ majorized by @) in D solves the nonlinear degenerate elliptic PDE

T[l](z, @) := min {Q(z,a) - l(z,a),Al[D2l](z,a)} — 0, (71)

where A\;[D?l] denotes the smallest eigenvalue of the Hessian of [. Due to (71), in the
non-contact set {I < @}, it holds A\;[D?]] = 0 and [ must be flat in at least one direction.
In the case investigated here, [ is flat in the a-direction. On the other hand, the largest
underestimator cannot be affine in z-direction because of the strict convexity of z —
Q(z,«). This proves the optimality of I(z, «). O

Remark 4. We doublechecked the correctness of (44)-(46) with a small MATLAB code
that generates a large set of discrete points in epi(Q) N ([0,2] x [0, 27]) and computes the
closed convex hull of this set. Because of

epi(Q@™) = co(epi(Q)), (72)

this computes the epigraph of Q** from which the graph of Q** can be read off. In (72),
epi(Q) denotes the epigraph of Q and co(A) is the closed convex hull of a set A. The
MATLAB algorithm is available as supplementary material to this article.

Fig. 7 shows one example computed by the algorithm and compares its result with the
analytic formula given in Lemma 2.
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Figure 7: Left: Simplified triangulation of the convexification of epi(Q) for (z,a) € [0,2] x [0,27] and
1 = pe = 0.5 as computed by our algorithm. The lateral and top surfaces are in blue, the color of the
front depends on the value of z (e.g. yellow for z = 2). Right: Plot of I(z, @) for (z,a) € [0,2] X [0, 27]
and p = p. = 0.5 defined by the right hand side of Eqn. (45), cf. the proof of Lemma 2. In both plots
one can identify the region on the bottom left where Q(z,a) = Q**(z,a) = W(z, o) + 422

4. Conclusion

In this paper, the zero-order Gamma-limit of E(u,«) has been computed and the
minimizers have been identified. In particular, the results reveal the fine properties of the
optimal micro-rotations a forming transition layers in 2.

The relaxed functional Fy may also be of interest for numerical simulations. Using
Ey instead of the original Cosserat functional E given by (5) for simulations with a small
but finite L. > 0 corresponds to a convexification or homogenization of the problem and
may help apart from a very significant speed up to avoid some of the numerical problems
encountered in [7, 8, 9].
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Figure 8: Sketch of the construction of the underestimator L(z,a) of W(z,a) in the proof of Lemma 2
leading to Q**(z,a). Top: The special case (i) with g, = 0. Connecting the minima of W(z,-) at
a=a] =0, at a = af(2) and at o = 27 with minimal energy 0 yields L(z,a) = 0. Bottom: The
case (iii), here with p. < p, for fixed z > zuit. For o € [0,a7 (2)), W(z,-) is strictly convex. For
a € a7 (2),af (2)], L(z,a) = ¢, , () — 422 is constant, connecting the two minima by a straight line.
For a € [af,27], L(z,a) is a slightly increasing affine function, connecting (o (2), W(z,af (2))) with

(2w, W (z,2m)). In both plots, the double well is strongly exaggerated to better illustrate the principle.
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Appendix — Pointwise minimization of E for L. =0

It is instructive to compare the zero-order Gamma-limit of E., i.e. the results of
Proposition 1 and Lemma 2, with the following pointwise minimization. Let Ey be defined
by (10) which coincides with F given by Eqn. (5) with L. = 0. For chosen deformation
u € X,, we denote by aept = opt(u’) a corresponding optimal micro-rotation, i.e. a
rotation @ € X, that minimizes o — E(u, ) for fixed u. Plugging in oy into EO, we
end up with the functional

Eopt(u) = E’g(u, opt (1))
,LL 1 7112 . / : 2 aopt 2
= 5 WP Ginlogen = 4t (%29) " da

1
+ % (cos(appt)u’ — 2 sin(aopt))2 dz. (73)
0

The following proposition computes E,, explicitly for the different regimes.

Proposition 2 (Pointwise minimization of E for L. =0). Let E,p be given by (73)
and assume u € X,,. Then it holds

(i) If 11 # pe and o exists:

e [ 247
Eupw) =50 [ e - e (74)
2 0 |,u_,uc|
(i3) If p1 = pie or (u # pe and o5 do not exist):
/ W+ 4 — 2(ju/[? +4) 2 da. (75)

The functional E,y defined by (74) or (75) is convex in u'.

We observe that u. = 0 is a special case of (i) for which Eqn. (74) simplifies to

Eopt(u / [ARGE (76)
Proof. Consider the Euler-Lagrange equation w.r.t. « of Ey defined in (10),
0 = (cos(a)u'—2sin(a)) [(,u—uc) ( sin(a)u'—4 SinQ(%)) —2uc] . (77)
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Eqn. (77) states an algebraic relationship between a and v’ since L. = 0. Resolving
Eqn. (77) leads to the minimizing optimal rotations agpt = qopt(¢') summarized in Table 1.

(i) Let pu# p and o exists. First consider p.=0. The optimal rotations in this case are

!/

Qopt = a7 = 0, Qopt (W) = af =2 arctan(%), (78)

cf. Table 1 and Eqn. (33). In both cases, (sin(cop)u’ — 4sin2((xopt/2))2 =0, and (73) at
once simplifies to (76).

Now consider the case p. > 0.
With f = ((Jo']* 4+ 4)(p—pe)?* — 4/12)1/2, cf. Eqn. (30), the two optimal rotations are

/ r_
Qopt (W) = af = arctan(w——z,f) Qopt(U') = o] = arctan(uu—u,f)
By direct inspection, we find
2
sin(ay )u’ + 2 cos(ay) = . —,uu , cos(ag )u’ — 2sin(ay) = ; ;fﬂ :
C C (79)
9 _
sin(af )u’ + 2cos(af) = K , cos(af )u' — 2sin(af) = / :
= He M= fe
Plugging these identities into (73), we obtain for both choices of aps
1 1 2
9 2 .
Eopt(u) = g/ |u/|2+ ( K _2) df+%/ (f—)de
0 = e 0 U= He
1 2 2 1 12 4 o 2 4 2
_ 24 prc, pe [0 (W + ) (u—p)” — 4
=3 |u'|* dx + 3 + B ERPEY) T
0 (11— pic) 0 (1= pe)
+ c ! 2 g C 4 3_8 ¢
_ K 2“ / |u’|2dx+%+%%. (80)
0 (M Nc) (:U’ /vbc)

This simplifies to (74).
(ii) Let o = p or (it # p. and af do not exist). The unique optimal rotation in this case

iS aopt (1) = g = arctan(%). For ¢ € R we remark the identities

1 t

m, sin(arctan(t)) = m (81)

cos(arctan(t)) =
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With (81), direct inspection yields sin(as) = cos(ag) = 7z such that

2
(| \2+4)1/2’ (lu'[2+4)

cos(ag)u’ —2sm(a2) 0,

(82)

12 4 2
|U‘ + _2> _ ’u/‘2+8_4(‘ul‘2+4)1/2

(sin(az)u’ + 2 cos(az) = < (TIEESOEE
Using the identity —4 sin? (%pt) = 2 cos(aopt) — 2, this shows for case (ii)

1 1
Eopt(u) = g/o [W/[* + (sin(as)u’ + 2 cos(aw) —2)2dx = M/o |u'\2—|—4—2(|u’|2—i-4)1/2 dz

which is (75).

The convexity of Eyp given by Eqn. (74) is evident. But also Eqn. (75) defines a
convex functional in z = «/, even though it may first not appear so. Indeed, introducing
g:R—R,

g(z) =2 +4—2(2 —1—4)1/2

a direct computation yields ¢'(z) = 2z — 2z(2* 4+ 4)~'/% and

g'(z) =2+ 22 2 _ A8
(22 +4)32 (22 +4)12 (22 + 4)3/2 :
This is the convexity of g and hence of E.y in v’ as defined by Eqn. (75). O

Remark 5. When p. =0, Eopi(u) coincides with Ey := I'lim.~ o E. computed in Prop. 2
and Lemma 2. For all other cases of Proposition 2, Eo differs from the Gamma-limit
Ey. This underlines the critical role of the Cosserat couple modulus . in the modelling.

Remark 6. A direct minimization analogous to (73) is also possible in three space di-
mensions for E’gD, cf. Eqn. (11). In [28, 19, 20], the optimal rotations are computed, see
also [7, 9] for numerical considerations. However, for p. > p it is known, [29], that the
resulting functional

/ﬁudistQ(F, SO(n)) + 2 [(detU—l)2 + (deiﬁ—ly} dx

1s not rank-one convex due to the dist-function. The computation of the quasi-convex hull
w.r.t. deformations in GLT(2) in this case can be found in [21].

30



Acknowledgements

The authors thank the unknown reviewer for the most valuable comments and sug-

gestions which helped significantly to improve and correct the manuscript.

References

1]

2]

3]

(6]

[7]

8]

[9]

[10]

[11]

Appell, P. (1893). Traité de mécanique rationnelle: Statique. Dynamique du point
(Vol. 1). Gauthier-Villars.

Bauschke, H.H., Lucet, Y., Phan, H.M. (2016). On the convexity of piecewise-defined
functions. ESAIM: Control, Optimisation and Calculus of Variations 22(3), 728-742.

Blesgen, T., Neff, P. (2023). Simple shear in nonlinear Cosserat micropolar elasticity:
Existence of minimizers, numerical simulations and occurrence of microstructure.
Mathematics and Mechanics of Solids, 28(7), 1576-1602.

Blesgen, T., Fraternali, F., Raney J.R., Amendola, A., Daraio, C. (2012). Continuum
limits of bistable spring models of carbon nanotube arrays accounting for material
damage. Mechanics Research Communications 45, 58-63.

Blesgen, T. (2013). Deformation patterning in Cosserat plasticity. Modelling and
Simulation in Materials Science and Engineering, 21(3), 35001-35012.

Blesgen,T. (2014). Deformation patterning in three-dimensional large-strain Cosserat
plasticity. Mechanics Research Communications 62, 37-43

Blesgen, T. (2015). On rotation deformation zones for finite-strain Cosserat plasticity.
Acta Mechanica 226, 2421-2434.

Blesgen, T. (2017). A variational model for dynamic recrystallization based on
Cosserat plasticity. Composites B 115, 236-243

Blesgen, T., Amendola, A. (2020). Mathematical analysis of a solution method for
finite-strain holonomic plasticity of Cosserat materials. Meccanica 55, 621-636

Braides, A. (2002). Gamma-convergence for Beginners. Oxford Lecture Series in
Mathematics. 22nd Edition.

Capriz, G. (1989). Continua with Microstructure. Springer.

31



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

Conti, S. and Dolzmann, G. (2020). Quasiconvex envelope for a model of finite elasto-
plasticity. Continuum Mechanics and Thermodynamics 32, 1187-1196.

Cosserat, E., Cosserat, F. (1909). Théorie des corps déformables. Appell, Paul.
Gauthier-Villars, Paris.

Cosserat, E., Cosserat, F. (1991). Note sur la théorie de 'action euclidienne. Ap-
pendix in [1], 557-629.

Dacorogna, B. (2008). Direct Methods in the Calculus of Variations. Springer, 2nd
edition.

Dal Maso, G. (1993). The direct method in the Calculus of Variations. In: An In-
troduction to I'-convergence. Progress in Nonlinear Differential Equations and Their
Applications, Vol. 8, Birkhauser Boston.

Dmitrieva, O., Dondl, P.W., Miiller, S., Raabe, D. (2009). Lamination microstructure
in shear deformed copper single crystals, Acta Materialia, 57(12), 3439-3449.

Elliott, C., Songmu, Z. (1986). On the Cahn-Hilliard equation. Archive for Rational
Mechanics and Analysis 96(4), 339-357.

Fischle, A., Neff, P., (2017). The geometrically nonlinear Cosserat micropolar shear-
stretch energy. Part I: A general parameter reduction formula and energy-minimizing
microrotations in 2D. Zeitschrift fiir Angewandte Mathematik und Mechanik 97(7),
828-842.

Fischle, A., Neff, P., (2017). The geometrically nonlinear Cosserat micropolar
shear-stretch energy. Part II: Non-classical energy-minimizing microrotations in 3D

and their computational validation. Zeitschrift fiir Angewandte Mathematik und
Mechanik 97(7), 843-871.

Ghiba, 1.-D., Martin, R.J., Kohler, M., Balzani, D., Neff, P. (2024). Quasiconvex
relaxation of a planar Biot-type energy on GL*(2) versus R?*2. Analytical and nu-
merical approaches. In preparation.

Lecca, P. (2013). Stochastic chemical kinetics. Biophys. Rev. Vol. 5(4), 323-345.

Le Dret, H., Raoult, A. (2000). Variational Convergence for Nonlinear Shell Mod-
els with Directors and Related Semicontinuity and Relaxation Results. Archive for
Rational Mechanics and Analysis 154, 101-134.

32



[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

Levine, R.D. (2005). Molecular Reaction Dynamics. Cambridge University Press.

Miiller, S. (1998). Variational models for microstructure and phase transitions. Lec-
ture Notes no. 2, Max-Planck-Institute for Mathematics.
https://www.mis.mpg.de/publications/other-series /In/lecturenote-0298.html

Neff, P. (2006). A finite-strain elastic-plastic Cosserat theory for polycrystals with
grain rotations. International Journal of Engineering Science 44(8-9), 574-594.

Neff, P., Birsan, M., Osterbrink, F. (2015). Existence theorem for geometrically
nonlinear Cosserat micropolar model under uniform convexity requirements. Journal
of Elasticity, 121(1), 119-141.

Neff, P., Fischle, A., and Borisov, L. (2019). Explicit global minimization of the sym-
metrized FEuclidean distance by a characterization of real matrices with symmetric
square. STAM Journal on Applied Algebra and Geometry, 3(1). 31-43.

Neff, P., Lankeit, J., Madeo, A. (2014). On Grioli’s minimum property and its relation

to Cauchy’s polar decomposition. International Journal of Engineering Science. 80,
209-217.

Neff, P., Miinch, I. (2008). Curl bounds Grad on SO(3). ESAIM: Control, Optimisa-
tion and Calculus of Variations 14(1), 148-159.

Neff, P., Miinch, I. (2009). Simple shear in nonlinear Cosserat elasticity: bifurcation
and induced microstructure. Continuum Mechanics and Thermodynamics, 21(3),
195-221.

Oberman, A.M. (2007). The convex envelope is the solution of a nonlinear obstacle
problem. Proceedings of the American Mathematical Society, 135(6), 1689-1694.

33



