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Abstract In this article, a numerical solution method for the finite-strain rate-independent Cosserat theory of
crystal-plasticity is developed. Based on a time-incremental minimization problem of the mechanical energy,
a limited-memory Broyden-Fletcher-Goldfarb quasi-Newton method applied to a finite-difference discretiza-
tion is proposed. First benchmark tests study the convergence to an analytic solution. Further simulations
focus on the investigation of rotation localization zones, the bending of a rod and a torsion experiment.
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1 Introduction

The Cosserat model, introduced in 1909 by the Cosserat brothers, [13], is a general theory of continuum me-
chanics that accounts for independent rotations. For decades, only a few publications dealt with the Cosserat
theory. Then, starting in the late 1950ies, there came a Renaissance of the model, leading to the development
of the linear Cosserat theory, see [33,21,2,62,44], and [61] for further references. Also, the pioneering work
[19] introduced a new, direct approach, resulting in applications for shells, beams, and plates, see, e.g., [69,
32,15,57]. Since then, the Cosserat model has been successfully applied to a wide range of different prob-
lems, like directed fluids, liquid crystals, powders, or granular materials, see [4,22,25,66,11,16,35,64,39]
and others. Recent reviews on the Cosserat theory can be found in the survey articles [18,42,5,28,47,56].

From its construction, the Cosserat model is a gradient model. In that, contrary to other established mod-
els in elasto-plasticity like [36,43,58,59], it automatically induces a length scale, with the effect that the
localization zones always have a finite width.

The focus of this article lies in the development of a new algorithm for the finite-strain Cosserat theory
of crystal-plasticity. Among the earlier numerical studies of Cosserat models, the articles [9,29,30,38,48,49,
53,68] are mentioned here which investigate the infinitesimal elasto-plastic Cosserat model. In [41,31,37], a
numerical approach for the finite-strain case is introduced. Therein, fictitious, e.g. theoretically hypothesized
intermediate material configurations are postulated to get around the costly computation of the micro-rotations.
However, these intermediate configurations need not exist, see [46,55]. The algorithm developed here consti-
tutes an alternate approach. The computed micro-rotations also yield new insights on rotation localization
phenomena in deformed solids.

The article is organized in the following way. In Section 2, the finite-strain Cosserat model and the time-
incremental minimization ansatz of the mechanical energy functional are recalled. The latter puts the problem
in a framework suitable to the calculus of variations. Section 3 develops a quasi-Newton algorithm for the
numerical computation of the minimizers which is based on a finite difference scheme. The final section is
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devoted to numerical simulations. The article ends with a discussion of the results. To simplify reading, a
complete list of symbols is provided in the appendix.

2 The Cosserat theory within the framework of large-strain rate-independent crystal-plasticity

In the Cosserat theory of rate-independent large-strain crystal-plasticity, the evolution of a plastically de-
formed solid in the absence of surface tractions and surface couples is governed by the time-discrete mini-
mization problem, [7],

E (ϕ,Re,γ) :=

∫

Ω

[

Wst(R
t
eDϕFp(γ)

−1)+Wc(Ke)+ρ
(

Ip

∑
a=1

|γa−γ0
a |
)2

− fext·ϕ −Mext:Re+
Ip

∑
a=1

|γa−γ0
a |
(

σY −2ρ
Ip

∑
a=1

κ0
a

)]

dx → min

(1)

subject to the initial and Dirichlet boundary conditions

ϕ(x,0) = x, κ(·,0) = κ0 in Ω ,

ϕ = g
D
, Re = RD on ∂ Ω .

(2)

Either, RD is fixed Dirichlet boundary data or is defined by

RD := polar(DgDF−1
p ). (3)

Here, if A =UΣV t is the singular value decomposition (SVD) of a real tensor A, then the polar decomposition
is given by

polar(A) :=UV t . (4)

In deriving (1), Lagrange coordinates are introduced with Ω ⊂ R
d denoting the undeformed reference con-

figuration of the material. The deformation of Ω is controlled by ϕ(t) that maps Ω diffeomorphically to the
deformed state Ωt at time t . Since ϕ(·,0) = I, it holds det(Dϕ(t))> 0 for all t ≥ 0.

At the heart of the Cosserat approach, the deformation tensor F := Dϕ is multiplicatively decomposed,

F = FeFp = ReUeFp, (5)

with Fe, Fp the elastic and plastic deformation tensors, Ue ∈ GL(Rd) the stretching component, and

Re ∈ SO(d) := {R ∈ GL(Rd) | det(R) = 1, RtR = I}

the micro-rotations. In (5), Ue need not be symmetric and positive definite, i.e. the decomposition Fe = ReUe

is not the polar decomposition. By

Ke := Rt
eDxRe = (Rt

e∂xRe,R
t
e∂yRe,R

t
e∂zRe) (6)

the third-order (right) curvature tensor is denoted; fext(t), Mext(t) designate the external volume force densities
and external volume couples applied to the crystal body; σY > 0 is the yield stress.

In (1), it is assumed that plastic deformations occur along Ip ≥ 1 a-priori given material-dependent single-
slip systems, only. These slip systems are specified by tensors ma⊗na, where ma denotes the slip vector and
na the slip normal of slip system a, 1 ≤ a ≤ Ip. These vectors satisfy |ma|= |na|= 1 and ma·na = 0.

For γ = (γa)1≤a≤Ip ∈ R
Ip , it is set

Fp = Fp(γ) := I+
Ip

∑
a=1

γama⊗na. (7)

This formula is derived by integration from the rate form. For other time integrators, see [65]. As a result of
plastic deformation, due to structural changes within the material like the increase of immobilized dislocations
inside the crystal structure, hardening occurs, [14,8]. By the infinite latent-hardening assumption, [12], it is
sufficient to consider only one active slip system at at time. Numerically, the algorithm selects the first slip
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system which is active. In the model, κ ∈ R
Ip is a set of hardening parameters. In (1), the simple ansatz for

the energy of stored dislocations, [6], V (κ) := ρ
(

∑
Ip
a=1 κa

)2
with a constant ρ > 0 has been used.

By Wst the stretching part of the mechanical stored energy density is denoted, Wc is the curvature part due
to (micro-)rotations. The last two functionals are defined by, cf. [47,6],

Wst(Ue) :=µ‖symUe−I‖2 +µc‖skw(Ue−I)‖2 +
λ

2

∣

∣tr(Ue−I)
∣

∣

2
, (8)

Wc(Ke) :=µ2‖Ke‖
2 := µ2‖DxRe‖

2 = µ2

3

∑
k=1

‖∂xk
Re‖

2. (9)

In these formulas, µ2 := µ
2

L2
c , where Lc > 0 is an internal length scale and µ > 0, λ > 0 are Lamé parameters,

µc ≥ 0 is the Cosserat couple modulus. Eqn. (9) is a special case of the general form

Wc(Ke) := µ
L

1+p
c

2
(1+α4Lq

c‖Ke‖
q)
(

α5‖symKe‖
2 +α6‖skwKe‖

2 +α7|tr(Ke)|
2
)

1+p
2

after setting α4 := 0, α5 = α6 := 1, α7 := 0, and p := 1. In (8), symA := 1
2
(A+At), skwA := 1

2
(A−At) denote

the symmetric and skew-symmetric part of a tensor A, respectively, and tr(A) := ∑i Aii is the trace operator,

‖A‖ :=
√

tr(AtA) the Frobenius matrix norm. As usual, · is the inner product in R
d , u·v := ∑d

i=1 uivi. For

A,B ∈ R
d×d , A :B := tr(AtB) = ∑d

i, j=1 Ai jBi j denotes the inner product in R
d×d . For a general introduction to

tensor calculus in plasticity see, e.g., [34,40].
Eqn. (1) introduces a family of time-discrete minimization problems. The concept goes back to [52] and

permits the application of the calculus of variations to plasticity. For a fixed discrete time step h > 0 and
known (γ0,κ0) at time t , the new (ϕ,Re,γ) representing values at time t +h are calculated from (1). Finally,

κa := κ0
a −|γa − γ0

a |, 1 ≤ a ≤ Ip (10)

is set and (γ ,κ) become the initial values of the next time step.
Starting from a material free of dislocations, κ(·,0) = 0, as a consequence of the hardening law (10),

∑
Ip
a=1 κa(t+h)≤ ∑

Ip
a=1 κ(t)≤ 0 for all times t . Therefore, −2ρ ∑

Ip
a=1 κ0

a ≥ 0 in (1) specifies the increase of the
yield stress σY due to stored dislocations.

3 Numerical solution method

For the rest of this article, Ω ⊂ R
3, i.e. d = 3. When selecting a numerical solution scheme for (1), the first

fundamental observation is that due to the presence of the non-local term Wc(Ke) ∼ ‖DxRe‖
2 in E , the mini-

mization cannot be carried out for each discretization point separately. As now Re needs to be computed, the
optimization step of the Cosserat model is more memory-demanding than the previous numerical approaches
[41,31,37]. Secondly, it is not possible to reformulate (1) and use F =Dϕ directly instead of ϕ as an argument
of E , since the condition curl(F) = 0 may be violated, i.e. the computed F need not be a gradient.

Following the ideas in [7], for the computation and storage of Re ∈SO(3), a non-unique parametrization
by Euler angles is used.
For α = (α1,α2,α3) ∈ R

3, letting sk := sin(αk), ck := cos(αk) for k = 1,2,3,

Re(α) := Q3(α3)Q2(α2)Q1(α1) (11)

:=





1 0 0
0 cosα3 sinα3

0 −sinα3 cosα3









cosα2 0 −sinα2

0 1 0
sinα2 0 cosα2









cosα1 sinα1 0
−sinα1 cosα1 0

0 0 1





=





c1c2 s1c2 −s2

c1s2s3 − s1c3 c1c3 + s1s2s3 c2s3

s1s3 + c1s2c3 s1s2c3 − c1s3 c2c3



 . (12)

The right hand side of (11) defines a rotation for any argument α ∈R
3 and the mapping α 7→Re(α)∈ SO(3) is

onto. Eqn. (11) does not prefer one of the three spatial coordinates and, in contrast to other parameterizations
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by Euler angles where two elementary rotations Qk are along the same coordinate axis, implies, see [7] for a
detailed derivation,

Wc(Ke(α)) = 2
µ

2
L2

c

(

|∇α1|
2
2 + |∇α2|

2
2 + |∇α3|

2
2

)

=: 2µ2|∇α|22. (13)

Here, the Euclidean norm |x|2 :=
(

∑3
k=1 x2

k

) 1
2 in R

3 has been introduced. Of course, computing spatial deriva-
tives of α by (13) is faster than computing derivatives of Re. In addition, the introduction of α automatically
ensures R = Re(α) ∈ SO(3) and helps to interpret the numerical results.

For the minimization of E , it is desirable to apply Newton’s method, but clearly, | · | in (1) is not differen-
tiable at the origin. To overcome this obstacle, for chosen small ε > 0, the modulus |x| is replaced by

rε(x) :=







x, x > ε,
x2/ε, −ε ≤ x ≤+ε,
−x, x <−ε.

(14)

With (14), (11) and (13), the minimization (1) becomes

Eε(ϕ,α,γ) =

∫

Ω

[

Wst(R
t
e(α)DϕFp(γ)

−1)+2µ2|∇α|22 − fext·ϕ −Mext :Re(α)

+ρ
(

Ip

∑
a=1

rε(γa−γ0
a )
)2

+
Ip

∑
a=1

rε(γa−γ0
a )
(

σY−2ρ
Ip

∑
a=1

κ0
a

)]

dx → min

(15)

subject to the boundary conditions

ϕ = g
D
, α = αD on ∂ Ω (16)

with αD such that Re(αD) = RD.

The spatial discretization of (15) is based on finite differences with equidistant spacing in each direction.
For simplicity, let Ω = (0,L1)×(0,L2)×(0,L3), and dk ∈N be the number of discretization points in direction
xk, k = 1,2,3. For mesh points

(yi jk)0≤i≤d1,0≤ j≤d2 ,0≤k≤d3
:= (iη1, jη2,kη3)i jk ∈ Ω (17)

with equal spacings

η1 :=
L1

d1

, η2 :=
L2

d2

, η3 :=
L3

d3

, (18)

the integral is approximated by the Newton–Cotes formula (d notifies the dependence on (d1,d2,d3))

Eε(ϕ,α,γ) =
∫

Ω

eε(x)dx ≈ Ed
ε :=

η1η2η3

8

d1

∑
i=0

d2

∑
j=0

d3

∑
k=0

Ni jk eε(yi jk) (19)

which is exact up to second order and where the weights in 3D are given by

Ni jk =















1, if yi jk is a corner of Ω ,
2, if yi jk is at an edge of Ω ,
4, if yi jk is on a face of Ω ,
8, if yi jk ∈ Ω .

(20)

On the right of (19), the integrand eε of Eε depends on (ϕ,α,γ) evaluated at the nodes yi jk. Combined, (19),

(7) and (11) provide an approximation of Eε by a discrete functional Ed
ε : Xd → R for the space

Xd :=
{

(ϕ,α,γ)(yi jk)
∣

∣

∣ 0 ≤ i ≤ d1, 0 ≤ j ≤ d2, 0 ≤ k ≤ d3

}

∼=R
D

with dimension
D := (6+ Ip)(d1 +1)(d2 +1)(d3 +1).
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For the computation of ∇α in (13), central differences are used where feasible and one-sided difference
quotients are employed near ∂ Ω .

For the approximate numerical solution of (15), the regularity of Ed
ε and the variational structure is

exploited. A discrete solution to (15) is computed numerically with a Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno approach, [50]. The L-BFGS-algorithm is a quasi-Newton method where the Hessian is
never computed or stored explicitly. Instead, only information from the past k steps is used to compute a
rank-one approximation of the Hessian. For this update, 4kD operations are required. The algorithm, [50,
Algorithm 2], has thus a complexity of O(kD) where typically, k ≤ 40 for D = 104. Therefore, the L-BFGS
method is a powerful tool for large problems. This method is combined with the inexact Moré-Thuente line
searcher which satisfies the strong Wolfe conditions, see [45] for details.

A proof of convergence of the L-BFGS method is only known when the objective functional is twice
continuously differentiable and convex, [50]. Here, the convexity of Ed

ε fails (due to non-convexity in ϕ), but
the L-BFGS method converges nevertheless.

For the application of the L-BFGS method, it remains to compute

DEd
ε (ϕ,α,γ) =

(∂ Ed
ε

∂ ϕ
,

∂ Ed
ε

∂ α
,

∂ Ed
ε

∂ γ

)

.

The results are summed up in the following lemma.

Lemma 1 Let Wst be given by (8), Wc be given by (9). Let 0 ≤ I ≤ d1, 0 ≤ J ≤ d2, 0 ≤ K ≤ d3, 1 ≤ a ≤ Ip,
1 ≤ b ≤ 3 be fixed indices,

NΓ
IJK :=

{

NIJK , if yIJK /∈ ∂ Ω ,
0, else.

(21)

Then, with S :=Re

[

µ(symUe−I)+µc skwUe+
λ
2

tr(Ue−I)I
]

(F−1
p )t , with Ta :=Ue

∂ Fp

∂ γa
F−1

p , and Cb :=
∂ (Qt

1Qt
2Qt

3)

∂ αb
Fe,

it holds

∂ Ed
ε (ϕ,α,γ)

∂ ϕ IJK
b

=
η1η2η3

8

{

NΓ
I−1,J,K

η1

Sb1(yI−1,J,K)−
NΓ

I+1,J,K

η1

Sb1(yI+1,J,K)

+
NΓ

I,J−1,K

η2

Sb2(yI,J−1,K)−
NΓ

I,J+1,K

η2

Sb2(yI,J+1,K)

+
NΓ

I,J,K−1

η3

Sb3(yI,J,K−1)−
NΓ

I,J,K+1

η3

Sb3(yI,J,K+1)−NΓ
IJK fextb(yIJK)

}

, (22)

∂ Ed
ε (ϕ,α,γ)

∂ α IJK
b

=
η1η2η3

4

{

µ2

2

(

Σ IJK
1,b (α)+Σ IJK

2,b (α)+Σ IJK
3,b (α)

)

−NΓ
IJKMext(t)(yIJK) :

∂ (Q3Q2Q1)(α
IJK)

∂ α IJK
b

+NΓ
IJK

[

µ(symUe−I) : symCb+µc skwUe : skwCb+
λ

2
tr(Ue−I)tr(Cb)

]

(yIJK)

}

,

(23)

∂ Ed
ε (ϕ,α,γ)

∂ γ IJK
a

=
η1η2η3

8
NIJK

{

[

σY −V ′
(

κ0−∑
Ip

e=1
rε(γe−γ0

e )
)]

r′ε(γa−γ0
a )−2µ(symUe−I) : symTa

−2µc skwUe : skwTa−λ tr(Ue−I)tr(Ta)

}

(yIJK). (24)
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The symbols Σ IJK
1,b , Σ IJK

2,b , Σ IJK
3,b in (23) originate from derivatives of the curvature energy and are defined by

Σ IJK
1,b (α) :=































NΓ
I−1,J,K

α IJK
b

−α
I−2,J,K
b

η2
1

−NΓ
I+1,J,K

α
I+2,J,K
b

−α IJK
b

η2
1

, 2≤ I≤d1−2,

4NΓ
0,J,K

α
1,J,K
b

−α
0,J,K
b

η2
1

+NΓ
2,J,K

α
1,J,K
b

−α
3,J,K
b

η2
1

, I=1,

NΓ
d1−2,J,K

α
d1−1,J,K
b

−α
d1−3,J,K
b

η2
1

+4NΓ
d1,J,K

α
d1−1,J,K
b

−α
d1,J,K
b

η2
1

, I=d1−1,

0, I=0 or I=d1,

Σ IJK
2,b (α) :=































NΓ
I,J−1,K

α IJK
b

−α
I,J−2,K
b

η2
2

−NΓ
I,J+1,K

α
I,J+2,K
b

−α IJK
b

η2
2

, 2≤J≤d2−2,

4NΓ
I,0,K

α
I,1,K
b

−α
I,0,K
b

η2
2

+NΓ
I,2,K

α
I,1,K
b

−α
I,3,K
b

η2
2

, J=1,

NΓ
I,d2−2,K

α
I,d2−1,K
b

−α
I,d2−3,K
b

η2
2

+4NΓ
I,d2 ,K

α
I,d2−1,K
b

−α
I,d2,K
b

η2
2

, J=d2−1,

0, J=0 or J=d2,

Σ IJK
3,b (α) :=



































NΓ
I,J,K−1

α IJK
b

−α
I,J,K−2
b

η2
3

−NΓ
I,J,K+1

α
I,J,K+2
b

−α IJK
b

η2
3

, 2≤K≤d3−2,

4NΓ
I,J,0

α
I,J,1
b

−α
I,J,0
b

η2
3

+NΓ
I,J,2

α
I,J,1
b

−α
I,J,3
b

η2
3

, K=1,

NΓ
I,J,d3−2

α
I,J,d3−1

b
−α

I,J,d3−3

b

η2
3

+4NΓ
I,J,d3

α
I,J,d3−1

b
−α

I,J,d3
b

η2
3

, K=d3−1,

0, K=0 or K=d3.

Due to the boundary conditions (16) on ϕ and α , the equations (22) and (23) are only evaluated for 1 ≤ I ≤
d1 −1, 1 ≤ J ≤ d2 −1, 1 ≤ K ≤ d3 −1, i.e. the right hand sides of (22), (23) are well-defined.

Proof. The equations (22)–(24) are obtained by direct calculations starting from (15) and (19), using the

chain rule and
∂ (F−1

p )

∂ γa
=−F−1

p
∂ Fp

∂ γa
F−1

p . ⊓⊔

Similarly, Ed
ε ∈C2(Xd; R) can be shown, an essential requirement of the convergence analysis in [50].

Remark 1 Each component αk of α is a solution of a scalar Allen-Cahn equation, [7], which is known to
respect the maximum principle, see [26,54] for a proof. Consequently, for all x ∈ Ω ,

min
∂ Ω

αD,k ≤ αk(x)≤ max
∂ Ω

αD,k, k = 1,2,3.

Remark 1 also explains why the algorithm does not require a projection step (e.g. to the interval [0,2π))
of the computed αk.

4 Numerical simulations

In Section 4.1 a benchmark problem is studied and the convergence behavior of the algorithm is worked out.
Then, 3D bending experiments are simulated. The final section deals with the torsion of a rod.

All computations are dimensionless. The computations of the first section 4.1 share the parameters

Ω = (0,1)3, t ∈ [0,1], β(t) = 0.25∗ t, h = 0.1, ε = 10−4, Ip = 1,

m1 = (1,0,0)t , n1 = (0,1,0)t , ρ = σY = 0, fext = 0, Mext = 0.
(25)
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4.1 A benchmark problem

In [7], a class of analytic solutions to a Cosserat medium in 3D is computed analytically assuming (7) and

Dϕ(t) = I+
Ip

∑
a=1

βa(t)ma⊗na on ∂ Ω (26)

where β(t) = (β1(t), . . . ,βIp(t)) is the prescribed shear. Subsequently, for the case of an ultra-soft material,
i.e. for σY = ρ = 0, this problem is used as a benchmark. The numerical tests recover the analytic solution. In

particular, (26) holds in Ω , i.e. the Cauchy-Born rule holds.

Simulation 1: λ = 103, µ = 104, µc = 2 ·104, µ2 := µ
L2

c
2
= 100.

Initial values: ϕ0 ≡ I, κ0 = γ0 ≡ 0 in Ω .
Boundary conditions at ∂ Ω : ϕ(x, t) = (x1 +β(t)x2,x2,x3), α ≡ 0 at ∂ Ω .

Fig. 1 Computed shear of Ω = (0,1)3 along (1,0,0)⊗(0,1,0), d1 = d2 = d3 = 40. Left: undeformed material. Right: deformed
solid at t = 1.

Results: γ(·, t)≡ β(t), Re =Ue ≡ I, Wst =Wc ≡ 0 in Ω ,
ϕ(x, t) = (x1 +β(t)x2,x2,x3) in Ω , i.e. the validity of Eqn. (26).

(d1,d2,d3) no. nodes no. unknowns time (δ =10−5) time (δ =10−6)

10×10×10 1000 4072 0.94 s 1.1 s

20×20×20 8000 42992 30.4 s 39.6 s

30×30×30 27000 158712 211.2 s 291.2 s

40×40×40 64000 393232 732 s 1052 s

50×50×50 125000 788552 1508 s 2928 s

60×60×60 216000 1386672 2762 s 6100 s

70×70×70 343000 2229592 5674 s 11777 s

Table 1 Comparison of the first time step for the benchmark problem, different spatial resolutions and the two chosen relative

precisions Ed
ε < δ for δ = 10−5 and δ = 10−6. The tabulated times are the computation times of the L-BFGS algorithm and

refer to one single desktop PC with Intel Dual-Core E7400 (2.8GHz) and 4GB RAM.
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(d1,d2,d3) δ =10−5 δ =10−6 δ =10−7 δ =10−8 δ =10−10

10×10×10 460 552 635 689 804

20×20×20 1393 1795 2177 2606 3308

30×30×30 2517 3489 4366 5290 7330

40×40×40 3335 4805 6824 9068 12730

50×50×50 3445 6387 9844 13289 19787

60×60×60 3521 7814 12471 17584 27795

70×70×70 4057 9244 14857 22219 35517

Table 2 L-BFGS iterations required to satisfy Ed
ε < δ for the first time step of the benchmark problem, different spatial resolu-

tions and different relative precisions δ .

Table 1 gives an overview of the computation times of the code and the number of unknowns for different
spatial resolutions. Table 2 displays the required L-BFGS iteration steps needed to obtain a desired accuracy
Ed

ε < δ for different values of δ and different spatial resolutions. Since E = 0 for the analytic solution, Ed
ε

also measures the total numerical error. In order to have a meaningful test, no knowledge about the converged
solution is used when picking the start values of the L-BFGS iteration. For the data of Table 1, Table 2 and
Fig. 1, randomly α ∈ [0,2π)3 in Ω is chosen as start values.

The boundedness of E implies the boundedness of Wc(Ke) ∼ µ2‖DxRe‖
2. Due to the Rellich-Kondrakov

theorem, this term is essential for the existence of minimizers as it provides compactness for sequences of Re.
Eqn. (13) converts this into a compactness property for α . Correspondingly, 2µ2|∇α|22 stabilizes the numerical
scheme as it damps oscillations in α . Clearly, the smaller µ2, the weaker this effect. Fig. 2 below documents
this feature showing that the required L-BFGS iterations increase for smaller values of µ2.

 200

 500

 1000

 2000

 4000

 6000

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Ite
ra

tio
ns

MU2

Fig. 2 Number of L-BFGS iterations for the first time step of Simulation 1 and different values of µ2. Only µ2 is varied, the
other parameters are kept fixed with the values stated for Simulation 1.

4.2 A 3D bending experiment

While the previous subsections focused on the characteristics of the algorithm itself, in this section a bending
experiment for a rod is simulated. The parameters of the simulation are as in (25), but with

Ω = (0,L1)× (0,L2)× (0,L3) := (0,5)× (0,1)× (0,2).

For given β(t), the deformation at ∂ Ω is prescribed by

ϕ(x1,x2,x3, t) :=







x1

x2 +
2L1
π

[

sin
(

3π
2
+ π

2
x1
L1

)

+1
]

β(t)

x3






. (27)
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The implementation of the singular value decomposition for solving (4) uses the algorithm in [17] based on
the Householder transformation. In tests, this method turned out more robust than the algorithm in [68]. After
RD has been computed by (4), in the last step αD is determined such that Re(αD) = RD. This is done with the
algorithm in [60].

Simulation 2: λ = µ = 0.025, µc = 0.4, µ2 = 0.02. Other parameters are as in (25).
Spatial discretization: d1 = 200, d2 = 40, d3 = 80.

Initial values: ϕ0 ≡ I, κ0 = γ0 ≡ 0 in Ω .

Boundary conditions at ∂ Ω : ϕ(x, t) given by (27), α =αD with Re(αD)=RD given by (3).

-0.8

-0.6

-0.4

-0.2

0
kappa

-1

1e-16

Fig. 3 Spatial distribution of κ for Simulation 2 and t = 0.0, t = 0.03, t = 0.07, t = 0.1.

Fig. 4 Level sets of α1 at t = 0.03, t = 0.07, t = 0.1 for Simulation 2.

Results: α2 = α3 ≡ 0, γ(x, t) = sin(π
2

x1
L1
)β(t), Ue = I, Wst ≡ 0 in Ω , ϕ(x, t) follows (27) for x ∈ Ω .

Fig. 3 and Fig. 4 display the spatial distribution of κ and α1. For t ∈ [0,0.1], the boundary conditions (3)

impose a range [−0.38,+0.38] on α1 and enforce α2 =α3 = 0 on ∂ Ω , hence in Ω by Remark 1. Consequently,
the local minimum of J(α) =Wst(Re(α)) at α1 = π is not reached and no deformation patterning occurs.

4.3 The effect of the discrete lattice point group

This subsection studies the influence of the discrete point group on the formation of rotation deformation
zones. To this end, an additional term η dist(Re(α),R) is added to E in (1) with η > 0 a constant and R

the discrete point group of the material, owing to the fact that certain rotations are preferred by the crystal
lattice. The mechanical energy E with this modification possesses additional local minima. Numerically, the
minimisation problem

dist(Re(α),R) = min
{

‖Re(α)−M‖ | M ∈ R

}

(28)

is solved by passing through the finitely many elements of R, using once more the parametrisation (12). This

also provides a formula for d
dα dist(Re(α),R) required for the computation of DEd

ε .
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The following simulation documents the effects. The parameters are as in Section 4.1, but with ϕ at ∂ Ω
prescribed by

ϕ(x1,x2,x3, t) :=









x1

x2 +
2L1
π

[

sin
(

3π
2
+ π

2
x1
L1

)

+1
]

β(t)

x3 +
2L1
π

[

sin
(

3π
2
+ π

2
x1
L1

)

+1
]

β(t)









. (29)

This represents bending along two directions. Furthermore, η = 1 is set and R is chosen as the FCC lattice

R =
{

R = Re(α1,α2,α3)
∣

∣ αk ∈ {0,π/2,π,3π/2}
}

.

Fig. 5 shows the results. As can be seen, additional patterning inside the slab occurs which is only due to the
energy contribution of the lattice point group, i.e. disappears for η = 0.

0.025

0.05

0.075

0.1

0.000e+00

1.068e-01
Wc(Ke)

1.4

1.5

1.6

1.7

1.315e+00

1.768e+00
Re_magnitude

Fig. 5 Bending of a slab with FCC lattice structure. Left: Curvature energy for the deformed slab at t = 0.05. Right: Additional
patterning due to the energy contribution of the lattice point group.

4.4 Torsion and stretching of a 3D rod

In the final computation, for given a(x3, t), β(t), the deformation at ∂ Ω is prescribed as

ϕ(x1,x2,x3, t) :=





x1 cos(a(x3, t))− x2 sin(a(x3, t))
x1 sin(a(x3, t))+ x2 cos(a(x3, t))

(1+β(t))x3



 . (30)

This represents torsion of the material in the (x1,x2)-plane by an angle a(x3, t) with simultaneous stretching
by β(t). The domain is chosen as a bar, Ω = (0,1)× (0,1)× (0,5).

Simulation 3: λ = µ = 0.025, µc = 0.4, µ2 = 0.02, ρ = σY = 20, a(x3, t) := 4.0∗ x3 ∗ t , β(t) = 2.0∗ t .
Other parameters as in (25). Spatial discretization: d1 = d2 = 20, d3 = 200.

Initial values: ϕ0 ≡ I, κ0 = γ0 ≡ 0 in Ω .

Boundary conditions at ∂ Ω : ϕ(x, t) given by (30), α =αD with Re(αD)=RD given by (3).

Results: γ(x, t) = κ(x, t)≡ 0, Ue = I, Wst ≡ 0 in Ω , ϕ(x, t) follows Eqn. (30) for x ∈ Ω .

α3 ≡ 0 in Ω .

The simulations show that the curvature energy is determined by the geometry of the slab. The stretching
energy is largest near the top, and stretching leads to patterning of α1 in x3-direction. In contrast, patterning
in α2 is due to twisting and occurs perpendicular in the (x1,x2)-plane. Combined, the two effects lead to a
complicated 3D-morphology. The computations also demonstrate how a length scale is introduced by ‖∇Re‖.
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Fig. 6 Twisting and stretching of the bar at t = 0.0, t = 0.03, t = 0.07 and t = 0.1.

0.25

0.5

0.75

1

Wc(Ke)

0

1.04

0.2

0.4

0.6

0.8

Wc(Ke)

0.107

0.959

Fig. 7 Iso-surfaces of the curvature energy at t = 0.03, t = 0.07, t = 0.1. Top view at t = 0.1.

0.1

0.2

0.3

Wst(Ue)

0

0.399

Fig. 8 Volume plot of the stretching energy for t = 0.03, t = 0.07 and t = 0.1.

5 Discussion

In this article, a new algorithm for the solution of the finite-strain rate-independent Cosserat theory of crystal-
plasticity was developed. A family of time-discrete minimization problems of the mechanical energy control-
ling the evolution of the material due to imposed deformations is solved with a variational ansatz, utilizing in
3D a limited-memory Broyden-Fletcher-Goldfarb algorithm based on finite differences.

In contrast to earlier algorithms, the method developed here does not rely on fictitious intermediate con-
figurations and is capable of computing the micro-rotations, achieved by solving discrete systems with a
larger number of unknowns. While the L-BFGS method does not store the Hessian and is thus specialized
to such situations, see Table 1, some comments are in place regarding other aspects of the algorithm. Firstly,
a disadvantage of introducing rε leading to (15) is that the onset of plasticity depends now on ε with more
accurate predictions for smaller values of ε . On the other hand, r′ε and thus DEε explode for ε ց 0, resulting
in numerical instabilities. Secondly, since SO(3) is a manifold, all charts are only locally invertible. Conse-
quently, no representation of SO(3) works all the time and whether it is suitable or not depends on the studied
problem. In case of the Euler angles (11), for every R ∈ SO(3) there exist two distinct α1, α2 ∈ [0,2π)3
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0

0.4

0.8

1.2

1.6

alpha_1

-1.67e-18

1.82

-0.03

0

0.03

0.05

0.08
alpha_2

-0.0476

0.0753

-0.03

0

0.03

0.05

0.08
alpha_2

-0.0476

0.0753

-0.03

0

0.03

0.05

0.08
alpha_2

-0.0476

0.0753

Fig. 9 Spatial distribution of α1 (top) and α2 (bottom) for t = 0.03 (left), t = 0.07 (center) and t = 0.1 (right).

with Re(α
1) = Re(α

2) = R. In certain cases, this non-uniqueness may lead to difficulties when the algorithm
switches between the two local maps. A possible alternative to Euler angles are quaternions.

The investigated Cosserat model is very general and allows to study a large number of mechanical effects
with a rich morphology. The present work is motivated by the analysis in [6,7] where the occurrence of
deformation patterning is predicted, i.e. the formation of cells in the material with approximately constant
micro-rotations as a consequence of deformation, possibly leading to a better understanding why grains and
subgrains form, [67,27,63,51].

The computations carried out here are of principle nature. No attempt was made to adapt to particular
materials. This would require quantum mechanical simulations, leading to energies which typically possess
a large number of local minima. To some extend, the effect of such energies can already be studied at Fig. 5,
where additional local minima of E lead to increased deformation patterning. With regard to realistic simula-
tions it must also be mentioned that the parameter identification is one of the mayor problems for the Cosserat
model, [47].

Acknowledgements TB wishes to thank Prof. G. Gottstein and Prof. S. Luckhaus for valuable discussions.

Appendix - List of symbols

Ω ⊂R
d reference domain, undeformed solid (x, t) space and time coordinates,

symσ symmetric part of tensor σ , (8) skwσ skew-symmetric part of σ , (8)

trσ trace of tensor σ σ t transpose of σ ; Rt =R−1 for R∈SO(3)
h > 0 discrete time step ε > 0 regularization of | · |, (14)
ϕ deformation vector of the solid, (5) F =Dϕ deformation tensor, (5)
Fe elasticity tensor, (5) Fp plasticity tensor, (5)
Re rotation tensor, (5), (11) Ue (right) stretching tensor, (5)
Ke (right) curvature tensor, (6) I identity tensor, (I)kl = (δkl)kl

‖ · ‖ Frobenius matrix norm, (8) σY yield stress, (1)

A :B tensor product of A, B, below (9) u·v inner product of u, v ∈ R
3
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fext external volume forces, (1) Mext external volume couples, (1)
g

D
Dirichlet boundary values of ϕ , (2) RD Dirichlet boundary values of Re, (2)

Wst stretching energy, (8) Wc curvature energy, (9)
Ip number of slip systems, (7) ρ > 0 dislocation energy constant, (1)
λ , µ Lamé parameters, (8) µc Cosserat couple modulus, (8)

Lc internal length scale, (9) µ2 parameter µ scaled by L2
c , (9)

γ single-slip parametrization of Fp, (7) κ dislocation density, (10)

γ0 values of γ at time t , (10) κ0 values of κ at time t , (10)
ma slip vector of slip system a, 1≤a≤ Ip na slip normal of slip system a, (7)
α Euler angle to Re in 3D, (11) αD Dirichlet boundary data of α , (16)

A : B Tensor product of A and B, (9) | · |2 Euclidean vector norm in R
3, (13)

L1,L2,L3 size of Ω , (18) d1,d2,d3 spatial resolution, (19)
Qi rotation along xi, (11) β(t) deformation parameter, (26), (27), (30)
sk sk = sin(αk), 1 ≤ k ≤ 3, (12) ck ck = cos(αk), 1 ≤ k ≤ 3, (12)

E mechanical energy, (1) Ed
ε discretization of E , (19)

yi jk discretization points, (17) N
(Γ )
IJK discrete weights, (19), (20), (21)
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