Kürzel Wk

Prof. Dr. rer. nat. habil. Rudolf Winkel

Vita

Studium der Geologie an der Freien Universität Berlin, Diplom 1983

Studium der Mathematik an der Freien Universität Berlin, Diplom 1988

Promotion in Mathematik an der RWTH Aachen, 1992

Einjähriger Forschungsaufenthalt am MIT (Massachusetts Institute of Technology, Cambridge, USA, 1996-97

Habilitation in Mathematik an der RWTH Aachen, 1998

Privatdozent an der RWTH Aachen, 1998-2000

Systemanalytiker/Softwarearchitekt bei der SAP AG, Walldorf, 2000-2010

Professor für Mathematik an der FH Bingen/TH Bingen, seit Januar 2011

Lehre

Mathematik für Studierende der Informatik (Bachelor / Master) und des Mobile Computing (Bachelor)

Publikationen, Fachvorträge und Fachartikel

With chronological numbering.

Monograph

[11] On Algebraic and Combinatorial Properties of Schur and Schubert polynomials,
Bayreuther Mathematische Schriften 59 (2000), 225 pp. (first pages)
-> Hard copies can be requested by e-mail.

Papers & Preprints

[21] On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus (III): blossoming, Comput. Aided Geom. Design 46 (2016), 43 - 63, (pdfdx.doi.org/10.1016/j.cagd.2016.05.001

[20] On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus (II): de Casteljau algorithm, Comput. Aided Geom. Design 39 (2015), 1-16 (pdfdx.doi.org/10.1016/j.cagd.2015.04.002

[19] On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus, Comput. Aided Geom. Design 31 (2014), 227-244 (pdf) dx.doi.org/10.1016/j.cagd.2014.02.010

[18] A derivation of Kohnert's algorithm from Monk's rule,
Sem. Loth. Comb. B48f (2003), 14 pp. (pdf)

[17] Generalized Bernstein Polynomials and Bezier Curves: An Application of Umbral Calculus to Computer Aided Geometric Design,
Advances in Applied Mathematics 27 (2001), 51 - 81. (pdf)

[16] On the Coefficients of Power Series Solutions for Polynomial Vector Fields,
work in progress, 19 pp. (pdf)

[15] A complete topological classification of plane polynomial vector fields derived from non-degenerate complex polynomials,
work in progress, 40 pp. (pdf)

[14] A transfer principle in the real plane from non-singular algebraic curves to polynomial vector fields,
Geometria dedicata 79 (2000), 101 - 108. (pdf)

[13] An Exponential Formula for Polynomial Vector Fields (II): Lie Series, Exponential Substituition, and Rooted Trees,
Advances in Mathematics 147 (1999), 260 - 303. (pdf)

[12] From Quantum Cohomology to Algebraic Combinatorics: the Example of Flag Manifolds,
Annals of Combinatorics 4 (2000), 299 - 305. (pdf)

Interlude:  Mathematics and Music (2000), 9 pp. (pdf)

[10] Schubert polynomials of type A - D,
Manuscripta Mathematica 100 (1999), 55 - 79. (pdf)

[9] On the expansion of Schur and Schubert polynomials into standard elementary monomials,
Advances in Mathematics 136 (1998), 224 - 250. (pdf)

[8] On the multiplication of Schubert polynomials,
Advances in Applied Mathematics 20 (1998), 73 - 97. (pdf)

[7] Schubert functions and the number of reduced words of permutations,
Sem. Loth. Comb. B39a (1997), 28 pp. (pdf)

[6] A combinatorial bijection between Standard Young Tableaux and reduced words of Grassmannian permutations,
Sem. Loth. Comb. B36h (1996), 24 pp. (pdf)

[5] A combinatorial derivation of the Poincare polynomials of the finite irreducible Coxeter groups,
Discrete Mathematics 239 (2001), 83 -99. (pdf)

[4] Sequences of symmetric polynomials and combinatorial properties of tableaux,
Advances in Mathematics 134 (1998), 46 - 89. (pdf)

[3] Diagram rules for the generation of Schubert polynomials,
J. Combin. Theory A 86 (1999), 14 - 48. (pdf)

[2] Recursive and combinatorial properties of Schubert polynomials,
Sem. Loth. Comb. B38c (1996), 29 pp. (pdf)

[1] An Exponential Formula for Polynomial Vector Fields,
Advances in Mathematics 128 (1997), 190 - 216. (pdf)

Diplomarbeit Mathematik:
Zum Beweis der asypmtotischen Vollständigkeit von Sigal und Soffer (1987) (pdf)

Geologie

R. Winkel, R. Ingavat, D. Helmcke: Facies and stratigraphy of the Lower-Middle Permian strata of the Petchabun Fold Belt in Central Thailand, Workshop on Stratigraphy and Correlation of Thailand and Malaysia, Had Yai, Thailand, Sept. 1983 (1983), 293-306. (pdf)

Kontakt
Prof. Dr. rer. nat. habil. Rudolf Winkel (Wk)
Fachbereich 2
Raum 1- 217
T. +49 6721 409 261

Nach Vereinbarung.

Zurück zum Personenverzeichnis

g id="TH-Bingen_Icon_arrow_02">